JPS60161664A - Tightly adhered two-dimensional image readout device - Google Patents

Tightly adhered two-dimensional image readout device

Info

Publication number
JPS60161664A
JPS60161664A JP59017885A JP1788584A JPS60161664A JP S60161664 A JPS60161664 A JP S60161664A JP 59017885 A JP59017885 A JP 59017885A JP 1788584 A JP1788584 A JP 1788584A JP S60161664 A JPS60161664 A JP S60161664A
Authority
JP
Japan
Prior art keywords
layer
film
photoelectric conversion
dimensional image
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59017885A
Other languages
Japanese (ja)
Inventor
Satoshi Nishigaki
敏 西垣
Masataka Ito
政隆 伊藤
Shoshichi Kato
加藤 昭七
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59017885A priority Critical patent/JPS60161664A/en
Priority to US06/696,089 priority patent/US4644406A/en
Priority to DE19853503048 priority patent/DE3503048A1/en
Priority to GB08502559A priority patent/GB2154368B/en
Publication of JPS60161664A publication Critical patent/JPS60161664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02805Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a two-dimensional array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic System
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays

Abstract

PURPOSE:To realize a simple readout device, which needs no mechanical scanning mechanism, as well as to realize a tightly adhered two-dimensional image sensor, which is superior both in S/N ratio and in photo sensitivity, by a method wherein manuscript information is read out by a photo electric converting film by performing an exposure on the whole surface of the film. CONSTITUTION:An Al film 2 is evaporated on a pyrex substrate 1 and a P type amorphous silicon film 3-1 is made to deposit on the whole surface thereof by a plasma CVD method. The Al film 2 and the P type amorphous silicon film 3-1 are combinedly worked in a stripe type by an ordinary photolithography process. After the pattern was formed, an I type amorphous silicon film 3-2 is made to deposit thereon, and moreover, an N type amorphous layer 3-3 is made to deposit thereon for forming a photoelectric converting film having a P-I-N diode structure. An ITO (In2O3-SnO2) (5%) film is further evaporated on the semiconductor layer as a transparent conductive film 4 by performing an RF sputtering. A photoresist pattern is formed in such a way as to cross with the lower Al strip electrode 2 for forming an upper electrode pattern and an etch processing is simultaneously performed, including the N type amorphous silicon layer 3-3 too, for obtaining a two-dimensional photoelectric converting part.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、原稿と同等の大きさをもつイメージ素子を用
いて、機械的あるいは光学的走査を行なわずに原稿の読
取りが可能な簡匣型二次元画像読取装置に藺する。
[Detailed Description of the Invention] [Technical Field] The present invention is a simple two-dimensional bag-type two-dimensional device that can read a document without mechanical or optical scanning using an image element having the same size as the document. Error on image reading device.

〈従来技術〉 画像読取装置はファクシミリ、インテリジェントコピア
等における原稿の読取り用として知られている。従来、
この種の受光センサとしては、−次元の固体イメージ素
子(CCDあるいはMOS型)を用いて原稿像をスリッ
ト露光かつ縮小結像することにより対応した画像情報信
号を得ている。
<Prior Art> Image reading devices are known for reading documents in facsimiles, intelligent copiers, and the like. Conventionally,
This type of light receiving sensor uses a -dimensional solid-state image device (CCD or MOS type) to obtain a corresponding image information signal by slit exposure and reduction imaging of an original image.

この−次元固体イメージ素子はIC技術を使って作製さ
れ、80mm程度の大きさの素子であり、原稿からの反
射光を受光部に導くには光路長の長い光学系を用いざる
を得す、装置の小型化が困難である。さらに、このよう
な装置では、光学系の複雑な調整が必要であり、画面周
辺部の光量低下。
This -dimensional solid-state image device is manufactured using IC technology and is approximately 80 mm in size, and an optical system with a long optical path length must be used to guide the reflected light from the original to the light receiving section. It is difficult to downsize the device. Furthermore, such devices require complicated adjustment of the optical system, which reduces the amount of light at the periphery of the screen.

分解能の劣化といった問題も生じる。Problems such as deterioration of resolution also occur.

これらの問題点の改善のために、原稿幅と同一寸法の長
さの長尺イメージ素子を用い、ファイバーレンズアレイ
を用いて密着結像するいわゆる密着型イメージ素子も考
案されている。この様な素子では大型の光電変換部が必
要で、広い面積にわたる均一な光導電膜の形成が要求さ
れる。現在、長尺の一次元イメージ素子を作成するため
にCd5−CdSe膜あるいは5e−As−Te系非晶
質薄膜。
In order to improve these problems, a so-called contact type image element has also been devised, which uses a long image element with a length equal to the width of the document and uses a fiber lens array to form a close image. Such devices require a large photoelectric conversion section and require the formation of a uniform photoconductive film over a wide area. Currently, Cd5-CdSe films or 5e-As-Te amorphous thin films are used to create long one-dimensional image elements.

非晶質Si 薄膜等が提案されているが、この種の一次
元密着型イメージ素子を二次元画像の読取りに用いるに
は、原稿の走査または光源及びイメージ素子の走査が必
要となり、装置が複雑で大型化する。
Amorphous Si thin films have been proposed, but in order to use this type of one-dimensional contact type image element to read two-dimensional images, it is necessary to scan the original or scan the light source and image element, making the device complicated. Increase in size.

く本発明の目的〉 本発明は従来のイメージ素子向1゛もつ種々の問題点1
−鑑みてなされたもので、大面積二次元センサを作成す
ることにより、機械的走査機構を必要としない簡便な読
取装置を提供し、また光電変換部をp−1−n構造とし
て逆バイアス状態を利用することにより、SN比、光感
度にすぐれた密着型二次元イメージセンサを提供するこ
とにある。
OBJECTS OF THE INVENTION The present invention solves various problems of conventional image devices.
- By creating a large-area two-dimensional sensor, a simple reading device that does not require a mechanical scanning mechanism is provided, and the photoelectric conversion section is set to a p-1-n structure in a reverse bias state. By utilizing this, it is an object of the present invention to provide a contact type two-dimensional image sensor with excellent SN ratio and light sensitivity.

〈実施例〉 以下本発明を図面により説明する。第1図は本発明によ
る二次元イメージ素子の一部破断斜視図であり、半導体
層の構造をより詳細に示すため第1図のA−A’面で切
断して内部構造を明らかにしたのが第2図(a)である
。第2図(b)は第1図の平面図(一部省略)である。
<Example> The present invention will be explained below with reference to the drawings. FIG. 1 is a partially cutaway perspective view of a two-dimensional image element according to the present invention, and in order to show the structure of the semiconductor layer in more detail, the internal structure is revealed by cutting along the plane AA' in FIG. is shown in FIG. 2(a). FIG. 2(b) is a plan view (partially omitted) of FIG. 1.

図示の様に光電変換素子は透光性基板1上に設けられた
ストライプ状の透明電極(X電極)2゜半導体層3、及
び透明電極2と交叉するように設けられた上部ストライ
プ電極(Y電極)4から構成される。上記X電極2とY
電極4の構成は逆転してもよく、その場合基板1は透光
性である必要のないことは云うまでもない。透光性基板
1としては例えばガラス基板を用いることが可能で、透
光性を要求しない場合はポリイミド樹脂等の耐熱性有機
フィルムあるいはセラミック基板が使用できる。透明電
極2としては酸化インジウム(In203)。
As shown in the figure, the photoelectric conversion element includes a striped transparent electrode (X electrode) 2 provided on a transparent substrate 1, a semiconductor layer 3, and an upper striped electrode (Y (electrode) 4. The above X electrode 2 and Y
It goes without saying that the configuration of the electrodes 4 may be reversed, in which case the substrate 1 need not be translucent. For example, a glass substrate can be used as the light-transmitting substrate 1, and if light-transmitting properties are not required, a heat-resistant organic film such as polyimide resin or a ceramic substrate can be used. The transparent electrode 2 is indium oxide (In203).

酸化スズ(5n02)あるいはインジウム・スズ酸化物
(ITO)等、ストライプ電極4にはAI。
The stripe electrode 4 is made of AI, such as tin oxide (5n02) or indium tin oxide (ITO).

Cu、Cr、Au、Pt、In、In−5n合金、In
−Ga合金、Ni−Cr合金等を使用する。半導体層3
はpin構造とし、非晶質水素化シリコンにより形成す
る。
Cu, Cr, Au, Pt, In, In-5n alloy, In
-Ga alloy, Ni-Cr alloy, etc. are used. semiconductor layer 3
has a pin structure and is made of amorphous hydrogenated silicon.

第3図に等価回路及び走査回路系を示す。上記素子のX
及びY電極は画像情報を読み出すだめのスイッチング素
子5,6に夫々接続され、各電極に接続されたスイッチ
ング素子のオン・オフ動作は水平及び垂直走査回路7.
8からの制御信号によって行われる。スイッチング素子
としては、たとえばC−MO3j−ランジスタで構成し
、各ゲートをシフトレジスタに接続する。
FIG. 3 shows an equivalent circuit and a scanning circuit system. X of the above element
and Y electrodes are respectively connected to switching elements 5 and 6 for reading image information, and the on/off operation of the switching elements connected to each electrode is controlled by a horizontal and vertical scanning circuit 7.
This is done by control signals from 8. The switching element is composed of, for example, a C-MO3j-transistor, and each gate is connected to a shift register.

上記構造の光電変換素子の電圧−電流特性を第4図に、
出力電流の照度依存性を第5図に、光応答速度の逆バイ
アス依存性を第6図に示す。尚第6図に示しだ光応答速
度の逆バイアス依存性における立上シ(Lon)、立下
り([off )の定義を第7図に示す。これらのデー
タから明らかなように本素子ば5V以下の低電位での駆
動が可能であり、明暗比(静特性)が10〜IOときわ
めて大きな値が得られる。また、光応答特性も非常に優
れており、立ち上がり(90%)、立ち下がり(90係
)応答性ともに50μ就以下と著しく速い値の得られる
のが本素子の特徴である。
The voltage-current characteristics of the photoelectric conversion element with the above structure are shown in Figure 4.
FIG. 5 shows the illuminance dependence of the output current, and FIG. 6 shows the reverse bias dependence of the light response speed. Incidentally, FIG. 7 shows the definitions of the rising edge (Lon) and the falling edge ([off) in the reverse bias dependence of the optical response speed shown in FIG. 6. As is clear from these data, this device can be driven at a low potential of 5 V or less, and a very large contrast ratio (static characteristic) of 10 to IO can be obtained. Furthermore, the photoresponse characteristics are also very excellent, and a feature of the present device is that both rise (90%) and fall (90%) responsivity are extremely fast, less than 50 μm.

本発明による素子の光電変換膜は、非晶質水素化シリコ
ンで構成されているため、p層あるいはn層の固有体積
抵抗が低抵抗となる傾向があり、画素間のリークの原因
となる場合もあるので、必要に応じてp層あるいはn層
は上下の帯状電極と同形状のパターンに分割加工する必
要がある。この際、エツチング工程による素子特性への
影響は小さい。なお、光照射側の層は、この層での光損
失を最小限にとどめるため50λ〜+000λの薄層と
する必要があり、′また、1層はピンホール等の欠陥を
なくし電流のまわり込みをなくするため、0.5μm程
度以上5μm以下、好ましくは1〜3μm程度の膜厚を
もち、lOΩ・m以上、好1しくけ10Ω・α程度の固
有抵抗が必要となる。以下、具体的な実施例を示す。
Since the photoelectric conversion film of the device according to the present invention is composed of amorphous hydrogenated silicon, the specific volume resistance of the p-layer or n-layer tends to be low, which may cause leakage between pixels. Therefore, it is necessary to divide the p-layer or n-layer into patterns having the same shape as the upper and lower band-shaped electrodes, if necessary. At this time, the effect of the etching process on the device characteristics is small. Note that the layer on the light irradiation side needs to be a thin layer of 50λ to +000λ in order to minimize optical loss in this layer. In order to eliminate this, it is necessary to have a film thickness of about 0.5 μm or more and 5 μm or less, preferably about 1 to 3 μm, and a specific resistance of about 10Ω·m or more, preferably about 10Ω·α. Specific examples will be shown below.

〔実施例1〕 基板1として厚さ11朔のパイレックスガラス基板(’
140X70)を用い、この上に約2,000久の膜厚
のAI2を蒸着し、この上に全面にプラズマCVD法に
てp形の非晶質シリコン膜3−1(第2図参照)を1,
000λ堆積させた。次に、通常の7オトリングラフイ
ープロセスにより、AI及びp形の非晶質シリコン膜を
4本/調の密度でストライプ状に加工した。エツチング
液としてはHF−HNO3−CH5COOH系エッチャ
ントを用いたが、他にCF4による反応性イオンエツチ
ング等のドライプロセスでも加工が可能であることは云
うまでもない。パターン形成後この上にn形3−2、さ
ら(Cn形の非晶質シリコン層3−3を各々約111m
及び200xの厚さに堆積させp−1−nダイオード構
造を有する光電変換膜を形成した。
[Example 1] As the substrate 1, a Pyrex glass substrate ('
140 x 70), a film of approximately 2,000 mm thick AI2 is deposited thereon, and a p-type amorphous silicon film 3-1 (see Fig. 2) is deposited on the entire surface using the plasma CVD method. 1,
000λ was deposited. Next, the AI and p-type amorphous silicon films were processed into stripes at a density of 4 films/tone using a normal 7-otolithography process. Although a HF-HNO3-CH5COOH etchant was used as the etching solution, it goes without saying that other dry processes such as reactive ion etching using CF4 can also be used. After pattern formation, an n-type 3-2 layer and a further (Cn-type amorphous silicon layer 3-3) each having a thickness of about 111 m are formed on the pattern.
A photoelectric conversion film having a p-1-n diode structure was formed by depositing the photoelectric conversion film to a thickness of 200×.

上記非晶質シリコン膜の作成条件は以下の通りである。The conditions for forming the amorphous silicon film are as follows.

基板温度250℃、放電圧力0.5 Tor+高周波電
力100 W (80mW/u+f )の条件下で、p
形非晶質シリコン層はB2 H6とSiH4の体積比が
1,000.ppmの混合ガスを■2で10係程度に希
釈したもの、1形はSiH4をB2で30チに希釈した
混合ガス、さらlcn形はPH3とSiH4の体積比が
10.OOOppmの混合ガスを20係程度に希釈した
ものをグロー放電分解によって形成した。
Under the conditions of substrate temperature 250°C, discharge pressure 0.5 Tor + high frequency power 100 W (80 mW/u + f), p
The amorphous silicon layer has a volume ratio of B2H6 and SiH4 of 1,000. ppm mixed gas diluted to about 10 parts with ■2, type 1 is a mixed gas of SiH4 diluted with B2 to about 30 parts, and lcn type is a mixed gas with a volume ratio of PH3 and SiH4 of 10. A mixed gas of OOOppm diluted to about 20% was formed by glow discharge decomposition.

上記作成した半導体層上に更に透明導電膜4としてI 
T O(In20B−5n02(5%))をRFスパッ
タリングで約1.oooX蒸着した。上部電極パターン
を形成するために、前述の下部A1ストライプ電極2と
交叉する様に、4本/1rnの密度でフォトレジストパ
ターンを形成し、n形弁晶質シリコン層8−3も含めて
同時にエツチング加工し、二次元の光電変換部を得た。
I further formed a transparent conductive film 4 on the semiconductor layer created above.
T O (In20B-5n02 (5%)) was deposited by RF sputtering at approximately 1. oooX was deposited. In order to form the upper electrode pattern, a photoresist pattern is formed at a density of 4 lines/1rn so as to intersect with the lower A1 stripe electrode 2 described above, and a photoresist pattern is formed at the same time including the n-type crystalline silicon layer 8-3. A two-dimensional photoelectric conversion section was obtained by etching.

なお作成した光電変換部の大きさは約10100X13
0であり、電極数は400本(X電極)X520本(Y
電極)となった。各電極を第3図に示すごとく駆動用回
路7,8に接続し、第8図の様な装置系を用いて上記構
造の光電変換素子Bの画像読取試験を行った。原稿Aは
半透明なものを用い、全面密着露光により作像。
The size of the created photoelectric conversion section is approximately 10100 x 13
0, and the number of electrodes is 400 (X electrode) x 520 (Y
electrode). Each electrode was connected to driving circuits 7 and 8 as shown in FIG. 3, and an image reading test was conducted on the photoelectric conversion element B having the above structure using an apparatus system as shown in FIG. Original A is semi-transparent, and the image is created by full-surface contact exposure.

光電変換した画像信号を読み出して画像信号処理回路C
で適宜処理し、ディスプレー膜上に表示した。
Image signal processing circuit C reads out the photoelectrically converted image signal
The sample was treated as appropriate and displayed on a display film.

〔実施例2〕 実施例1と逆の素子構成とした。即ちパイレックスガラ
ス基板上にまずRFスパッタリングでITOを約900
λ蒸着し、次にプラズマCVD法にてp形弁晶質シリコ
ン膜をsoX形成した。
[Example 2] The element configuration was opposite to that of Example 1. That is, about 900% of ITO was first deposited on a Pyrex glass substrate by RF sputtering.
After λ evaporation, a p-type crystalline silicon film was formed using soX using a plasma CVD method.

これらの薄膜を実施例1と同様の手順で4本/謔の密度
でストライプ状に加工した。パターン形成された膜上に
n形さらにn形の非晶質シリコン膜を所定の反応性ガス
を用いてグロー放電分解し、各々約3μm及びa、oo
oXの厚さ堆積させた。n層、f[AIを約2oooX
スパ2ツタ蒸着し、このn層と共に下部ITQストライ
プ電極2と交叉するように同一の密度でストライプ状に
エツチングした。なお、非晶質シリコン膜の作成条件は
実施例1とほぼ同じである。
These thin films were processed into stripes using the same procedure as in Example 1 at a density of 4 strips/layer. N-type and n-type amorphous silicon films are decomposed by glow discharge using a predetermined reactive gas on the patterned film to form a film of about 3 μm, a, and oo, respectively.
A thickness of oX was deposited. n layer, f[AI approximately 2oooX
Two spat vines were deposited and etched together with this n-layer into a stripe pattern with the same density so as to intersect with the lower ITQ stripe electrode 2. Note that the conditions for forming the amorphous silicon film are almost the same as in Example 1.

第3図のごとく駆動回路系を接続し、実施例1と同様の
試験を試みだところ、瞬時にして画像をディスプレー上
に再現できた。
When the drive circuit system was connected as shown in FIG. 3 and the same test as in Example 1 was attempted, an image could be instantly reproduced on the display.

〔実施例3〕 ブロッキングダイオード或いは薄膜トランジスタを設け
た実施例を示す。
[Embodiment 3] An embodiment in which a blocking diode or a thin film transistor is provided will be described.

第9図は本実施例による画像読み取り用二次元イメージ
素子の断面図である。本実施例は主に、感光部であ−る
フォトダイオード部9とクロストーク電流を防ぐブロッ
キングダイオード部IOから成る。第10図はブロッキ
ングダイオードを用いない場合の等価回路であるが、こ
の場合、例えば画素D11に対して近隣のフォトダイオ
ードを通して(aの経路を通シ周囲の電流が混入する恐
れがある。ところが、ブロッキングダイオードを設けて
おけば、第1+図に示したように、光像によって生じた
フォトダイオードDpの電荷は必ずブロッキングダイオ
ードDbを逆バイアス状態とするため、クロス1トーク
電流を最小限とすることができる。以下、具体的な素子
の作成法を説明する。基板ll上にフォトダイオード部
9は実施例1と同様のプロセスで作成する。ITU透明
電極12は1.500X 、p形13.I形14.及び
n形弁晶質シリコン膜I5は各々100久、Ipm、3
00A の厚さとした。この上にブロッキングダイオー
ド10をフォトダイオード9と接続して形成する。即ち
ブロッキングダイオード部9に光が入射するのを妨げる
境界部に遮光電極I6をスパッタ蒸着し、引き続きn形
弁晶質シリコン層18を堆積させる。
FIG. 9 is a sectional view of the two-dimensional image device for image reading according to this embodiment. This embodiment mainly consists of a photodiode section 9, which is a photosensitive section, and a blocking diode section IO, which prevents crosstalk current. FIG. 10 shows an equivalent circuit when no blocking diode is used. In this case, for example, there is a risk that surrounding current may enter the pixel D11 through the neighboring photodiode (path a). However, If a blocking diode is provided, as shown in Figure 1+, the charge on the photodiode Dp generated by the optical image will always put the blocking diode Db in a reverse bias state, so the cross-1 talk current can be minimized. Hereinafter, a specific method for manufacturing the element will be explained.The photodiode section 9 is created on the substrate 11 by the same process as in Example 1.The ITU transparent electrode 12 is 1.500X, p-type 13.I Type 14. and n-type crystalline silicon film I5 are each 100 years old, Ipm, 3
The thickness was 00A. A blocking diode 10 is connected to the photodiode 9 and formed thereon. That is, a light-shielding electrode I6 is sputter-deposited at the boundary portion that prevents light from entering the blocking diode portion 9, and then an n-type crystalline silicon layer 18 is deposited.

これらの層はフォトダイオード部9と同じ密度4本/=
でエツチングしストライプ状に分割した後、層間絶縁層
513N417をプラズマCVD法そ形成する。この層
間絶縁層には前記分割パターンと一致したストライプ状
のコンタクト用パターンを形成し、i形及びp形弁晶質
シリコン層19.20を堆積させる。非晶質シリコン層
の膜厚と作成条件はフォトダイオード部とほぼ同じであ
る。最後に、A1をスパッタ蒸着し、透明電極12と直
交する様ICn層を含めてエツチングし、上部ストライ
ブ電極21を形成する。クロストーク防止用のブロッキ
ングダイオードは、すぐれた整流比が要求されるが2■
で約10桁の整流比がとれている。
These layers have the same density as the photodiode section 9: 4/=
After etching and dividing into stripes, an interlayer insulating layer 513N417 is formed by plasma CVD. A striped contact pattern matching the division pattern is formed in this interlayer insulating layer, and i-type and p-type crystalline silicon layers 19 and 20 are deposited. The film thickness and manufacturing conditions of the amorphous silicon layer are almost the same as those of the photodiode section. Finally, A1 is sputter-deposited and etched including the ICn layer so as to be orthogonal to the transparent electrode 12, thereby forming the upper stripe electrode 21. Blocking diodes for crosstalk prevention require an excellent rectification ratio, but 2
A rectification ratio of approximately 10 digits is obtained.

本素子を駆動回路に接続し、第8図の装置で画像読み取
りを行ったが、200KHzのクロックで1フレームを
約1秒で読み取った。蓄積時間は約3mSでl OOl
uxの光源に対し20 dB以上の明暗比を得た。
This device was connected to a drive circuit and an image was read using the apparatus shown in FIG. 8, and one frame was read in about 1 second with a clock of 200 KHz. The storage time is about 3mS.
A contrast ratio of more than 20 dB was obtained for the ux light source.

〈効 果〉 以上本発明によれば、大面積イメージ素子を用いて極め
て簡単な機構の原稿読取装置ができる。
<Effects> According to the present invention, a document reading device with an extremely simple mechanism can be obtained using a large-area image element.

更に、高感度かつ高速光応答性を有する非晶質シリコン
を光電変換部に用いることにより、通常の一次元イメー
ジ素子ではおよそ実現不可能な超高速読取装置の作製が
可能となる。また、光電変換部にほぼ等倍の作像を行う
ため、高度の微細加工技術を必要とせず、電極サイズを
比較的大きく設計でき素子作成が容易という利点がある
Furthermore, by using amorphous silicon, which has high sensitivity and high-speed photoresponsiveness, for the photoelectric conversion section, it becomes possible to fabricate an ultra-high-speed reading device that is almost impossible to achieve with a normal one-dimensional image element. Furthermore, since an image of approximately the same size is formed on the photoelectric conversion section, there is an advantage that advanced microfabrication technology is not required, the electrode size can be designed relatively large, and element fabrication is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の光電変換素子構造を示
す斜視図、第2図(a)は同A−A’断面図、第2図(
b)は同平面図、第3図は本発明にょる光電変換素子の
駆動回路図、第4図、第5図、第6図及び第7図は本発
明による光電変換素子の動作特性を示す図、第8図は本
発明による光電変換素子を機器に結合した構成図、第9
図は本発明による他の実施例を示す光電変換素子構造を
示す図、第1O図及び第11図は回路動作を説明するだ
めの図である。 1:基板 2:X電極 3:光電変換膜 4:Y電極 
7,8:走査回路 9:フォトダイオード部 10ニブ
ロッキングダイオード部代理人 弁理士 福 士 愛 
彦(他2名)us 2図 第4図 第5図 印1)U置方CV) 第6図 ton tof7 第7 W 第9図 第1O図 第11vA
FIG. 1 is a perspective view showing the structure of a photoelectric conversion element according to an embodiment of the present invention, FIG.
b) is a plan view of the same, FIG. 3 is a drive circuit diagram of a photoelectric conversion element according to the present invention, and FIGS. 4, 5, 6, and 7 show operating characteristics of a photoelectric conversion element according to the present invention. 8 is a configuration diagram in which a photoelectric conversion element according to the present invention is coupled to a device, and FIG.
The figure shows the structure of a photoelectric conversion element according to another embodiment of the present invention, and FIGS. 1O and 11 are diagrams for explaining the circuit operation. 1: Substrate 2: X electrode 3: Photoelectric conversion film 4: Y electrode
7, 8: Scanning circuit 9: Photo diode section 10 Blocking diode section agent Patent attorney Ai Fukushi
Hiko (2 others) US 2 Figure 4 Figure 5 Mark 1) U placement CV) Figure 6 ton tof7 7th W Figure 9 Figure 1O Figure 11vA

Claims (5)

【特許請求の範囲】[Claims] (1)光学情報を光の強度に応じた電気信号に変換する
画像読取素子において、絶縁性基板上に形成された帯状
電極(X)、pin構造を持つ光電変換膜および前記帯
状電極(X)と交叉する関係に配設された帯状電極(Y
)をこの順に積層し、前記帯状電極のうち少なくとも一
方は透明電極から成る光電変換素子と、信号読み出しお
よび信号処理回路を備えてなり、前記光電変換膜は全面
露光により原稿情報を読み出すことを特徴とする密着型
二次元画像読取装置。
(1) In an image reading element that converts optical information into an electrical signal according to the intensity of light, a strip-shaped electrode (X) formed on an insulating substrate, a photoelectric conversion film having a pin structure, and the strip-shaped electrode (X) A strip electrode (Y
) are laminated in this order, and at least one of the strip electrodes is provided with a photoelectric conversion element made of a transparent electrode, and a signal readout and signal processing circuit, and the photoelectric conversion film reads document information by full-surface exposure. A contact type two-dimensional image reading device.
(2)請求範囲第1項において、光電変換膜は非晶質シ
リコンで形成されたp−1−n構造を有し、逆バイアス
されて入射光量に対応した電流を出力し、画像情報が形
成されることを特徴とする密着型二次元画像読取装置。
(2) In claim 1, the photoelectric conversion film has a p-1-n structure formed of amorphous silicon, is reverse biased and outputs a current corresponding to the amount of incident light, and image information is formed. A close-contact two-dimensional image reading device characterized by:
(3)請求範囲第1項又は第2項に記載の光電変換膜は
、p層およびまたはn層がこれらに接する帯状電極とほ
ぼ同形状の帯状に分割されてなり、1層は連続的1(形
成されていることを特徴とする密着型二次元画像読取:
装置。
(3) The photoelectric conversion film according to claim 1 or 2 is formed by dividing the p-layer and/or n-layer into strips having substantially the same shape as the strip electrodes in contact with them, and one layer is a continuous one. (Contact two-dimensional image reading characterized by the formation of:
Device.
(4)請求範囲第1項、第2項又は第3項に記載の光電
変換膜において、n層の固有抵抗値は106Ω・α以下
であシ、n層はこれに接する帯状電極と同形状に分割さ
れてなり、1層及びp層の固有抵抗値は10Ω・ctn
以上であり、p層i層とも連続的に形成されていること
を特徴とする密着型二次元画像読取装置。
(4) In the photoelectric conversion film according to claim 1, 2, or 3, the n-layer has a specific resistance value of 10 6 Ω·α or less, and the n-layer has the same shape as the strip-shaped electrode in contact therewith. The specific resistance value of the 1st layer and p layer is 10Ω・ctn
The above is a contact type two-dimensional image reading device characterized in that the p layer and the i layer are formed continuously.
(5)請求範囲第1項、第2項、第3項又は第4項に記
載の光電変換膜において、光像照射側となる層(p層あ
るいはn層)の膜厚ば5層久以上+、oooX以下、1
層の膜厚が0.5μm以上5μm以下であることを特徴
とする密着型二次元画像読取装置。
(5) In the photoelectric conversion film according to claim 1, 2, 3, or 4, the thickness of the layer (p layer or n layer) on the light image irradiation side is 5 layers or more. +, oooX or less, 1
A contact type two-dimensional image reading device, characterized in that the thickness of the layer is 0.5 μm or more and 5 μm or less.
JP59017885A 1984-02-01 1984-02-01 Tightly adhered two-dimensional image readout device Pending JPS60161664A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59017885A JPS60161664A (en) 1984-02-01 1984-02-01 Tightly adhered two-dimensional image readout device
US06/696,089 US4644406A (en) 1984-02-01 1985-01-29 Large scale contact type image reading unit using two-dimensional sensor array
DE19853503048 DE3503048A1 (en) 1984-02-01 1985-01-30 TWO DIMENSIONAL IMAGE READER
GB08502559A GB2154368B (en) 1984-02-01 1985-02-01 Image reading unit using two-dimensional sensor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59017885A JPS60161664A (en) 1984-02-01 1984-02-01 Tightly adhered two-dimensional image readout device

Publications (1)

Publication Number Publication Date
JPS60161664A true JPS60161664A (en) 1985-08-23

Family

ID=11956156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59017885A Pending JPS60161664A (en) 1984-02-01 1984-02-01 Tightly adhered two-dimensional image readout device

Country Status (4)

Country Link
US (1) US4644406A (en)
JP (1) JPS60161664A (en)
DE (1) DE3503048A1 (en)
GB (1) GB2154368B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119448A1 (en) * 2016-01-08 2017-07-13 株式会社ニコン Imaging element and imaging device
WO2018131638A1 (en) * 2017-01-15 2018-07-19 一般財団法人 総合研究奨励会 Photodetector array

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788593A (en) * 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. High resolution scanning system including optical enlargement
FR2629932B1 (en) * 1988-04-11 1991-01-25 Thomson Csf DOCUMENT READER
FR2629939B1 (en) * 1988-04-11 1991-01-25 Thomson Csf VISUALIZATION AND WRITING DEVICE
US4901153A (en) * 1988-08-10 1990-02-13 Seiko Instruments Inc. Image sensor with reduced surface reflection interference
JP2765635B2 (en) * 1991-01-11 1998-06-18 キヤノン株式会社 Photoelectric conversion device
US5708840A (en) * 1992-06-29 1998-01-13 Elonex I.P. Holdings, Ltd. Micro personal digital assistant
US5386123A (en) * 1992-08-20 1995-01-31 Xerox Corporation Beam steering sensor for a raster scanner using a lateral effect detecting device
GB9315125D0 (en) * 1993-07-21 1993-09-01 Philips Electronics Uk Ltd Opto-electronic memory system
WO1996004600A1 (en) * 1994-08-03 1996-02-15 Elonex Technologies, Inc. Micro personal digital assistant
US5875269A (en) * 1995-08-29 1999-02-23 Sharp Kabushiki Kaisha Information reading device
GB9524483D0 (en) * 1995-11-30 1996-01-31 Philips Electronics Nv Light sensing array device and apparatus incorporating such
GB9603052D0 (en) * 1996-02-14 1996-04-10 Philips Electronics Nv Image sensor
JP2006524077A (en) * 2003-04-01 2006-10-26 カウンシル フォー ザ セントラル ラボラトリー オブ ザ リサーチ カウンシルズ Large area detector and display
WO2005006734A1 (en) * 2003-07-09 2005-01-20 Council For The Central Laboratory Of The Research Councils Image machine using a large area electron multiplier
KR100568496B1 (en) * 2004-10-21 2006-04-07 삼성전자주식회사 Film circuit substrate having sn-in alloy layer
EP2432015A1 (en) 2007-04-18 2012-03-21 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US20100044676A1 (en) 2008-04-18 2010-02-25 Invisage Technologies, Inc. Photodetectors and Photovoltaics Based on Semiconductor Nanocrystals
US8525287B2 (en) 2007-04-18 2013-09-03 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US8203195B2 (en) 2008-04-18 2012-06-19 Invisage Technologies, Inc. Materials, fabrication equipment, and methods for stable, sensitive photodetectors and image sensors made therefrom
US8138567B2 (en) * 2008-04-18 2012-03-20 Invisage Technologies, Inc. Materials, fabrication equipment, and methods for stable, sensitive photodetectors and image sensors made therefrom
EP2128739A1 (en) * 2008-05-29 2009-12-02 EM Microelectronic-Marin SA Optical movement detection device
WO2011156507A1 (en) 2010-06-08 2011-12-15 Edward Hartley Sargent Stable, sensitive photodetectors and image sensors including circuits, processes, and materials for enhanced imaging performance
US9262003B2 (en) 2013-11-04 2016-02-16 Qualcomm Incorporated Piezoelectric force sensing array
US9323393B2 (en) 2013-06-03 2016-04-26 Qualcomm Incorporated Display with peripherally configured ultrasonic biometric sensor
US20150070320A1 (en) * 2013-09-10 2015-03-12 Qualcomm Mems Technologies, Inc. Photoconductive optical touch
DE202014010841U1 (en) 2014-08-08 2016-11-16 Kaub GmbH & Co. KG Tree with a winding receptacle for a sail and a rigging for a sailboat with a tree, a mast and a sail

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835782A (en) * 1971-09-09 1973-05-26
JPS50149289A (en) * 1974-05-21 1975-11-29
JPS5548976A (en) * 1978-10-04 1980-04-08 Hitachi Ltd Photoelectric conversion element
JPS562784A (en) * 1979-06-22 1981-01-13 Nippon Telegr & Teleph Corp <Ntt> Image pickup device
JPS58127373A (en) * 1982-01-26 1983-07-29 Seiko Epson Corp Image sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197736A (en) * 1962-05-22 1965-07-27 Ibm Pattern recognition system
GB1130574A (en) * 1964-11-04 1968-10-16 Plessey Uk Ltd Improvements in or relating to visual pattern identification systems
GB1306735A (en) * 1970-07-20 1973-02-14 Plessey Co Ltd Solid state device
DE2543627A1 (en) * 1975-09-30 1977-04-14 Siemens Ag OPTOELECTRONIC SENSOR AND PROCEDURE FOR ITS OPERATION
US4032903A (en) * 1976-02-13 1977-06-28 Rca Corporation Charge injection device arrays
JPS605108B2 (en) * 1977-08-01 1985-02-08 株式会社日立製作所 Solid-state rubbing device
US4348611A (en) * 1978-03-02 1982-09-07 Wolfgang Ruppel Ferroelectric or pyroelectric sensor utilizing a sodium nitrite layer
US4376888A (en) * 1978-04-20 1983-03-15 Canon Kabushiki Kaisha Photoelectric conversion type information processing device
GB2030764A (en) * 1978-09-27 1980-04-10 English Electric Valve Co Ltd Target for image pick-up tube
JPS5846070B2 (en) * 1979-02-13 1983-10-14 松下電器産業株式会社 solid-state imaging device
DE3176774D1 (en) * 1980-12-10 1988-07-07 Fuji Xerox Co Ltd Elongate thin-film reader
US4412900A (en) * 1981-03-13 1983-11-01 Hitachi, Ltd. Method of manufacturing photosensors
JPS57197853A (en) * 1981-05-29 1982-12-04 Hitachi Ltd Thin-film diode array
JPS5879756A (en) * 1981-11-06 1983-05-13 Nec Corp Amorphous si image sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835782A (en) * 1971-09-09 1973-05-26
JPS50149289A (en) * 1974-05-21 1975-11-29
JPS5548976A (en) * 1978-10-04 1980-04-08 Hitachi Ltd Photoelectric conversion element
JPS562784A (en) * 1979-06-22 1981-01-13 Nippon Telegr & Teleph Corp <Ntt> Image pickup device
JPS58127373A (en) * 1982-01-26 1983-07-29 Seiko Epson Corp Image sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119448A1 (en) * 2016-01-08 2017-07-13 株式会社ニコン Imaging element and imaging device
JPWO2017119448A1 (en) * 2016-01-08 2018-12-06 株式会社ニコン Imaging device and imaging apparatus
US10908386B2 (en) 2016-01-08 2021-02-02 Nikon Corporation Image sensor and image-capturing device
US11774707B2 (en) 2016-01-08 2023-10-03 Nikon Corporation Image sensor and image-capturing device
WO2018131638A1 (en) * 2017-01-15 2018-07-19 一般財団法人 総合研究奨励会 Photodetector array
JPWO2018131638A1 (en) * 2017-01-15 2019-11-07 サイントル株式会社 Photodetector array
US10991764B2 (en) 2017-01-15 2021-04-27 Signtle Inc. Photodetector array

Also Published As

Publication number Publication date
GB2154368A (en) 1985-09-04
GB8502559D0 (en) 1985-03-06
GB2154368B (en) 1988-05-18
US4644406A (en) 1987-02-17
DE3503048C2 (en) 1992-09-03
DE3503048A1 (en) 1985-08-01

Similar Documents

Publication Publication Date Title
JPS60161664A (en) Tightly adhered two-dimensional image readout device
US6710370B2 (en) Image sensor with performance enhancing structures
US4862237A (en) Solid state image sensor
EP0165764B1 (en) Depletion mode thin film semiconductor photodetectors
US5200634A (en) Thin film phototransistor and photosensor array using the same
US4354104A (en) Solid-state image pickup device
GB2188482A (en) Optical sensor
US4764682A (en) Photosensitive pixel sized and shaped to optimize packing density and eliminate optical cross-talk
EP0361515B1 (en) Thin film phototransistor and photosensor array using the same
US4714836A (en) Photosensitive pixel with exposed blocking element
JPH0120592B2 (en)
US6459132B1 (en) Image sensing device and production process thereof
JP2000156522A (en) Photoelectric converter
CN101494256B (en) X ray sensor and manufacturing method thereof
JPH05167056A (en) Lamination-type solid-state image sensing device
US6682960B1 (en) Method of producing semiconductor device with a thin film transistor and a photoelectric conversion element
JP3484340B2 (en) Image sensor
Mimura et al. A two-dimensional image sensor with aSi: H pin diodes
US5083171A (en) Image sensor
JPS60147158A (en) Image sensor of adherent type
US5440149A (en) Planar type image sensor having electrodes on a photoelectric conversion layer
JP3146509B2 (en) 2D contact image sensor
KR840001604B1 (en) Method for fabrication a solid - state imaging device
JPH01192166A (en) Photodetector
EP0601200A1 (en) Semiconductor device