JPS63318078A - Inside reforming type fuel cell - Google Patents

Inside reforming type fuel cell

Info

Publication number
JPS63318078A
JPS63318078A JP62154121A JP15412187A JPS63318078A JP S63318078 A JPS63318078 A JP S63318078A JP 62154121 A JP62154121 A JP 62154121A JP 15412187 A JP15412187 A JP 15412187A JP S63318078 A JPS63318078 A JP S63318078A
Authority
JP
Japan
Prior art keywords
fuel
catalyst
reforming
rod
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62154121A
Other languages
Japanese (ja)
Inventor
Chika Hirai
平井 千賀
Mitsuie Matsumura
光家 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62154121A priority Critical patent/JPS63318078A/en
Publication of JPS63318078A publication Critical patent/JPS63318078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To make it possible to assemble easily, to reduce the pressure loss resulting from the inside reforming catalyst, and to replace simply, by holding a reforming catalyst in rod-formed metallic basic bodies which the longitudinal direction is arranged along the flowing direction of the fuel passages. CONSTITUTION:A reforming catalyst 12 is held in rod-formed metallic basic bodies in which the longitudinal direction is arranged along the flowing direction of the fuel passages 7. As a result, clearances along the same direction are generated, the pressure loss at the fuel passages 7 is reduced to 1/2-1/3 compared with the case of using particle-form catalyst, consequently. Therefore, by heating down the cell once at the time when the output of the cell is reduced, the rod-formed catalysts 12 arranged in the fuel passages 7 are replaced while a fuel manifold 11 is opened, and heating up again, the cell can be revived. In such a way, it is made possible to assemble easily, to reduce the pressure loss of the fuel gas, and to replace simply.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料ガスの改質機能を内蔵した内部改質型
燃料電池装置の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of an internal reforming type fuel cell device having a built-in fuel gas reforming function.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭60−32255号公報に示され
た従来の内部改質型燃料電池袋#を一部切り欠いて示す
斜視図であり、図において、f+)U多孔性のセラミッ
クスで構成され、その空間には炭酸塩が充填されている
電解質マトリックス、(2)は多孔性のニッケルなどで
構成された燃料電極、(3)は酸化ニッケルなどの多孔
性材料で構成された酸化剤電極であり、燃料電極(2)
と酸化剤電極(3)とは電解質マトリックスf1)を介
して対向するように配置され、これらで単電池を構成し
ている。(4)は酸化剤電極(3)に対して設けられた
酸化剤通路、(6)は燃料電極(2)に接して設けられ
、多数の孔を有する燃料側スペーサ、(6)は燃料スペ
ーサ(5)に直角に設けられたリブであり、燃料側スペ
ーサ(5)とリブ(6)とで燃料通路(7)を形成して
いる。(8)は燃料通路(7)に充堪された燃料改質触
媒である。図の破線は改質触媒がその部分にも充填され
ていることを示す。このような単電池(l→とセパレー
タ板(9)を交互に積層して積層体すなわち内部改質電
池スタック(1(ト)が構成される。この電池スタック
(I5)の側面であって、燃料通路(7)の開口部が見
える面には、一対の燃料供給マニホールド(11)を、
また、酸化剤通路(4)の開口部が見える面には一対の
酸化剤供給マニホールド(10)を設ける。
FIG. 3 is a partially cutaway perspective view of a conventional internal reforming fuel cell bag # shown in, for example, Japanese Patent Application Laid-Open No. 60-32255. (2) is a fuel electrode made of porous nickel, and (3) is an oxidizer made of porous material such as nickel oxide. electrode, fuel electrode (2)
and the oxidizing agent electrode (3) are arranged to face each other with an electrolyte matrix f1) in between, and constitute a single cell. (4) is an oxidizer passage provided for the oxidizer electrode (3), (6) is a fuel-side spacer provided in contact with the fuel electrode (2) and has a large number of holes, and (6) is a fuel spacer. (5), and the fuel side spacer (5) and the rib (6) form a fuel passage (7). (8) is a fuel reforming catalyst filled in the fuel passage (7). The broken line in the figure indicates that the reforming catalyst is also filled in that part. A laminate, that is, an internally modified battery stack (1 (g)) is constructed by alternately stacking such unit cells (l→) and separator plates (9).A side surface of this battery stack (I5), A pair of fuel supply manifolds (11) are installed on the surface where the opening of the fuel passage (7) is visible.
Further, a pair of oxidant supply manifolds (10) are provided on the surface where the opening of the oxidant passage (4) is visible.

次に動作について説明する。燃料通路(7)に炭化水素
などの燃料と水蒸気が供給されると、燃料改質触媒(8
)との接触反応により、炭化水素は水蒸気と反応して水
素、−酸化炭素、および炭酸ガスに変換される。炭化水
素がメタンの場合には、この反応は以下の式で表わされ
る。
Next, the operation will be explained. When fuel such as hydrocarbons and steam are supplied to the fuel passage (7), the fuel reforming catalyst (8)
), hydrocarbons react with water vapor and are converted into hydrogen, -carbon oxide, and carbon dioxide gas. When the hydrocarbon is methane, this reaction is represented by the following equation.

CH4+H20−hCo + 3H2 生成された水素および一酸化炭素は、燃料側スペーサ(
5)に設けられた孔を通り、多孔性の燃料電極(2)の
細孔を拡散する。他方、酸化剤通路(4)には空気と炭
酸ガスとの混合ガスが供給され、多孔性の酸化剤電極(
3)の細孔を拡散する。電解質マ) IJツクスfi+
に含浸され、動作温度である600℃付近では溶融状態
になっている炭酸塩、電極+2j 、 +31 、およ
び上記水素と酸素を主成分とする反応ガスの間に生ずる
電気化学反応により反応ガスが消費され、電流コレクタ
(図示せず)間に電位が生じ、外部に電力が取り出され
る。なお、燃料改質触媒(8)上で起こる改質反応は吸
熱反応であり、この反応を持続させるのに必要な熱量は
、上記電気化学反応に伴う罪過逆反応が然ロスとなり、
燃料電極(2)およびスペーサ(5)を介して燃料改質
触媒(8)に供給される。
CH4+H20-hCo+3H2 The generated hydrogen and carbon monoxide are transferred to the fuel side spacer (
5) and diffuses through the pores of the porous fuel electrode (2). On the other hand, a mixed gas of air and carbon dioxide is supplied to the oxidant passage (4), and the porous oxidant electrode (
3) Diffuse the pores. Electrolyte Ma) IJTux fi+
The reaction gas is consumed by the electrochemical reaction that occurs between the carbonate, which is impregnated with carbonate and is in a molten state at around the operating temperature of 600°C, the electrodes +2j and +31, and the reaction gas whose main components are hydrogen and oxygen. A potential is generated between the current collector (not shown), and power is taken out to the outside. Note that the reforming reaction that occurs on the fuel reforming catalyst (8) is an endothermic reaction, and the amount of heat required to sustain this reaction is lost due to the negative reaction accompanying the electrochemical reaction.
The fuel is supplied to the fuel reforming catalyst (8) via the fuel electrode (2) and spacer (5).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の内部改質型燃料電池装置は以上のように、第3図
に示したような粒子状の燃料改質触媒(8)を燃料通路
(7)に設置しているので、粒子状の触媒(8)を均一
に充填するのに手IWがかかり、組み立て工程が極めて
煩雑であり、しかも燃料通路(7)における圧力損失が
大きいという欠点があった。特に圧力損失の増大は、内
部改質型燃料電池装置を大型化する際に、燃料通路(7
)と酸化剤通路(4)との間の差圧を増大せしめ、両ガ
スの混合を誘引するため、安全上の見地から大きな問題
であった。また、構成上、改質触媒(8)は電解質とし
て用いられているアルカリ炭酸塩の蒸気雰囲気にさらさ
れるなどの原因で、時間とともに活性が低下するが、燃
料通路に粒子状の触媒(8)を充填した第3図のような
構造では、触媒の交換が不可能なので、触媒の寿命が電
池の寿命となるという問題点があった。
As described above, in the conventional internal reforming type fuel cell device, the particulate fuel reforming catalyst (8) as shown in Fig. 3 is installed in the fuel passage (7). There were disadvantages in that manual IW was required to uniformly fill the fuel (8), the assembly process was extremely complicated, and the pressure loss in the fuel passage (7) was large. In particular, an increase in pressure loss is a problem when increasing the size of an internal reforming fuel cell device.
) and the oxidizer passageway (4), inducing mixing of both gases, which is a major problem from a safety standpoint. Furthermore, due to the structure, the activity of the reforming catalyst (8) decreases over time due to exposure to the vapor atmosphere of the alkali carbonate used as an electrolyte, but the particulate catalyst (8) in the fuel passage In the structure shown in FIG. 3, in which the catalyst is filled, the catalyst cannot be replaced, so there is a problem that the lifetime of the catalyst is the same as the lifetime of the battery.

このような問題点を解決するための他の実施例では、例
えば特開公昭61−263066号、および特開公昭6
1−260555号各公報において燃料電池の構成部材
、例えばセパレータ板(9)や燃料電極(2)に燃料改
質触媒(8)を付着せしめ、燃料改質触媒(8)と構成
部材との一体化を試みている。しかし、これらの例では
、触媒が構成部材に付着しており交換は不可能である。
Other examples for solving such problems include, for example, Japanese Patent Application Laid-Open No. 61-263066 and Japanese Patent Application Laid-open No. 61-263066.
1-260555, a fuel reforming catalyst (8) is attached to a fuel cell component, such as a separator plate (9) or a fuel electrode (2), and the fuel reforming catalyst (8) and the component are integrated. I'm trying to change it. However, in these examples, the catalyst is attached to the component and cannot be replaced.

また、一体化部材をつくる上で、特に電極との一体化の
場合、触媒活性化のための調製条件が、他電池部材につ
いての調製条件と合わず、調製過程が複雑になるという
問題もある。
In addition, when making integrated components, especially when integrating with electrodes, there is also the problem that the preparation conditions for catalyst activation do not match the preparation conditions for other battery components, making the preparation process complicated. .

との発明は、上記のような問題点を解消するためになさ
れたもので、組み立てが容易で、内部改質触媒による圧
損が低減でき、また運転に伴い改質触媒の活性が低下し
ても、改質触媒を交換することができる内部改質型燃料
電池装置を得ることを目的とする。
The invention was made to solve the above problems, and it is easy to assemble, reduces pressure loss due to the internal reforming catalyst, and can be used even if the activity of the reforming catalyst decreases during operation. The object of the present invention is to obtain an internal reforming fuel cell device in which the reforming catalyst can be replaced.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内部改質型燃料電池装置は、改質触媒が
長手方向が燃料通路の流れ方向に沿って配置された棒状
の金属製母材に担持されているものである。
In the internal reforming fuel cell device according to the present invention, a reforming catalyst is supported on a rod-shaped metal base material whose longitudinal direction is arranged along the flow direction of a fuel passage.

〔作用〕[Effect]

この発明における改質触媒は、長手方向が燃料通路の流
れ方向に沿って配置された棒状の金属製母材に担持さn
ているので、組み立て時の触媒設置が容易になるととも
に、燃料通路に流れ方向の空隙が確保されるため圧損は
従来の粒子状触媒を充填する場合に比べて1/2〜1/
3以下になり、また、電池運転中、触媒の活性が低下し
てきた場合、電池温度を下げマニホールドを開くことに
よって、棒状触媒は簡単に交換され、再び高活性な改質
触媒を充填した内部改質型燃料電池の定常運転に戻るこ
とができる。
The reforming catalyst in this invention is supported on a rod-shaped metal base material whose longitudinal direction is arranged along the flow direction of the fuel passage.
This makes it easier to install the catalyst during assembly, and because a gap in the flow direction is secured in the fuel passage, the pressure drop is 1/2 to 1/2 compared to the case of filling with a conventional particulate catalyst.
3 or less, and if the activity of the catalyst decreases during battery operation, the rod-shaped catalyst can be easily replaced by lowering the battery temperature and opening the manifold, and the internal reformer filled with highly active reforming catalyst can be replaced again. It is possible to return to normal operation of the fuel cell.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による内部改質型燃料電池装置
を一部切り欠いて示す斜視図である。図において、(+
21j長手方向が燃料通路(7)の流れ方向に沿って配
置された棒状の金属製母材に担持された改質触媒すなわ
ち棒状触媒であり、破線で示した部分にも同様に棒状触
媒(12)が配置されている。このような棒状触媒(1
2)の配#は、従来のように粒子状触媒(8)を燃料通
路(7)に均一に充填するのに比べて手間がかからず、
組み立てが容易である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
FIG. 1 is a partially cutaway perspective view of an internal reforming fuel cell device according to an embodiment of the present invention. In the figure, (+
21j is a reforming catalyst, that is, a rod-shaped catalyst supported on a rod-shaped metal base material whose longitudinal direction is disposed along the flow direction of the fuel passage (7), and the rod-shaped catalyst (12 ) are placed. Such a rod-shaped catalyst (1
The number arrangement in 2) requires less effort than the conventional method of uniformly filling the fuel passage (7) with the particulate catalyst (8).
Easy to assemble.

次に、作用・動作について説明する。Next, the function and operation will be explained.

ガスの供給方法および改質反応、電池反応など電池内の
動作は従来の内部改質型燃料電池と同様で、メタンなど
の原燃料は電池スタックの側面に対向して設けられた一
対の燃料供給マニホールド(11)から燃料通路(7)
に給排される。燃料通路内では、燃料ガスは改質触媒(
I2)と接触することにより、水素、二酸化炭素などに
改質された後、電池反応によって消費される。この際、
この発明においては、燃料通路(7)の流れ方向に沿っ
て棒状触媒(I2)が設置されているため、同方向に沿
った空隙が生じ、その結果、燃料通路(7)における圧
力損失は、従来の粒子状触媒(8)を用いた場合に比べ
1A〜IAに低減される。
The gas supply method, reforming reaction, cell reaction, and other operations within the cell are similar to those of conventional internal reforming fuel cells, and raw fuel such as methane is supplied to a pair of fuel supplies facing the sides of the cell stack. Manifold (11) to fuel passage (7)
is supplied and discharged. In the fuel passage, the fuel gas passes through the reforming catalyst (
By contacting with I2), it is reformed into hydrogen, carbon dioxide, etc., and then consumed by a battery reaction. On this occasion,
In this invention, since the rod-shaped catalyst (I2) is installed along the flow direction of the fuel passage (7), a gap is created along the same direction, and as a result, the pressure loss in the fuel passage (7) is This is reduced to 1A to IA compared to when a conventional particulate catalyst (8) is used.

このような運転中の′電池内では、電解質が触媒に付着
するなどの理由で触媒活性が比較的早く低下しやすい。
During such operation, the catalyst activity tends to decrease relatively quickly in the battery due to electrolyte adhesion to the catalyst.

触媒の活性が低下すると、電池反応に必要なだけの量の
水素が生成されなくなり、電池の出力低下を招く結果と
なる。従来の電池ではこの時点で電池本体ごとの交換を
必要としたが、本発明による電池では、この時点で一度
電池をヒートダウンし、燃料マニホールド(11)を開
けて燃料通路(7)内に設置された棒状の触媒Qaを交
換し、再びヒートアップする事により、電池を再生する
ことができる。
When the activity of the catalyst decreases, the amount of hydrogen necessary for the battery reaction is no longer produced, resulting in a decrease in the output of the battery. In conventional batteries, the entire battery body had to be replaced at this point, but in the battery according to the present invention, the battery can be heated down once at this point, the fuel manifold (11) can be opened, and the battery can be installed in the fuel passage (7). The battery can be regenerated by replacing the rod-shaped catalyst Qa and heating it up again.

ここで本発明による内部改質型燃料電池装置においては
、棒状触媒(12)の使用が不可欠であるが、そのよう
な棒状触媒02)の特徴および製法について述べる。通
常、改質触媒は、アルミナ、マグネシアナトのセラミッ
ク多孔体に、ニッケル、ルテニウムのような触媒活性物
質を担持させたものであり、そのような製法、材料によ
る従来の改質触媒は、例えばその形状が円柱状である場
合には、円柱の長さは製法上および材料の強度上の問題
がら直径の数倍程度である。
Here, in the internal reforming fuel cell device according to the present invention, the use of a rod-shaped catalyst (12) is essential, and the characteristics and manufacturing method of such a rod-shaped catalyst 02) will be described. Normally, a reforming catalyst is made by supporting a catalytically active substance such as nickel or ruthenium on a porous ceramic material such as alumina or magnesianate. When the shape is cylindrical, the length of the cylinder is approximately several times the diameter due to manufacturing method and material strength issues.

一方、内部改質型燃料電池装置では、燃料通路(7)の
高さが例えば2mm前後であるのに対し、燃料通路(7
)の長さは例えば数十cm〜1m程度である。
On the other hand, in an internal reforming fuel cell device, the height of the fuel passage (7) is, for example, around 2 mm;
) has a length of, for example, several tens of cm to about 1 m.

従って、従来の改質触媒では本発明によるような電池本
体を分解することなく、改質触媒を交換することのでき
る構造を実現することは不可能であった。
Therefore, with conventional reforming catalysts, it has been impossible to realize a structure in which the reforming catalyst can be replaced without disassembling the battery body as in the present invention.

そこで本発明においては、棒状の金属材料よりなる母材
に改質触媒として活性な部分を保持せしめた新規な棒状
触媒(12)を開示し、同棒状触媒(12)を用いるこ
とにより、本発明による内部改質型燃料電池装置を実現
せしめた。
Therefore, in the present invention, a novel rod-shaped catalyst (12) is disclosed in which a base material made of a rod-shaped metal material retains an active part as a reforming catalyst, and by using the rod-shaped catalyst (12), the present invention We have realized an internal reforming fuel cell device using this technology.

このような棒状触媒の製法について以下説明する。例え
ば、担体とするアルミナ、マグネシアなどの物質を、プ
ラズマ溶射等の溶射法によって、例えば0.1〜0.5
mmの厚さになるように、ステンレス鋼やニッケル、イ
ンコネルなどの金属棒表面に固定させて、ニッケルなど
の触媒として活性な金属の塩の水溶液中に、この担体が
コーティングされた金属棒を浸漬させ、活性金属を例え
ば担体の2〜30重量%重量言付た後、乾燥、熱分解の
工程をとるという方法を用いることができる。また、金
属製母材に直接通常の改質触媒の粉末をコーティングし
た後、活性化する方法をとることもできる。
A method for manufacturing such a rod-shaped catalyst will be explained below. For example, by spraying a material such as alumina or magnesia as a carrier by a thermal spraying method such as plasma spraying, for example, 0.1 to 0.5
The metal rod coated with this support is fixed to the surface of a metal rod such as stainless steel, nickel, or Inconel to a thickness of mm, and then immersed in an aqueous solution of a salt of a catalytically active metal such as nickel. A method can be used in which the active metal is added, for example, 2 to 30% by weight of the carrier, followed by drying and thermal decomposition steps. It is also possible to directly coat a metal base material with powder of a normal reforming catalyst and then activate it.

なお、母材として用いる金属として、ステンレス鋼は電
池内部または触媒試製時の酸化・還元条件に対して安定
であり、ニッケルは電解質に対するぬれ性が少なく耐電
解質性の触媒を構成することができる。
As the metal used as the base material, stainless steel is stable against oxidation and reduction conditions inside the battery or during catalyst trial production, and nickel has low wettability with electrolyte and can constitute an electrolyte-resistant catalyst.

なお、上記来施例では、完全な内部改質型燃料電池につ
いて示したが、外部改質手段を備え、−郊外部改質可能
な電池に適用することもできる。
In the above embodiments, a complete internal reforming type fuel cell is shown, but the present invention can also be applied to a battery equipped with an external reforming means and capable of reforming in suburban areas.

第2図はその一適用例を模式的に示す断面図であり、(
+3)il″1.電池本体に隣接した外部改質器を示す
FIG. 2 is a cross-sectional view schematically showing an example of its application.
+3)il''1. Shows the external reformer adjacent to the battery body.

図中、矢印で示すように外部改質器(13)で一部数質
された燃料ガスが燃料供給マニホールド(川に供給され
るほかは、上記実施例と同様の構成であり、内部改質触
媒(12)の部分については上記実施例と同様の効果が
得られる。この電池では、電池反応に伴う熱ロスは、直
接内部改質触媒(+21 、外部改質器(13)に供給
されるという点などで、内部改質型の長所を持っており
、また内部改質触媒の活性が完全な内部改質形はど高い
必要がないなどから、内部改質触媒の交換間隔が長くて
すむ。
As shown by the arrow in the figure, the fuel gas, which has been partially purified by the external reformer (13), is supplied to the fuel supply manifold (river). Regarding the part (12), the same effect as in the above embodiment can be obtained.In this battery, the heat loss accompanying the battery reaction is directly supplied to the internal reforming catalyst (+21) and the external reformer (13). The internal reforming type has the advantages of the internal reforming type in that the activity of the internal reforming catalyst is complete, and the internal reforming type does not need to be very expensive, so the replacement interval of the internal reforming catalyst can be long.

丑だ、触媒については、母材表面に電気泳動法によって
多孔性担体層を形成した後、活性金属を含む溶液に浸漬
し、活性金属を付着させた後、活性化を行った触媒や、
改質触媒として一般に用いられるラネー触媒(例えばニ
ッケル含量30〜50%のNi−At合金層を母材表面
に設け、しかる後にALを展開することにより得られる
表面積の大きなラネーニッケル触媒)など、棒状に成形
される適当な活性を持った触媒であれば、上記実施例と
同様の効果をあげる触媒として使用することができる。
Regarding catalysts, after forming a porous carrier layer on the surface of the base material by electrophoresis, immersing it in a solution containing an active metal to attach the active metal, and then activating it,
Raney catalysts commonly used as reforming catalysts (for example, Raney nickel catalysts with a large surface area obtained by providing a Ni-At alloy layer with a nickel content of 30 to 50% on the surface of the base material and then developing AL) can be used in the form of rods. Any catalyst that can be shaped and has an appropriate activity can be used as a catalyst that achieves the same effects as in the above embodiments.

さらに、金属製母材の形状は第1図に示すような円柱棒
状に限るものではなく、例えば角柱や円筒状の他、断面
H形やT形の棒などが挙げられる。
Further, the shape of the metal base material is not limited to the cylindrical rod shape shown in FIG. 1, and examples thereof include a rectangular column, a cylindrical shape, and a rod having an H-shaped or T-shaped cross section.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、改質触媒が、長手方向
が燃料通路の流れ方向に沿って配置された棒状の金属製
母材に担持されているので、装置の組み立てが容易で、
燃料ガスの圧損が少なく、しかも触媒活性が低下しても
簡単に交換できる効果がある。
As described above, according to the present invention, since the reforming catalyst is supported on the rod-shaped metal base material whose longitudinal direction is arranged along the flow direction of the fuel passage, assembly of the device is easy.
It has the advantage of having little fuel gas pressure loss and being easy to replace even if the catalyst activity decreases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による内部改質型燃料電池
装置を一部切り欠いて示す斜視図、第2図はこの発明の
他の実施例による内部改質型燃料電池装置を模式的に示
す断面図、第3図は従来の内部改質型燃料電池装置を一
部切り欠いて示す斜視図である。 図において、il+[電解質マトリックス、+21H燃
料電極、(31は酸化剤電極、(4)は酸化剤通路、(
7)は燃料通路、(8)は粒子状燃料改質触媒、(9)
ニセバレータ板、(lO)は酸化剤供給マニホールド、
[+1)[燃料供給マニホールド、(12)は棒状の金
属製母材に担持された燃料改質触媒、03)は外部改質
器である。 なお、各図中、同一符号は同一または相当部分を示すも
のである。
FIG. 1 is a partially cutaway perspective view of an internal reforming fuel cell device according to one embodiment of the present invention, and FIG. 2 is a schematic diagram of an internal reforming fuel cell device according to another embodiment of the present invention. FIG. 3 is a partially cutaway perspective view of a conventional internal reforming fuel cell device. In the figure, il+[electrolyte matrix, +21H fuel electrode, (31 is oxidizer electrode, (4) is oxidizer passage, (
7) is a fuel passage, (8) is a particulate fuel reforming catalyst, (9)
Fake regulator plate, (lO) is oxidizer supply manifold,
[+1) [Fuel supply manifold, (12) is a fuel reforming catalyst supported on a rod-shaped metal base material, and 03) is an external reformer. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)燃料電極と酸化剤電極とを電解質マトリックスを
介して対向するように配置した単電池、上記燃料電池に
対して設けられ改質触媒が配置される燃料通路、および
上記酸化剤電極に対して設けられた酸化剤通路を備え、
燃料および酸化剤をそれぞれ上記通路に供給して燃料を
改質しながら発電を行なう内部改質型燃料電池において
、上記改質触媒は、長手方向が上記燃料通路の流れ方向
に沿って配置された棒状の金属製母材に担持されている
ことを特徴とする内部改質型燃料電池装置。
(1) A unit cell in which a fuel electrode and an oxidizer electrode are arranged to face each other with an electrolyte matrix interposed therebetween, a fuel passage provided for the fuel cell and in which a reforming catalyst is arranged, and a fuel passage for the oxidizer electrode. with an oxidant passage provided in the
In an internal reforming fuel cell that generates electricity while reforming the fuel by supplying a fuel and an oxidizer to the passages, the reforming catalyst has a longitudinal direction arranged along the flow direction of the fuel passage. An internal reforming fuel cell device characterized by being supported on a rod-shaped metal base material.
(2)金属製母材は、ステンレス鋼、インコネル、およ
びニッケルのうちの何れか一種である特許請求の範囲第
1項記載の内部改質型燃料電池装置。
(2) The internal reforming fuel cell device according to claim 1, wherein the metal base material is one of stainless steel, Inconel, and nickel.
(3)改質触媒はラネー触媒である特許請求の範囲第1
項または第2項記載の内部改質型燃料電池装置。
(3) The reforming catalyst is a Raney catalyst. Claim 1
The internal reforming fuel cell device according to item 1 or 2.
JP62154121A 1987-06-19 1987-06-19 Inside reforming type fuel cell Pending JPS63318078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154121A JPS63318078A (en) 1987-06-19 1987-06-19 Inside reforming type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154121A JPS63318078A (en) 1987-06-19 1987-06-19 Inside reforming type fuel cell

Publications (1)

Publication Number Publication Date
JPS63318078A true JPS63318078A (en) 1988-12-26

Family

ID=15577381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154121A Pending JPS63318078A (en) 1987-06-19 1987-06-19 Inside reforming type fuel cell

Country Status (1)

Country Link
JP (1) JPS63318078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007061948A1 (en) 2007-12-21 2009-06-25 Mtu Onsite Energy Gmbh Internal reforming catalyst for fuel cell in fuel cell stack, comprises rod-form support coated with catalyst material and located in base part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007061948A1 (en) 2007-12-21 2009-06-25 Mtu Onsite Energy Gmbh Internal reforming catalyst for fuel cell in fuel cell stack, comprises rod-form support coated with catalyst material and located in base part

Similar Documents

Publication Publication Date Title
US4454207A (en) Steam reforming of fuel to hydrogen in fuel cells
JP2554664B2 (en) Two-chamber anodic structure
JP4012514B2 (en) Chemical reactor and fuel processor using ceramic technology
JP4761195B2 (en) Hydrogen production equipment
GB1504676A (en) Electrolyte - retaining matrix for fuel cells
JPH0362460A (en) Solid electrolyte fuel cell
US3202546A (en) Electrochemical reaction apparatus
EP2477265A1 (en) Fuel cell
JP2698482B2 (en) Power generator
CN110603676A (en) Porous molded part for an electrochemical module
US3337369A (en) Non-porous diffusion membrane fuel cell
JPS63318078A (en) Inside reforming type fuel cell
JPH03222261A (en) Electrode for solid electrolytic fuel cell
JP3625487B2 (en) Fuel cell system
US3253956A (en) Fuel cell and electrodes for the production of electrical energy by direct reaction of gaseous fuels with oxidizing gases
JP2820165B2 (en) Reforming reactor
JP2816476B2 (en) Solid oxide fuel cell module
JP2755685B2 (en) Hydrogen production method for fuel cell
JP2816473B2 (en) Solid oxide fuel cell module
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
EP3796442B1 (en) Fuel cell system
JPH04292866A (en) Generating set
CN110603677A (en) Functionalized porous gas conducting part for electrochemical modules
JPH0615404Y2 (en) Internal reforming fuel cell
JP2005294152A (en) Solid oxide fuel cell