JPS63311052A - Cold and hot heat generator - Google Patents

Cold and hot heat generator

Info

Publication number
JPS63311052A
JPS63311052A JP62144756A JP14475687A JPS63311052A JP S63311052 A JPS63311052 A JP S63311052A JP 62144756 A JP62144756 A JP 62144756A JP 14475687 A JP14475687 A JP 14475687A JP S63311052 A JPS63311052 A JP S63311052A
Authority
JP
Japan
Prior art keywords
heat
cooling
liquid
cold
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62144756A
Other languages
Japanese (ja)
Inventor
猛 富澤
足立 欣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62144756A priority Critical patent/JPS63311052A/en
Publication of JPS63311052A publication Critical patent/JPS63311052A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷暖房給湯、排熱回収等を行うヒートポンプシ
ステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump system that performs heating, cooling, hot water supply, exhaust heat recovery, and the like.

従来の技術 今日ヒートポンプシステム(ここでは広義に解釈して熱
機関の逆サイクルを利用して冷暖熱を発生するシステム
とする)として実用に供されてぃ2ヘーノ るのはわずかに二つの方法にほぼ限定され、それは小型
用に適したフロン圧縮式、大型用に適した水〜リチウム
ブロマイド系の吸収式である。前者は通常電動機駆動の
コンプレッサーを用いフロンの圧縮、膨張時の相変化に
伴う吸発熱現象を冷暖熱として取シ出すものであシ、主
として家庭用冷暖房機に利用されている。後者は熱駆動
型のサイクルとして知られ、リチウムブロマイド水溶液
の蒸気圧が温度によって変化する現象を利用し、水の蒸
気潜熱を冷房用として取り出すものでちゃ、主としてビ
ル等の大型冷房機に利用されている。
Conventional Technology Today, there are only two methods in practical use as a heat pump system (here, broadly interpreted as a system that generates cooling and heating heat using the reverse cycle of a heat engine). They are almost limited to the fluorocarbon compression type, which is suitable for small-sized applications, and the water-lithium bromide-based absorption type, which is suitable for large-sized applications. The former method uses a compressor driven by an electric motor to extract the heat absorption and heat generated by the phase change during compression and expansion of fluorocarbons as cooling and heating heat, and is mainly used in home air conditioners. The latter is known as a heat-driven cycle, and utilizes the phenomenon that the vapor pressure of an aqueous lithium bromide solution changes with temperature to extract the vapor latent heat of water for cooling purposes, and is mainly used in large air-conditioning machines for buildings. ing.

発明が解決しようとする問題点 フロン圧縮式に関しては、装置がコンパクトであシ効率
も比較的良く家庭用として広く普及している。しかし、
その作動媒体であるフロンは成層圏のオゾン層を破壊す
る原因物質であシ、人間をはじめとする地球上の生物圏
に多大の悪影響を与える恐れがあるとの見解の基に、全
世界的にその使用、生産を削減しようとの方向に意見が
まとまシつつあり、少なからぬ問題を内在している。さ
3 ベーン らに最近の、暖熱取り出し時の高温化の要求に対し、フ
ロンの耐熱性はそれに十分対応することが困難である。
Problems to be Solved by the Invention Regarding the Freon compression type, the device is compact and relatively efficient, and is widely used for home use. but,
Based on the view that chlorofluorocarbons, which are the working medium, are a substance that destroys the ozone layer in the stratosphere and may have a significant negative impact on the biosphere on Earth, including humans, a worldwide Opinions are beginning to come together in the direction of reducing its use and production, and there are many problems inherent in it. 3. The heat resistance of fluorocarbons makes it difficult to meet the recent demand for higher temperatures when extracting warm heat.

また、水〜リチウムブロマイド系の吸収式に関しては、
効率がそれほど高くなく、0″C以下では使用不能であ
シ、空冷が困難であシ、メンテナンスに労力を要する等
の問題があった。そして、これら以外の方法についても
最近様々な提案がなされているが、主として作動媒体の
可燃性、毒性に帰因する問題から未だに実用化されてい
ない。
Regarding the absorption formula of water-lithium bromide system,
There were problems such as the efficiency was not very high, it could not be used at temperatures below 0"C, air cooling was difficult, and maintenance was labor-intensive. Recently, various proposals have been made regarding methods other than these. However, it has not yet been put into practical use mainly due to problems caused by the flammability and toxicity of the working medium.

問題点を解決するだめの手段 本発明は前記問題点を解決するために、炭酸ガスの不燃
性、難燃性有機溶媒への吸収および脱離に伴う吸発熱現
象を利用して、吸収側で暖熱を、脱離側で冷熱を取シ出
すよう構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention utilizes the heat absorption phenomenon that accompanies the absorption and desorption of carbon dioxide gas into a non-flammable, flame-retardant organic solvent. It is configured to extract warm heat and cold heat on the desorption side.

作   用 上記構成における作用について以下に述べる。For production The operation of the above configuration will be described below.

気体が液体中へ溶解(吸収)するときには発熱現象を伴
い、逆に脱離するときには吸熱現象を伴うのが一般的で
ある。そしてその溶解度は通常系の温度の上昇にともな
って減少する。しかし、系の圧力を変化させることによ
り、高温(高圧)側での溶解度を低温(低圧)側よシも
大きくすることが可能である。そうすると、高温高圧側
で発熱、低温低圧側で吸熱をそれぞれおこなわすことが
可能となり、各々の側に熱交換器を設けることで冷熱お
よび暖熱を外界に取り出すことができ、すなワチ、この
系はヒートポンプシステムを構成することになる。そし
てこのとき、気体として炭酸ガス、液体として不燃性あ
るいは難燃性の有機溶媒を用することによシ、機器とし
ての安全性、作動媒体の耐熱性が向上する。
When a gas is dissolved (absorbed) into a liquid, an exothermic phenomenon is generally accompanied, and conversely, when a gas is desorbed, an endothermic phenomenon is generally accompanied. And its solubility usually decreases as the temperature of the system increases. However, by changing the pressure of the system, it is possible to increase the solubility on the high temperature (high pressure) side as well as on the low temperature (low pressure) side. This makes it possible to generate heat on the high-temperature, high-pressure side and absorb heat on the low-temperature, low-pressure side, and by providing a heat exchanger on each side, cold and warm heat can be taken out to the outside world. The system will constitute a heat pump system. At this time, by using carbon dioxide as the gas and a nonflammable or flame-retardant organic solvent as the liquid, the safety of the device and the heat resistance of the working medium are improved.

実施例 本発明による冷暖熱発生装置の概念を図に示しそれをも
とに説明する。
Embodiment The concept of a cooling/heating heat generating device according to the present invention is shown in the drawings and will be explained based on the drawings.

1は炭酸ガスの脱離時の吸熱によシ冷熱を発生させる脱
離器であシ、2が吸収時の発熱により暖熱を発生させる
吸収器であシ、各々外界(空気、水等)と熱交換が可能
であシ、また途中に気体圧送機(圧縮機)6を設けた気
体輸送路3、液体圧送6 ベーン 機(ポンプ)7を設けた液体輸送路4、減圧弁、キャピ
ラリー等から成る圧力開放器8を設けた液体返送路5で
結ばれている。9は液体輸送路4と液体返送路5との間
で熱交換を行う熱回収器である。図中の矢印は気体ある
いは液体の流れ方向を示す。
1 is a desorber that generates cold heat by absorbing heat when carbon dioxide is desorbed, and 2 is an absorber that generates warm heat by heat generated during absorption. In addition, a gas transport path 3 is equipped with a gas pump (compressor) 6, a liquid transport path 4 is equipped with a liquid pump 6, a vane machine (pump) 7, a pressure reducing valve, a capillary, etc. They are connected by a liquid return path 5 provided with a pressure release device 8 consisting of a. Reference numeral 9 denotes a heat recovery device that performs heat exchange between the liquid transport path 4 and the liquid return path 5. Arrows in the figure indicate the flow direction of gas or liquid.

そして本実施例では、気体として炭酸ガスを、液体とし
て炭化水素のハロゲン化物であるペルフルオロトリブチ
ルアミンを用いている。そしてこの組合せでサイクルを
作動させたときの成績例を簡単に示す。高温高圧側を5
Q″Cl2o気圧、低温低圧側を0″C15気圧に設定
し暖房を行ったときには、気体および液体圧送機の軸入
力に対し、熱出力として約250%が得られた。また、
この場合には高温側を50″Cと設定しているが、それ
を約100°Cとしてサイクルを作動させても、炭酸ガ
ス、ペルフルオロトリブチルアミンの両者共に耐熱性が
良好であるので何の不具合も発生しなかった。特に後者
はフロン系の物質ではあるが、蒸気圧が低いので、大気
へは拡散しにくく、公害6/3.−。
In this embodiment, carbon dioxide gas is used as the gas, and perfluorotributylamine, which is a hydrocarbon halide, is used as the liquid. An example of the results obtained when a cycle is operated using this combination will be briefly shown. High temperature and high pressure side 5
When heating was performed with Q''Cl2o pressure and the low temperature and low pressure side set to 0''C15 pressure, about 250% of the heat output was obtained with respect to the shaft input of the gas and liquid pumping machine. Also,
In this case, the high temperature side is set at 50"C, but even if the cycle is operated at about 100°C, there will be no problem since both carbon dioxide gas and perfluorotributylamine have good heat resistance. In particular, although the latter is a fluorocarbon-based substance, its vapor pressure is low, so it is difficult to diffuse into the atmosphere, resulting in pollution of 6/3.

性は低い。gender is low.

また、本実施例では暖房についてだけ記しているが、冷
房も当然可能であり、その場合には各構成要素の配置は
そのままで、バルブ(図略)操作で流路を切シ替える方
法が実用的である。
In addition, although this example describes only heating, cooling is also possible, and in that case, it would be practical to leave the arrangement of each component unchanged and switch the flow paths by operating valves (not shown). It is true.

さらにまた、装置としての効率を前記実施例よりも向上
させる方策として、炭酸ガスの溶媒に対する溶解度を増
大させることが効果的である。それは、不燃性、難燃性
溶媒を主たる溶媒として他の溶媒を添加する方法である
。例えば物理的に溶解度(吸収量)を増大する、グリコ
ール類、グライム類等の有機溶媒、あるいは化学的に溶
解度を増大するアルカノールアミン系等の溶媒などの添
加が効果的であるが、その内のどれ(複数も可)をどの
程度添加するかは、主剤との相溶性、添加後の液体の可
燃性の度合等を、考慮する必要がある。また、水系の溶
液の使用は、圧力開放器近傍での系内の凍結に十分配慮
する必要がある。しかし、一般に溶解度の増大は炭酸ガ
スに対する液体(溶媒)の循環比(液体圧送機の鵬動力
)を減少7ペー、・ するため、装置としての効率向上に役立つことになる。
Furthermore, as a measure to improve the efficiency of the apparatus compared to the above embodiment, it is effective to increase the solubility of carbon dioxide gas in the solvent. This is a method in which a non-flammable, flame-retardant solvent is used as the main solvent and other solvents are added. For example, it is effective to add organic solvents such as glycols and glymes that physically increase solubility (absorption amount), or alkanolamine-based solvents that chemically increase solubility. When determining which (or more than one) to add and how much, it is necessary to take into account the compatibility with the base agent, the degree of flammability of the liquid after addition, etc. Furthermore, when using an aqueous solution, sufficient consideration must be given to freezing in the system near the pressure release device. However, in general, increasing solubility reduces the circulation ratio of liquid (solvent) to carbon dioxide gas (the power of the liquid pump), which helps improve the efficiency of the device.

発明の効果 本発明による効果を以下に述べる。まず、作動媒体とし
て炭酸ガスを用いているために低温から高温まで熱安定
性に優れ、安価であシ、漏洩時にも安全性に優れ、全世
界的な脱フロンの要求にも答えうる、新規の冷暖熱発生
のサイクルおよび装置が提供できる。また、吸収液とし
て不燃性、難燃性の液体を採用しているために、万一の
漏洩時においても、燃焼、爆発の危険性がなく、工事等
での扱いやすさも含めて安全性が向上することとなる。
Effects of the Invention The effects of the present invention will be described below. First, because it uses carbon dioxide gas as a working medium, it has excellent thermal stability from low to high temperatures, is inexpensive, has excellent safety even in the event of a leak, and is a new product that can meet the worldwide demand for CFC-free. We can provide cooling/heating heat generation cycles and equipment. In addition, since a nonflammable and flame-retardant liquid is used as the absorption liquid, there is no danger of combustion or explosion in the event of a leak, and safety is ensured, including ease of handling during construction. It will improve.

さらに、全て流体で構成される系となるため、サイクル
の構成が簡単であり固体の析出も起こりにくいので、空
冷水冷等の熱交換の形態が自由であり、機器の大きさに
対しても小型から犬型壕で適用の自由度が犬きbo
Furthermore, since the system is entirely composed of fluids, the cycle structure is simple and precipitation of solids is less likely to occur, so the form of heat exchange such as air cooling or water cooling can be freely chosen, and it is compact compared to the size of the equipment. Since the dog-shaped trench has a high degree of freedom in application.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による一実施例の概念図を示す。 1・・・・・・脱離器、2・・・・・・吸収器、6・・
・・・・気体圧送機、7・・・・・・液体圧送機、8・
・・・・・圧力開放器。
The figure shows a conceptual diagram of an embodiment according to the invention. 1...Desorber, 2...Absorber, 6...
... Gas pumping machine, 7... Liquid pumping machine, 8.
...Pressure reliever.

Claims (2)

【特許請求の範囲】[Claims] (1)高温高圧側では炭酸ガスの液相に対する吸収反応
に伴う発熱を、低温低圧側では脱離反応に伴う吸熱をそ
れぞれ利用して冷暖熱を発生し、前記液相は不燃性ある
いは難燃性の有機溶媒を構成物質としたことを特徴とす
る冷暖熱発生装置。
(1) On the high-temperature, high-pressure side, the heat generated by the absorption reaction to the liquid phase of carbon dioxide is used, and on the low-temperature, low-pressure side, the heat absorbed by the desorption reaction is used to generate cooling and heating heat, and the liquid phase is non-flammable or flame-retardant. A cooling/heating heat generating device characterized by using a sterile organic solvent as a constituent material.
(2)有機溶媒は炭化水素のハロゲン化物であることを
特徴とする特許請求の範囲第1項記載の冷暖熱発生装置
(2) The cooling/heating heat generating device according to claim 1, wherein the organic solvent is a hydrocarbon halide.
JP62144756A 1987-06-09 1987-06-09 Cold and hot heat generator Pending JPS63311052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62144756A JPS63311052A (en) 1987-06-09 1987-06-09 Cold and hot heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62144756A JPS63311052A (en) 1987-06-09 1987-06-09 Cold and hot heat generator

Publications (1)

Publication Number Publication Date
JPS63311052A true JPS63311052A (en) 1988-12-19

Family

ID=15369658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62144756A Pending JPS63311052A (en) 1987-06-09 1987-06-09 Cold and hot heat generator

Country Status (1)

Country Link
JP (1) JPS63311052A (en)

Similar Documents

Publication Publication Date Title
WO2000071944A1 (en) A semi self sustaining thermo-volumetric motor
US11624560B2 (en) Mechanical-chemical energy storage
Jian et al. Performance calculation of single effect absorption heat pump using LiBr+ LiNO3+ H2O as working fluid
CN101988397A (en) Low-grade heat-flow prime mover, generating system and method thereof
Morawetz Sorption‐compression heat pumps
JPS63311052A (en) Cold and hot heat generator
Herold et al. Advanced energy systems: absorption heat pumps
CN107364564B (en) Absorption-type and thermoelectric refrigeration CO-assisted supercooling CO 2 Refrigerating system for ship
CN103075835B (en) Novel absorption type refrigeration and power-generation combining device
JP4301666B2 (en) Waste heat absorption refrigerator
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
CN114001474A (en) CO coupled with absorption refrigeration cycle2Transcritical refrigeration system
JPH11223106A (en) Power generator containing generating device having turbine with built-in integral structure drive body
KR100676894B1 (en) Cooling system using waste heat of generating apparatus for fuel-cell-powered
JP2994639B1 (en) Working medium of absorption heat pump and absorption heat pump using the same
JPS63163743A (en) Cold and hot heat generator
Riffat et al. Rotary absorption-recompression heat pump
CN107631510A (en) CO based on hydraulic recovery2Middle cryogenic freezing refrigerating system
JPS5944498B2 (en) Exhaust heat utilization equipment
JP4233201B2 (en) Waste heat absorption refrigerator
JPH06200710A (en) Regenerating and absorbing type power recovery system
Chen et al. Heat pumps for the 1990s
KR100198920B1 (en) Refrigeration cycle apparatus
JPH0461910B2 (en)
JP3947441B2 (en) Heat source equipment