JPS63312985A - Formation of insulating enameling layer - Google Patents

Formation of insulating enameling layer

Info

Publication number
JPS63312985A
JPS63312985A JP14855387A JP14855387A JPS63312985A JP S63312985 A JPS63312985 A JP S63312985A JP 14855387 A JP14855387 A JP 14855387A JP 14855387 A JP14855387 A JP 14855387A JP S63312985 A JPS63312985 A JP S63312985A
Authority
JP
Japan
Prior art keywords
glass
substrate
insulating
insulating hollow
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14855387A
Other languages
Japanese (ja)
Inventor
Masahiro Hiraga
将浩 平賀
Atsushi Nishino
敦 西野
Masaki Ikeda
正樹 池田
Yasuo Mizuno
水野 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14855387A priority Critical patent/JPS63312985A/en
Publication of JPS63312985A publication Critical patent/JPS63312985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electronic Switches (AREA)
  • Sliding-Contact Bearings (AREA)
  • Glass Compositions (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PURPOSE:To form an insulating enameling layer excellent in wear resistance, by electrodepositing pulverized crystallized glass on a metallic substrate by an electrophoretic method and subjecting the above substrate to heat treatment at a specific temp. and then to baking. CONSTITUTION:SiO2-B2O3-MgO-BaO-type crystallized glass containing, by weight, at least 15% of the oxides of alkaline-earth metals (MgO, CaO, BaO, ZnO) and <=2% of the oxides of univalent alkali metals, such as Li2O, Na2O, and K2O, is melted and formed into cullets of the crystallized glass, which is subjected to wet grinding by means of a ball mill with the addition of dispersant, such as isopropyl alcohol, so as to be formed into a slurry state in which powdered crystallized glass of <=3mum average grain size is contained. This slurry is poured into an electrolytic cell and a metallic substrate is placed into the cell, and then, the powdered glass is electrodeposited on the substrate surface by an electrophoretic method. The substrate is dried, heat treated at a temp. in the range between the softening point of the glass and the initial crystallization point, and then baked at operating temp. By this method, the insulating enameling layer in which center line average height of surface roughness Ra is regulated to <=0.15mum and which is excellent in wear resistance can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、絶縁ホーロ基板、サーマルヘッド用基板、小
型モータの軸受やメカニカルシールの摺動部等の絶縁耐
摩耗の目的を果し得る絶縁ホーロ層の形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides an insulating hollow layer that can serve the purpose of insulating wear resistance for insulating hollow substrates, thermal head substrates, bearings of small motors, sliding parts of mechanical seals, etc. Regarding the formation method.

従来の技術 ステンレス、アルミニウムあるいはホーロ用鋼板等の基
材にガラス層を焼付けしたいわゆるホーロ基板は、調理
器具、暖房器具などの家庭電化製品に広く用いられてき
だが、近年、結晶化ガラスを用いた絶縁ホーロ基板は、
放熱性や耐摩耗性に優れていることから回路基板、サー
マルヘッド用基板等の電子部品や小型モータ用の軸受と
して用いられている。
Conventional technology So-called hollow substrates, which are made by baking a glass layer onto a base material such as stainless steel, aluminum or hollow steel, have been widely used in home appliances such as cooking utensils and heating appliances. The insulated hollow board is
Due to its excellent heat dissipation and wear resistance, it is used in electronic components such as circuit boards and thermal head boards, and as bearings for small motors.

次に、絶縁ホーロ基板の形成方法について説明する。絶
縁ホーロ基板の整造工程を第1図に示す。
Next, a method for forming the insulating hollow substrate will be explained. Figure 1 shows the preparation process for the insulating hollow substrate.

第1図に示したように、溶融・冷却して作ったガラスフ
リットをボールミルでミル引きして電着用スラリーを作
製し、このスラリーにステンレス。
As shown in Figure 1, glass frit made by melting and cooling is milled in a ball mill to prepare a slurry for electrodeposition, and stainless steel is added to this slurry.

ホーロ用鋼板などの金属基板を浸漬し、対楓と金属基板
間に直流電圧を印加してガラスフリット粒子を金属基板
上に電着する。電着の後、基板を十分に乾燥し、第8図
に示した焼成パターンで焼成して絶縁・ホーロ基板を形
成する。この方法で形成した絶縁ホーロ基板の表面粗度
は、中心線表面粗度Raで0.15μm以上であり、し
かも、うねりが大きく、ピンホールも多いものであった
A metal substrate such as a steel plate for hollow holes is immersed, and a DC voltage is applied between the maple and the metal substrate to electrodeposit glass frit particles onto the metal substrate. After electrodeposition, the substrate is sufficiently dried and fired according to the firing pattern shown in FIG. 8 to form an insulating hollow substrate. The surface roughness of the insulating hollow substrate formed by this method was 0.15 μm or more in terms of centerline surface roughness Ra, and it had large waviness and many pinholes.

特に、上述のような表面性のホーロ基板上にサーマルヘ
ッドの導電回路を形成すると、抵抗値のバラツキが大き
くなったり、回路が断線したりするため、サーマルヘッ
ド用基板としては満足なものが得られなかった。
In particular, if a conductive circuit for a thermal head is formed on a superficial hollow substrate as described above, the resistance value will vary widely or the circuit will break, so it is difficult to obtain a satisfactory substrate for a thermal head. I couldn't.

発明が解決しようとする問題点 本発明は、上記のような絶縁ホーロ基板の表面性の問題
点を解決するものであり、特に表面粗度の小さい絶縁ホ
ーロ基板を形成する方法に関するものである。
Problems to be Solved by the Invention The present invention solves the above-mentioned problems with the surface properties of insulating hollow substrates, and particularly relates to a method of forming an insulating hollow substrate with a small surface roughness.

問題点を解決するための手段 本発明は、金属基板上にSiO2−B2O3−MgO−
BaO系の平均粒径が3μm以下からなる1結晶化ガラ
スを被覆したのち、上述の結晶化ガラスの軟化点から結
晶化開始点の範囲内の温度で熱処理し、その後、さらに
、上述の結晶化ガラスの作業温度で焼成を行って絶縁ホ
ーロ基板を形成するものである。
Means for Solving the Problems The present invention provides SiO2-B2O3-MgO- on a metal substrate.
After coating BaO-based crystallized glass with an average particle size of 3 μm or less, heat treatment is performed at a temperature within the range from the softening point of the crystallized glass to the crystallization start point, and then further the above-mentioned crystallization process is performed. The insulating hollow substrate is formed by firing at the working temperature of glass.

作   用 上述のように、作業温度で焼成する前に結晶化ガラスの
軟化点から結晶化開始点の範囲内の温度で熱処理するこ
とにより、被覆されたガラス層が軟化・流動し、表面の
凸凹がレベリングされ、表面粗度も小さくなる。しかし
、上記の作用もガラスの粒度が第4図θの粒度分布のよ
うに大きい場合は、効果が小さく、中心線表面粗度Ra
でo、15μm以下にすることは、困難である。そこで
粒度を小さくすることによって、電着後のガラス層表面
が非常になめらかにし、しかも、軟上点から結晶化開始
点での熱処理時にも、より軟化・流動・レベリングが起
こり易くなり、結果として絶縁ホーロ基板の表面粗度も
小さくなる。
Function As mentioned above, by heat-treating the crystallized glass at a temperature within the range from the softening point to the crystallization start point before firing at the working temperature, the coated glass layer softens and flows, and the unevenness of the surface is reduced. is leveled and the surface roughness is also reduced. However, the effect described above is small when the particle size of the glass is large as shown in the particle size distribution θ in Figure 4, and the center line surface roughness Ra
It is difficult to reduce the thickness to 15 μm or less. Therefore, by reducing the particle size, the surface of the glass layer after electrodeposition becomes extremely smooth, and also softening, flow, and leveling occur more easily during heat treatment from the soft top point to the crystallization start point, resulting in The surface roughness of the insulating hollow substrate is also reduced.

実施例 以下本発明の実施について説明する。まず各構成要素に
ついて説明する。
EXAMPLES The implementation of the present invention will be described below. First, each component will be explained.

(1)金属基板 金属基板には、■ ホーロ用低炭素鋼板、■アルミナイ
ズド鋼、■ ステンレス鋼板、その他類似の鋼板を使用
できる。しかし、鋼板の熱膨張係数は60〜140X1
0  /l の範囲内の鋼板が好ましい。以下の実施例
ではステンレス鋼板(SVS430)を用いた。
(1) Metal substrate For the metal substrate, ■ low carbon steel plate for hollow holes, ■ aluminized steel, ■ stainless steel plate, and other similar steel plates can be used. However, the thermal expansion coefficient of steel plate is 60~140X1
A steel plate within the range of 0/l is preferred. In the following examples, a stainless steel plate (SVS430) was used.

(2)結晶化ガラス 結晶化ガラスは、絶縁性、耐摩耗性に優れたものでなけ
ればならないので、通常ホーロ製品に用いられるような
ガラスは使用できない。したがって、本発明では、第2
表aのガラスを用いた。
(2) Crystallized Glass Crystallized glass must have excellent insulation properties and wear resistance, so glass that is normally used for hollow products cannot be used. Therefore, in the present invention, the second
Glass shown in Table a was used.

(3)絶縁ホーロ層の形成法 第2図は本発明をサーマルヘッド用基板知応用したもの
であり、金属基板1の両面に絶縁ホーロ層2を施したも
のである。3は電極、4は発熱抵抗体、5は耐摩耗層で
ある。
(3) Method of forming an insulating hollow layer FIG. 2 shows an application of the present invention to a substrate for a thermal head, in which an insulating hollow layer 2 is formed on both surfaces of a metal substrate 1. 3 is an electrode, 4 is a heating resistor, and 5 is a wear-resistant layer.

第1図に、電気泳動電着法による絶縁ホーロ層の形成方
法を工程図で示した。ガラス材料は126゜〜1350
℃で先ず溶解され、ローラー力レッターで、結晶化ガラ
スのカレントを得る。これをボールミル等の粉砕機で粉
砕する。この後、粒径の大きいものをある程度取り除き
、さらにボールミルに結晶化ガラス粉末と分散媒である
イソプロピルアルコールを入れ、時間をかけてミル引き
してスラリーを調製する他の分散媒としては、イソブチ
ルアルコール、エタノール、アセトン、MIBK等があ
るが、分散性2作業性などから考えるとインプロパツー
ルが最も優れていることから、本発明においては、分散
媒としてインプロパツールを用いた。
FIG. 1 shows a process diagram of a method for forming an insulating hollow layer by electrophoretic electrodeposition. Glass material is 126°~1350°
℃ to obtain a current of crystallized glass with a roller force cutter. This is pulverized using a pulverizer such as a ball mill. After this, some large particles are removed, and the crystallized glass powder and isopropyl alcohol, which is a dispersion medium, are placed in a ball mill and milled over time to prepare a slurry. , ethanol, acetone, MIBK, etc., but Improper Tool is the most excellent in terms of dispersibility and workability, so Improper Tool is used as the dispersion medium in the present invention.

特に、このスラリーを調製する工程は非常に重要であり
、スラリーの調製の仕方によって表面状態の良否や、ガ
ラス粒子の電着の容易性なども決ってくる。粒子の平均
粒径は3μm以下が最も良く、それ以上の粒径になると
電着後のガラス層表面や焼成後の絶縁ホーロ表面も粗く
なる。
In particular, the step of preparing this slurry is very important, and the method of preparing the slurry determines the quality of the surface condition and the ease with which glass particles can be electrodeposited. The best average particle size is 3 μm or less; if the particle size is larger than that, the surface of the glass layer after electrodeposition and the surface of the insulating hole after firing will become rough.

それに対して、粒径の小さいものは、電着後のガラス層
表面や焼成後の絶縁ホーロ基板表面も非常になめらかで
、表面粗度の小さいものとなるが、平均粒径が1μm以
下になると膜厚を1100p以上にすることは困難とな
り、100μm以上にすると電着層の剥離が生じる。し
かし、100μm以内であれは、絶縁ホーロ基板狭面は
非常になめらかなものとなる。
On the other hand, when the particle size is small, the surface of the glass layer after electrodeposition and the surface of the insulating hollow substrate after firing are very smooth and the surface roughness is small, but when the average particle size is 1 μm or less, It is difficult to make the film thickness 1100p or more, and if it is 100 μm or more, the electrodeposited layer will peel off. However, if the thickness is within 100 μm, the narrow surface of the insulating hollow substrate will be extremely smooth.

以上のように、粒径を小さくすればするほど、表面粗度
は小さくなるが、電着可能な膜厚も小さくなる。
As described above, the smaller the particle size, the smaller the surface roughness, but the smaller the film thickness that can be electrodeposited.

上述の方法で調製したスラリーを電解槽に入れ、脱脂洗
浄を十分におこなった金属基材も電解槽内に装置し、極
間距離2〜4crnで、直流電圧150〜600■でガ
ラス粒子を金属基材上に電気泳動電着させ、ガラス被覆
層を乾燥の後に第6および7図のような焼成パターンで
焼成し、第2図2の絶縁ホーロ層を得る。
The slurry prepared by the above method was placed in an electrolytic tank, and the metal base material, which had been thoroughly degreased and washed, was also placed in the electrolytic tank, and the glass particles were heated to the metal with a distance between the electrodes of 2 to 4 crn and a DC voltage of 150 to 600 cm. The glass coating layer is electrophoretically deposited on the substrate, dried, and then fired in the firing pattern shown in FIGS. 6 and 7 to obtain the insulating hollow layer shown in FIG. 2.

特に、絶縁ホーロ層を形成するときにおいて、粒度分布
と同様に注意を払うべき点は、焼成の仕方であり、第6
および7図のような断続的な、あるいは連続的な焼成パ
ターンで、一度、ガラスの軟化点から結晶開始点の範囲
内の温度で十分に熱処理した後、作業温度で焼成する方
法が好ましい。
In particular, when forming an insulating hollow layer, the firing method should be given the same attention as the particle size distribution.
It is preferable to perform a sufficient heat treatment at a temperature within the range from the softening point of the glass to the crystallization starting point, and then to sinter the glass at a working temperature in an intermittent or continuous firing pattern as shown in FIG.

第6図はガラス層を被覆した基板を70C)Cで30分
間熱処理し、冷却して、さらに、900℃で焼成した時
の焼成パターンを示したものである。また同様に第7図
は、連続的に昇温させ、700℃と900℃でそれぞれ
1時間ホールドしたものである。これらの焼成パターン
は、第5図に示した第2表aの結晶化ガラスのDTA曲
線の軟化点Tgから結晶化開始点Tc0間の温度で熱処
理したもので軟化点以下の温度や、結晶化開始点以上の
温度で熱処理して、900℃の作業温度で焼成しても表
面の平滑な絶縁ホーロ層は得られない。同様に第8図の
焼成パターンで900℃で10分間焼成してもRaが0
.15μ蝿下の平滑な表面は得られない。本発明は、十
分に軟化する温度で長い時間熱処理するため、被覆ガラ
ス表面の凹凸が流動し、レベリングされ、表面が平滑に
なる。それに対し、軟化点より低い温度では、ガラス粒
子の軟化や流動が起らず表面が凹凸の状態のままKをっ
ているため次に900℃で焼成しても表面が平滑にはな
らない。逆に、結晶化開始点以上では、ガラスの軟化、
流動の域を越しているため、表面がレベリングされずに
結晶化が進むため、うねりやRaの大きい絶縁ホーロ表
面になり易い。以上のように、絶縁ホーロ表面を平滑に
するためには、ガラスの平均粒径を3μm以下にし、し
かもガラスが軟化、流動する温度域で十分に長い時間熱
処理してレベリングすることが重要であり、第8図のよ
うな短時間で作業温度まで昇温させて焼成するような従
来の方法は好ましくない。
FIG. 6 shows a firing pattern when a substrate coated with a glass layer was heat-treated at 70C for 30 minutes, cooled, and then fired at 900°C. Similarly, in FIG. 7, the temperature was raised continuously and held at 700° C. and 900° C. for 1 hour, respectively. These firing patterns were heat treated at a temperature between the softening point Tg and the crystallization start point Tc0 of the DTA curve of the crystallized glass in Table 2 a shown in FIG. Even if heat treatment is performed at a temperature higher than the starting point and fired at a working temperature of 900° C., an insulating hollow layer with a smooth surface cannot be obtained. Similarly, even after firing at 900°C for 10 minutes using the firing pattern shown in Figure 8, Ra was 0.
.. A smooth surface below 15 μm cannot be obtained. In the present invention, since heat treatment is performed for a long time at a temperature that sufficiently softens the coated glass, the irregularities on the surface of the coated glass are fluidized, leveled, and the surface becomes smooth. On the other hand, at a temperature lower than the softening point, the glass particles do not soften or flow and the surface remains uneven, so even if the glass is fired at 900° C., the surface will not become smooth. Conversely, above the crystallization starting point, the glass softens,
Since it is beyond the flow range, the surface is not leveled and crystallization progresses, which tends to result in an insulating hollow surface with large waviness and Ra. As mentioned above, in order to smooth the surface of the insulating hollow, it is important to reduce the average particle size of the glass to 3 μm or less, and to level it by heat treatment for a sufficiently long time in a temperature range where the glass softens and flows. , the conventional method of raising the temperature to the working temperature and firing as shown in FIG. 8 in a short period of time is not preferable.

上述の軟化点から結晶化開始点の間の温度で熱処理して
形成した絶縁ホーロ基板上にAu−メタルオルガニック
層を印刷し、800℃で6分間焼成して、Au電極を形
成する。この電極上にRuo2・ガラスフリットからな
る抵抗体ペーストを印刷。
An Au-metal organic layer is printed on an insulating hollow substrate formed by heat treatment at a temperature between the above-mentioned softening point and crystallization start point, and is fired at 800° C. for 6 minutes to form an Au electrode. A resistor paste consisting of Ruo2 and glass frit is printed on this electrode.

焼成して抵抗体を形成し、さらに、ガラスグレーズオバ
ーコート層を印刷、焼成して第2図のサーマルヘッドを
形成する。
A resistor is formed by firing, and then a glass glaze overcoat layer is printed and fired to form the thermal head shown in FIG.

次に本発明の具体的な実施例について述べる。Next, specific examples of the present invention will be described.

〈実施例1〉 ガラスは、第2表のdを用い、ガラス粉末4■ノと2−
プロパツール12をボールミルに投入して、2o時間ミ
ル引きしだ。このときのスラリー中のガラス粉末の平均
粒径は3.0μmであった。その粒度分布を第4図の@
に示す。このスラリー液を用いてガラス粉末を金属基体
に電着して、第6図の焼成パターンで、7oo℃で30
分間熱処理し、冷却して、さらに900℃で10分間焼
成して絶縁ホーロ層を形成した。この絶縁ホーロ層上に
上述の方法で、電極2発熱抵抗体、オーバーコート層を
形成して、サーマルヘッドを作成した。
<Example 1> For glass, using d in Table 2, glass powder 4 and 2-
I put Proper Tool 12 into the ball mill and milled it for 2 hours. The average particle size of the glass powder in the slurry at this time was 3.0 μm. The particle size distribution is shown in Figure 4.
Shown below. Glass powder was electrodeposited on a metal substrate using this slurry liquid, and the firing pattern was as shown in Fig. 6 for 30 minutes at 70°C.
It was heat-treated for a minute, cooled, and further fired at 900° C. for 10 minutes to form an insulating hollow layer. On this insulating hollow layer, the electrode 2 heating resistor and overcoat layer were formed by the method described above to create a thermal head.

〈実施例2〉 実施例1と同様なガラスを用い、同様な投入量で25時
間ミル引きをした。このときの平均粒径は、1.0μm
であった。その粒度分布を第4図の■に示す。以下実施
例1と同様な方法でサーマルヘッドを形成した。
<Example 2> Using the same glass as in Example 1, milling was carried out for 25 hours with the same input amount. The average particle size at this time is 1.0 μm
Met. The particle size distribution is shown in Figure 4 (■). A thermal head was then formed in the same manner as in Example 1.

〈実施例3〉 実施例2と同様のスラリーを用い、第7図の焼成パター
ンで、連続的に900℃まで昇温させ、かつ700tl
l: 、900℃でそれぞれ1時間ホールドしてホーロ
層を形成し、サーマルヘッドを形成した。  ′ く比較例1〉 前記実施例と同様な方法でミル引きを18時間行ない、
平均粒径が4.0μmのスラリーを調製し、サーマルヘ
ッドを形成した。このときの粒度分布を第4図θに示す
焼成方法は、第6図の焼成パターンで実施例1および2
と同様な方法である。
<Example 3> Using the same slurry as in Example 2, the temperature was continuously raised to 900°C and 700 tl using the firing pattern shown in Figure 7.
1: and 900° C. for 1 hour to form a hollow layer and form a thermal head. ' Comparative Example 1〉 Milling was carried out for 18 hours in the same manner as in the above example,
A slurry having an average particle size of 4.0 μm was prepared to form a thermal head. The particle size distribution at this time is shown in Fig. 4 θ.
This is a similar method.

〈比較例2〉 比較例1のスラリーを用いて、実施例3の第7図の焼成
パターンで焼成してサーマルヘッドを形成した。
<Comparative Example 2> Using the slurry of Comparative Example 1, firing was performed in accordance with the firing pattern shown in FIG. 7 of Example 3 to form a thermal head.

く比較例3〉 実施例1のスラリーを用いて、第8図の焼成パターンで
900℃で10分間焼成し、サーマルヘッドを形成した
Comparative Example 3 Using the slurry of Example 1, it was fired at 900° C. for 10 minutes in the firing pattern shown in FIG. 8 to form a thermal head.

く比較例4〉 実施例2のスラリーを用いて、比較例3と同様な方法で
焼成して、サーマルヘッドを形成した。
Comparative Example 4> Using the slurry of Example 2, firing was performed in the same manner as in Comparative Example 3 to form a thermal head.

〈従来例〉 比較例1のスラリーを用いて、比較例3と同様な方法で
焼成して、サーマルヘッドを形成した。
<Conventional Example> Using the slurry of Comparative Example 1, firing was performed in the same manner as in Comparative Example 3 to form a thermal head.

以上の実施例、1〜3、比較例1〜6について、絶縁ホ
ーロ層の中心線表面粗度Raと、サーマルヘッドの発熱
抵抗体の抵抗値バラツキを測定した。
For the above Examples, 1 to 3, and Comparative Examples 1 to 6, the centerline surface roughness Ra of the insulating hollow layer and the resistance value variation of the heating resistor of the thermal head were measured.

この結果を第1表例示す。The results are illustrated in Table 1.

第    1    表 第1表に示したように、本発明の方法で絶縁ホーロ基板
を形成し、その表面にサーマルヘッドを形成したものは
、従来例の絶縁ホーロ基板で形成したものより、表面粗
度、抵抗値バラツキが優れていることがわかる。しかし
、平均粒径が1.0μmのスラリーを用いて電着した場
合、膜厚で110μm以上電着することは不可能で、そ
れ以上付着させると電着層の剥離を生じる。さらに、平
均粒径を小さくすると付着できる膜厚は、かなり薄くな
る。しかし焼成後の表面粗度はさらに小さいものとなる
Table 1 As shown in Table 1, the insulating hollow substrate formed by the method of the present invention and the thermal head formed on its surface have a higher surface roughness than the conventional insulating hollow substrate. , it can be seen that the resistance value variation is excellent. However, when electrodepositing is performed using a slurry with an average particle size of 1.0 μm, it is impossible to electrodeposit a film with a thickness of 110 μm or more, and if it is deposited any thicker than that, the electrodeposited layer will peel off. Furthermore, when the average particle size is reduced, the thickness of the film that can be deposited becomes considerably thinner. However, the surface roughness after firing becomes even smaller.

〈実施例4〉 ガラスに含まれるアルカリ土類金属(MgO、CaO。<Example 4> Alkaline earth metals (MgO, CaO) contained in glass.

BaO,Zn0)が少なくとも15重量%以上であり、
アルカリ土類金属(Li  O,Na2O,に2O) 
が2重量%以下でなければならない理由を説明する。
BaO, Zn0) is at least 15% by weight or more,
Alkaline earth metals (LiO, Na2O, Ni2O)
The reason why it must be 2% by weight or less will be explained.

ガラスの組成として次表に示す組成のものについて、電
気泳動電着で絶縁ホーロ層を形成し、基板の表面粗度と
電気泳動電着性を調べた。その結果を第2表に示す。形
成方法は、実施例3と同様である。
For glass compositions shown in the following table, insulating hollow layers were formed by electrophoretic electrodeposition, and the surface roughness of the substrate and electrophoretic electrodeposition properties were examined. The results are shown in Table 2. The forming method is the same as in Example 3.

第2表の結果より、アルカリ土類金属が少なくとも15
重量%以上であり、しかもアルカリ金属が2重量%以下
であることが必須である。
From the results in Table 2, the alkaline earth metal content is at least 15
It is essential that the alkali metal content is at least 2% by weight and at most 2% by weight.

〈実施例6〉 実施例3と同様な方法で、第3図のモータのスラスト軸
受部6を絶縁ホーロ層2で被覆形成し、コンパクトディ
スク用モータとした。
<Example 6> In the same manner as in Example 3, the thrust bearing portion 6 of the motor shown in FIG. 3 was coated with an insulating hollow layer 2 to obtain a compact disc motor.

く比較例6〉 第8図の焼成パターンで、同様にスラスト軸受部を絶縁
ホーロ層で被覆形成し、モータとした。
Comparative Example 6> Using the firing pattern shown in FIG. 8, the thrust bearing portion was similarly coated with an insulating hollow layer to prepare a motor.

〈比較例6〉 従来の比較例として、軸受部にアルミナを用いてモータ
を形成した。
<Comparative Example 6> As a conventional comparative example, a motor was formed using alumina for the bearing part.

これらについて、軸受部の摩耗量を調べた。その結果を
第3表に示す。
For these, the amount of wear on the bearings was investigated. The results are shown in Table 3.

以上のように、本発明の形成方法を小型モータに応用し
ても摩耗性が向上することがわかる。
As described above, it can be seen that the abrasion resistance is improved even when the forming method of the present invention is applied to a small motor.

発明の効果 以上詳述の如く、ガラスの軟化点から結晶化開始点の範
囲内の温度で熱処理し、さらに作業温度で焼成して絶縁
ホーロ層を形成したものは、絶縁ホーロ層表面の平滑性
がより向上し、抵抗値バラツキの少ない、しかも、電極
と発熱抵抗体との接触抵抗の小さい、長寿命なサーマル
ヘッドを形成することが可能となる。
Effects of the Invention As detailed above, when an insulating hollow layer is formed by heat treatment at a temperature within the range from the softening point of glass to the crystallization start point and then firing at a working temperature, the smoothness of the surface of the insulating hollow layer is improved. It becomes possible to form a long-life thermal head with improved resistance, less variation in resistance value, and low contact resistance between the electrode and the heating resistor.

また、モータについては、耐摩耗性、ワウフラノター騒
音性等を著しく改善させることができ、しかも、機器の
小型化、信頼性の改善、長寿命化にも著しく貢献するこ
とが可能となる。
Furthermore, with regard to the motor, it is possible to significantly improve wear resistance, noise resistance, etc., and it is also possible to significantly contribute to downsizing of equipment, improvement of reliability, and extension of life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の絶縁ホーロ層の形成法を示
す工程図、第2図は同形成法を応用したサーマルヘッド
の断面構成図、第3図は同形成法を応用した小形モータ
の断面構成図、第4図はスラリー中のガラスの粒度分布
図、第5図は本発明で用いた結晶化ガラスのDTA曲線
図、第6図。 第7図および第8図は焼成パターンを示す温度特性図で
ある。 1・・・・・・金属基板、2・・・・・・鞄綴ホーロ層
、3・・・・・・電極、4・・・・・・発熱抵抗体、6
・・・・・・耐摩耗層、6・・・99.スラスト軸受部
、Ts ・・・・・・軟化点、Tc・・・・・・結晶化
開始点。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名WJ
t  図 嘉2図 (’/、 ) Σ 第 6 図 第 7 図 特M (jJF)
Fig. 1 is a process diagram showing a method for forming an insulating hollow layer according to an embodiment of the present invention, Fig. 2 is a cross-sectional configuration diagram of a thermal head to which the same forming method is applied, and Fig. 3 is a small size head to which the same forming method is applied. FIG. 4 is a particle size distribution diagram of glass in slurry; FIG. 5 is a DTA curve diagram of crystallized glass used in the present invention; FIG. 6 is a cross-sectional diagram of the motor. FIGS. 7 and 8 are temperature characteristic diagrams showing firing patterns. DESCRIPTION OF SYMBOLS 1... Metal substrate, 2... Bag binding hollow layer, 3... Electrode, 4... Heat generating resistor, 6
...Wear-resistant layer, 6...99. Thrust bearing part, Ts...Softening point, Tc...Crystallization starting point. Name of agent: Patent attorney Toshio Nakao and 1 other WJ
t Figure 2 ('/, ) Σ Figure 6 Figure 7 Special M (jJF)

Claims (3)

【特許請求の範囲】[Claims] (1)金属基板上に結晶化ガラスの平均粒径3μm以下
の微粉体を電気泳動電着したのち、前記ガラスの軟化点
から結晶化開始点の範囲内の温度で、前記電気泳動電着
した基板を熱処理し、さらに前記結晶化ガラスの作業温
度で焼成して絶縁ホーロ層を形成することを特徴とする
絶縁ホーロ層の形成法。
(1) After electrophoretically electrodepositing a fine powder of crystallized glass with an average particle size of 3 μm or less on a metal substrate, the electrophoretically electrodepositing was performed at a temperature within the range from the softening point of the glass to the crystallization start point. A method for forming an insulating hollow layer, which comprises heat-treating a substrate and further firing at the working temperature of the crystallized glass to form an insulating hollow layer.
(2)ガラスがSiO_2−B_2O_3−MgO−B
aO系の結晶化ガラスであり、しかも、少なくともアル
カリ土類金属の酸化物を15重量パーセント以上含有し
、一価のアルカリ金属の酸化物を2重量パーセント以下
の組成を有することを特徴とする特許請求の範囲第1項
記載の絶縁ホーロ層の形成法。
(2) Glass is SiO_2-B_2O_3-MgO-B
A patent characterized in that it is an aO-based crystallized glass and has a composition containing at least 15% by weight of an oxide of an alkaline earth metal and 2% by weight or less of an oxide of a monovalent alkali metal. A method for forming an insulating hollow layer according to claim 1.
(3)絶縁ホーロ層の中心線表面粗度Raが0.15μ
m以下であることを特徴とする特許請求の範囲第1項ま
たは第2項記載の絶縁ホーロ層の形成法。
(3) The center line surface roughness Ra of the insulating hollow layer is 0.15μ
3. The method for forming an insulating hollow layer according to claim 1 or 2, wherein the insulating hollow layer is less than or equal to m.
JP14855387A 1987-06-15 1987-06-15 Formation of insulating enameling layer Pending JPS63312985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14855387A JPS63312985A (en) 1987-06-15 1987-06-15 Formation of insulating enameling layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14855387A JPS63312985A (en) 1987-06-15 1987-06-15 Formation of insulating enameling layer

Publications (1)

Publication Number Publication Date
JPS63312985A true JPS63312985A (en) 1988-12-21

Family

ID=15455333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14855387A Pending JPS63312985A (en) 1987-06-15 1987-06-15 Formation of insulating enameling layer

Country Status (1)

Country Link
JP (1) JPS63312985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110789A (en) * 1987-10-23 1989-04-27 Fujikura Ltd Thin film circuit forming enamel substrate
US5679464A (en) * 1992-03-31 1997-10-21 Nippon Steel Corporation Joined product of heat-resisting alloys and method for joining heat-resisting alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110789A (en) * 1987-10-23 1989-04-27 Fujikura Ltd Thin film circuit forming enamel substrate
US5679464A (en) * 1992-03-31 1997-10-21 Nippon Steel Corporation Joined product of heat-resisting alloys and method for joining heat-resisting alloys

Similar Documents

Publication Publication Date Title
EP1047554B1 (en) Porcelain enamel composition for electronic applications
CA1276947C (en) Porcelain enamel composition and subtrates coated therewith
JP4873583B2 (en) Process for producing conductive coating and support provided with the coating
US4168344A (en) Vitreous enamel material for electrical resistors and method of making such resistors
US4355114A (en) Partially devitrified porcelain containing BaO.2MgO.2SiO2 and 2MgO.B2 O3 crystalline phases obtained from alkali metal free divalent metal oxide borosilicate glass
US2882187A (en) Electrical heating element
US5002903A (en) Porcelain enameled metal substrates
JP2937369B2 (en) Glass coating method
JPS5915161B2 (en) Vitreous enamel resistor material
JPS63312985A (en) Formation of insulating enameling layer
JPH0696847A (en) Surface heating unit and manufacture thereof
JPS63203779A (en) Formation of insulating enamel layer
JPH0331485A (en) Enameled substrate and thermal head or circuit parts using the same
US5198265A (en) Method of coating an aluminum compound substrate with a composition of elemental titanium and an alkali metal halide, melting the coating, and rinsing the coated substrate
JPS6221732A (en) Enameled matter with heterogeneous structure
JP2734654B2 (en) Manufacturing method of hollow substrate and thermal head and motor bearing using the hollow substrate
JPH0551543B2 (en)
JPS5988340A (en) Enamel frit
JPH0667772B2 (en) Glass-ceramic for coating metal substrates
JPS62116162A (en) Thermal head
GB2074152A (en) Coating method
JPS63206303A (en) Ozonizer
JPH01141834A (en) Insulating enameled substrate
JPH01188443A (en) Glaze composition for ceramic substrate
JPH01272783A (en) Enameled base plate and production thereof