JPS63314863A - Photodetector array - Google Patents

Photodetector array

Info

Publication number
JPS63314863A
JPS63314863A JP62150143A JP15014387A JPS63314863A JP S63314863 A JPS63314863 A JP S63314863A JP 62150143 A JP62150143 A JP 62150143A JP 15014387 A JP15014387 A JP 15014387A JP S63314863 A JPS63314863 A JP S63314863A
Authority
JP
Japan
Prior art keywords
electrodes
film
receiving element
electrode
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62150143A
Other languages
Japanese (ja)
Inventor
Yukio Kasuya
糟谷 行男
Katsuaki Sakamoto
勝昭 坂本
Hiroaki Kakinuma
柿沼 弘明
Nobu Watanabe
渡辺 宦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62150143A priority Critical patent/JPS63314863A/en
Publication of JPS63314863A publication Critical patent/JPS63314863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To reduce a current leakage between individual electrodes by forming a groove in a photoconductive film between the electrodes. CONSTITUTION:A common electrode 12 is formed on an insulating substrate 11. Then, a photoconductive film 13 is so formed on the substrate 11 as to be disposed on the electrode 12 except electrode leads. Thereafter, a plurality of individual electrodes 14 are formed on the film 12. After the electrodes 14 are formed, with the electrodes 14 as masks the film 13 is etched on its surface. Thus, grooves 15 are formed on a section except the electrodes 14 on the film 13 between the electrodes 14. As a result, a surface distance between the electrodes 14 is increased in the depth of the groove 14, thereby reducing a leakage of a photocurrent between the electrodes in case of producing the photocurrent from the electrodes 14 of each photodetector.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、画像読取装置などに用いられる受光素子ア
レイに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a light receiving element array used in an image reading device or the like.

(従来の技術) 例えばファクシミリやイメージスキャナなどの装置に組
込まれて原稿を等倍で読取ることのできる種々の構造の
受光素子アレイが従来、提案されている。第2図(a)
、(b)は、この種の受光素子アレイのうち、受光素子
として、シリットキーパリアを利用したシ哀ットキー型
光フォトダイオードを用いた受光素子アレイの一例を示
す横断面図および平面図である。この受光素子アレイを
製造工程順に説明すると、第2図において、1はガラス
などからなる絶縁性透明基板であり、まず、この透明基
板1上に共通電極2を形成する。この共通型1ii2は
、詳細には、前記基板1上に電子ビームなどを用いてニ
クロム、チタンなどの所望の電極金属を蒸着した後、該
電極金属をパターニングすることにより形成される。
(Prior Art) Light-receiving element arrays of various structures have been proposed in the past, which can be incorporated into devices such as facsimiles and image scanners to read originals at the same magnification. Figure 2(a)
, (b) is a cross-sectional view and a plan view showing an example of a light-receiving element array using a sit-key photodiode using a sit-key pariah as a light-receiving element among this type of light-receiving element array. . To explain this light receiving element array in the order of manufacturing steps, in FIG. 2, reference numeral 1 is an insulating transparent substrate made of glass or the like, and first, a common electrode 2 is formed on this transparent substrate 1. Specifically, this common type 1ii2 is formed by depositing a desired electrode metal such as nichrome or titanium onto the substrate 1 using an electron beam or the like, and then patterning the electrode metal.

このようにして共通電極2を形成したならば、次にその
共通電極2上に位置するようにして光導電膜3と前記基
板1上に形成する。この光導電膜3としては、グロー放
電法を用いてアモルファスシリコン(以下a−3iと略
称する)膜を形成する。その際、a−3i膜はシランガ
ス(SiH4)を主成分として膜厚50人〜5μm程度
に形成し、場合によっては不純物としてボロン(B2)
’%ガスを用いる)またはホスフィン(PH3ガスを用
いる)をドープして成膜する。また、このa−3i膜自
体は高抵抗性であるため受光素子毎に分割する必要はな
いが、絶縁性透明基板1上全面に成膜した場合は前記共
通電極2を引出すため(一部露出させろため)、加工す
る必要がある。
Once the common electrode 2 is formed in this way, it is then formed on the photoconductive film 3 and the substrate 1 so as to be located on the common electrode 2. As this photoconductive film 3, an amorphous silicon (hereinafter abbreviated as a-3i) film is formed using a glow discharge method. At that time, the a-3i film is formed with silane gas (SiH4) as the main component to a thickness of about 50 to 5 μm, and in some cases boron (B2) is added as an impurity.
% gas) or phosphine (using PH3 gas). Furthermore, since this a-3i film itself has high resistance, it is not necessary to divide it into individual light-receiving elements. However, when it is formed on the entire surface of the insulating transparent substrate 1, it is necessary to draw out the common electrode 2 (partially exposed). ), it is necessary to process it.

そして、このようにして光導電膜3を形成したならば、
次に、その上に、一部前記基板1上に引出して複数の個
別電t!2i4 (透明電極)を形成する。
If the photoconductive film 3 is formed in this way,
Next, on top of that, a portion is drawn out onto the substrate 1 and a plurality of individual electric currents t! 2i4 (transparent electrode) is formed.

この個別電極4は、酸化インジウム、酸化賜あるいはそ
の他の透明電極材料の全面形成と、該材料のホトリソグ
ラフィ技術によるパターニングにより形成される。
The individual electrodes 4 are formed by forming an indium oxide, oxide or other transparent electrode material over the entire surface and patterning the material by photolithography.

このようにして完成した第2図の受光素子アレイは、共
通電極1と各個別電極4間でそれぞれ受光素子が形成さ
れる。そして、各受光素子は、共通電極2と個別電ti
4との間に数■の逆バイアス電圧を印加した状態で、個
別電極4側から光を照射すると、これが個別電極4 (
透明電極)を通過し、光導電膜3に入射し、入射光の強
度に応じた量の電子・正孔対が創成され、これらのキャ
リアを共通電極2と個別電極4との間で電流として取出
すことができる。そして、このようにして各受光素子で
光電流を取出すことにより、被検出湯の明暗比を得るこ
とができる。
In the thus completed light receiving element array shown in FIG. 2, light receiving elements are formed between the common electrode 1 and each individual electrode 4. Each light receiving element has a common electrode 2 and an individual electrode ti.
When light is irradiated from the individual electrode 4 side with a reverse bias voltage of several square meters applied between the individual electrode 4 (
transparent electrode) and enters the photoconductive film 3, an amount of electron-hole pairs corresponding to the intensity of the incident light is created, and these carriers are transferred as a current between the common electrode 2 and the individual electrodes 4. It can be taken out. By extracting a photocurrent with each light receiving element in this manner, the brightness/darkness ratio of the hot water to be detected can be obtained.

(発明が解決しようとする問題点) しかるに、第2図のような従来の受光素子アレイでは、
各受光素子の個別電極4より光電流を取出すときに、個
別電極14間で電流がリークし、被検出湯の明暗比に影
響を及ぼすという問題点があった0 この発明は上記の点に鑑みなされたもので、個別電極間
の電流のリークを低減し、明暗比の良い受光素子アレイ
を提供することを目的とする。
(Problems to be solved by the invention) However, in the conventional light receiving element array as shown in FIG.
When extracting photocurrent from the individual electrodes 4 of each light-receiving element, there was a problem in that the current leaked between the individual electrodes 14 and affected the brightness ratio of the hot water to be detected. This invention was developed in view of the above points. The purpose of this invention is to reduce current leakage between individual electrodes and provide a light-receiving element array with a good contrast ratio.

(問題点を解決するための手段) この発明は、受光素子アレイにおいて、個別電極間の光
導電膜表面に溝を形成するようにしたものである。
(Means for Solving the Problems) According to the present invention, grooves are formed on the surface of a photoconductive film between individual electrodes in a light receiving element array.

(作 用) 上記のように溝を形成すると、溝の深さ分だけ、個別m
極間の表面距離が長くなる。したがって、個別電極間の
電流のリークが低減する。
(Function) When the groove is formed as described above, the individual m
The surface distance between the poles increases. Therefore, current leakage between individual electrodes is reduced.

(実施例) 以下この発明の一実施例を図面を参照して説明する。第
1図はこの発明の一実施例を示し、(a)は横断面図、
(blは平面図、(e)はfb)のc −c線における
断面図である。この一実施例を以下工程順に説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which (a) is a cross-sectional view;
(bl is a plan view, (e) is a sectional view taken along the c-c line). This embodiment will be explained below in the order of steps.

第1図において、11は石英ガラス、ポリイミド、その
他の任意好適な材料からなる絶縁性基板であり、まず、
この基板11上にクロム、ニクロム、モリブデン、アル
ミニウムなどの好適な電極材料を用いて、蒸着とパター
ニングにより共通電極12を形成する。
In FIG. 1, 11 is an insulating substrate made of quartz glass, polyimide, or any other suitable material.
A common electrode 12 is formed on this substrate 11 by vapor deposition and patterning using a suitable electrode material such as chromium, nichrome, molybdenum, or aluminum.

次に、a−3iの成膜とパターニングにより、1橿引出
し部を除く前記共通電極12上に位置するようにして前
記a−3iからなる光導電膜13を前記基板11上に形
成する。その際、a −S iの成膜は、シランガスを
主成分として成膜するが、不純物としてボロンまたはホ
スフィンをドープして行う場合もある。
Next, by film formation and patterning of a-3i, a photoconductive film 13 made of a-3i is formed on the substrate 11 so as to be located on the common electrode 12 except for one edge extraction portion. At that time, the a-Si film is formed using silane gas as a main component, but it may also be performed by doping boron or phosphine as an impurity.

このようにして光導電膜13を形成したならば、次に、
透明電極材料のスパッタとパターニングにより、前記光
導電膜12上に、一部前記基板11上に引出して複数の
個別電極14(透明Ti極)を形成する。
After forming the photoconductive film 13 in this way, next
By sputtering and patterning a transparent electrode material, a plurality of individual electrodes 14 (transparent Ti electrodes) are formed on the photoconductive film 12, partially extending onto the substrate 11.

そして、この個別電極14の形成後、該個別電極14を
マスクとして光導電膜13の表面を所定の深さまでエツ
チングする。これにより、光導電膜13の表面には、個
別電極14相互間を含む、個別電極14息外の部分に溝
15が形成される。
After forming the individual electrodes 14, the surface of the photoconductive film 13 is etched to a predetermined depth using the individual electrodes 14 as a mask. As a result, grooves 15 are formed on the surface of the photoconductive film 13 in areas outside the individual electrodes 14, including between the individual electrodes 14.

この溝15は、−例として光導電膜13の膜厚の最大7
0%までの深さで形成される。また、この光導電膜13
が後述するようにpin構造またはnip構造の場合は
、個別電極14と接する層全部と、1層の数%をエツチ
ングするような深さで溝15は形成される。
This groove 15 has a maximum thickness of 7 mm, for example, the maximum thickness of the photoconductive film 13.
Formed at a depth of up to 0%. Moreover, this photoconductive film 13
As will be described later, in the case of a pin structure or a nip structure, the groove 15 is formed to a depth such that all the layers in contact with the individual electrodes 14 and several percent of one layer are etched.

以上で受光素子アレイが完成する。With the above steps, the light receiving element array is completed.

このようにして製造されたこの発明の一実施例の受光素
子アレイにおいては、従来の受光素子アレイと全く同様
に動作して被検出湯の明暗比を得ることができるが、個
別電極14間の光導電膜13表面に溝15が形成されて
いることにより、該溝15の深さ分だけ、個別電極14
間の表面距離は従来に比較して長くなる。そして、その
結果、この発明の一実施例の受光素子アレイは、各受光
素子の個別電極14から光電流を取出す際の個別電極1
4間の電流のリークが低減するものであり、その結果と
して明暗比の検出が向上する。
The light-receiving element array of one embodiment of the present invention manufactured in this manner operates in exactly the same manner as the conventional light-receiving element array and can obtain the brightness/darkness ratio of the hot water to be detected. Since the groove 15 is formed on the surface of the photoconductive film 13, the individual electrode 14 is expanded by the depth of the groove 15.
The surface distance between them is longer than before. As a result, in the photodetector array according to one embodiment of the present invention, the individual electrode 1 when extracting photocurrent from the individual electrode 14 of each photodetector is
4, and as a result, the detection of the contrast ratio is improved.

なお、上記一実施例は、個別電極14が透明電極であり
該個別電8Fl14側から光を入射させるタイプの受光
素子アレイにこの発明を応用した場合であるが、絶縁性
基板11および共通電極12が透明であって基板11側
から光を入射させるタイプの受光素子アレイにもこの発
明を応用できる。
In the above embodiment, the present invention is applied to a light receiving element array in which the individual electrodes 14 are transparent electrodes and light is incident from the individual electrodes 8Fl14 side. The present invention can also be applied to a type of light-receiving element array in which the substrate is transparent and light is incident from the substrate 11 side.

また、光導電膜13はa −S iで形成したが、これ
に限定されるものでなく、任意の好適な材料で形成して
シコットキー型とすることができ、さらにはpinまた
はnip構造で光導電膜を形成してもよい。
In addition, although the photoconductive film 13 is formed of a-Si, it is not limited thereto, and may be formed of any suitable material to have a Schottky type, or may have a pin or nip structure to form a photoconductive film. A conductive film may also be formed.

(発明の効果) 以上詳述したように、この発明の受光素子アレイによれ
ば、個別電極間の光導電膜表面に溝を形成して個別電極
間の表面距離を長くしたので、光電流を取出す際の個別
電極間の電流リークを低減させろことができ、良好な比
検出基の明暗比t!−得ろことができる。
(Effects of the Invention) As detailed above, according to the light receiving element array of the present invention, grooves are formed on the surface of the photoconductive film between the individual electrodes to increase the surface distance between the individual electrodes, thereby reducing the photocurrent. It is possible to reduce current leakage between individual electrodes during extraction, and to achieve a good brightness ratio of the detection group! -You can get it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の受光素子アレイを示し、(a)は横
断面図、(b)は平面図、(clはfb)のc −c線
での断面図、第2図は従来の受光素子アレイを示し、[
a)は横断面図、(blは平面図である。 11・・・絶縁性基板、12・共通?:t!!i、 1
3 −光導電膜、14・・・個別電極、15・・・溝。 特許出願人  沖電気工業株式会社。 代理人 弁理士   菊   池      弘■−ユ
。 第1図 第1m
FIG. 1 shows a light receiving element array of the present invention, (a) is a cross-sectional view, (b) is a plan view, (cl is fb) a cross-sectional view taken along line c-c, and FIG. 2 is a conventional light-receiving element array. Indicates an element array, [
a) is a cross-sectional view, (bl is a plan view. 11... Insulating substrate, 12. Common?: t!!i, 1
3 - Photoconductive film, 14... Individual electrode, 15... Groove. Patent applicant Oki Electric Industry Co., Ltd. Agent: Hiroshi Kikuchi, patent attorney. Figure 1 1m

Claims (1)

【特許請求の範囲】 基板上に共通電極を形成し、その上に光導電膜を設け、
その光導電膜上に複数の個別電極を有する受光素子アレ
イにおいて、 個別電極間の光導電膜表面に溝を形成したことを特徴と
する受光素子アレイ。
[Claims] A common electrode is formed on a substrate, a photoconductive film is provided thereon,
A light receiving element array having a plurality of individual electrodes on the photoconductive film, characterized in that grooves are formed on the surface of the photoconductive film between the individual electrodes.
JP62150143A 1987-06-18 1987-06-18 Photodetector array Pending JPS63314863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150143A JPS63314863A (en) 1987-06-18 1987-06-18 Photodetector array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150143A JPS63314863A (en) 1987-06-18 1987-06-18 Photodetector array

Publications (1)

Publication Number Publication Date
JPS63314863A true JPS63314863A (en) 1988-12-22

Family

ID=15490433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150143A Pending JPS63314863A (en) 1987-06-18 1987-06-18 Photodetector array

Country Status (1)

Country Link
JP (1) JPS63314863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138004B2 (en) 2005-05-20 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device, manufacturing method thereof and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138004B2 (en) 2005-05-20 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device, manufacturing method thereof and semiconductor device
US8207591B2 (en) 2005-05-20 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device

Similar Documents

Publication Publication Date Title
JPS60161664A (en) Tightly adhered two-dimensional image readout device
JPH0481353B2 (en)
EP0362928B1 (en) Display arrangement provided with diodes and method of manufacturing the display arrangement
US4499654A (en) Method for fabricating semiconductor photodetector
US4868623A (en) Image sensing device
JPS63314863A (en) Photodetector array
JPH0746721B2 (en) Image sensor and manufacturing method thereof
US4502203A (en) Method for fabricating semiconductor photodetector
JPS6327871B2 (en)
JPS61201461A (en) Manufacture of photosensor element
US4705598A (en) Method of producing photosensor
JPS63119259A (en) Amorphous silicon photodiode array
JPH06342929A (en) Thin-film transistor photoelectric detector array and its manufacture
JPS59161863A (en) Manufacture of reader element for continuous thin film manuscript
JPS63110771A (en) Contact-type image sensor
JPS63222456A (en) Photodetector array
JPS60233871A (en) Photo sensor element
JPS62166562A (en) Manufacture of image sensor
JPH0715144Y2 (en) Coplanar type optical sensor
JPS59161862A (en) Manufacture of original read-out element of continuous thin film
JPS6233452A (en) Image sensor
JPS62252968A (en) Amorphous silicon image sensor
JPS62193172A (en) Manufacture of photodetector array
JPH05347427A (en) Photosensor
JPH0621425A (en) Manuscript reader