JPS63163743A - Cold and hot heat generator - Google Patents

Cold and hot heat generator

Info

Publication number
JPS63163743A
JPS63163743A JP31137186A JP31137186A JPS63163743A JP S63163743 A JPS63163743 A JP S63163743A JP 31137186 A JP31137186 A JP 31137186A JP 31137186 A JP31137186 A JP 31137186A JP S63163743 A JPS63163743 A JP S63163743A
Authority
JP
Japan
Prior art keywords
reaction
cooling
carbon dioxide
pressure
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31137186A
Other languages
Japanese (ja)
Inventor
猛 富澤
足立 欣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31137186A priority Critical patent/JPS63163743A/en
Publication of JPS63163743A publication Critical patent/JPS63163743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷暖房空調、排熱回収等を行なうヒートポンプ
システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump system that performs heating, cooling, and air conditioning, waste heat recovery, and the like.

従来の技術 今日ヒートポンプシステムとして実用に供されているの
はわずか二つの方式にほぼ限定され、それは小型用に適
したフロン圧縮式、大型用に適した水−リチウムブロマ
イド系の吸収式である。前者は通常は電動機駆動のコン
プレッサーを用いフロンの圧縮、膨張時の相変化に伴う
吸発熱現象を冷暖熱としてとりだすもので、主として家
庭用冷暖房機に利用されている。後者は熱駆動型のサイ
クルとして知られ、リチウムブロマイド水溶液の蒸気圧
が温度によって変化する現象を利用し、水の蒸発潜熱を
冷房用としてとシだすもので、主としてビル等の大型集
中冷房機に利用されている。
BACKGROUND TECHNOLOGY There are currently only two types of heat pump systems in practical use: a fluorocarbon compression type suitable for small-sized pumps, and a water-lithium bromide absorption type suitable for large-sized pumps. The former method usually uses an electric motor-driven compressor to extract the heat absorption and heat generated by the phase change during compression and expansion of fluorocarbons as cooling and heating heat, and is mainly used in home air conditioners. The latter is known as a heat-driven cycle, and utilizes the phenomenon that the vapor pressure of an aqueous lithium bromide solution changes depending on the temperature, and releases the latent heat of vaporization of water for cooling purposes, and is mainly used in large central cooling systems for buildings, etc. It's being used.

発明が解決しようとする問題点 フロン圧縮式に関しては、装置がコンパクトで効率も比
較的良いのであるが、その作動圧力が高いために、騒音
、振動も高く、また配管等も耐圧を要するために堅牢、
精密な構成かつ相応の構造材料を用いる必要があり、高
価な製品にならざるを得なかった。さらに、フロンにつ
いては、大気高層のオゾン層を破壊する原因物質である
との懸念が持たれ、その使用については、量を削減しよ
うという全世界的な動きもあり、少なからず問題を内在
していた。また、水−リチウムブロマイド系吸収式に関
しては、効率がそれほど高くなく(入力に対する出力が
1oo%前後である)、0°C以下では使用不能であり
、空冷が困難、小形化が困難、メンテナンスに労力を要
する等の問題があった。
Problems to be Solved by the Invention Regarding the Freon compression type, the equipment is compact and relatively efficient, but the high operating pressure causes high noise and vibration, and the piping, etc., must be pressure resistant. Robust,
It required a precise structure and the use of appropriate structural materials, resulting in an expensive product. Furthermore, there are concerns that fluorocarbons are a substance that destroys the ozone layer in the upper atmosphere, and there is a worldwide movement to reduce their use. Ta. Additionally, water-lithium bromide absorption systems are not very efficient (output relative to input is around 10%), cannot be used below 0°C, are difficult to air cool, are difficult to miniaturize, and require maintenance. There were problems such as the labor required.

問題点を解決するだめの手段 本発明は前記問題点を解決するために、炭酸ガスの三級
アミンを主たる溶質とする溶液への吸収およびそこから
の脱離の可逆反応を利用し、吸収反応側で暖熱を、脱離
反応側で冷熱を取り出すよう構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention utilizes a reversible reaction of absorption of carbon dioxide into a solution containing a tertiary amine as a main solute and desorption from it. The structure is such that warm heat is extracted from the side and cold heat is extracted from the desorption reaction side.

作用 上記構成における作用について以下に述べる。action The operation of the above configuration will be described below.

一般に可逆的化学反応系においては、高温で吸熱、低温
で発熱反応が進行するのであるが、系の圧力を変化させ
ることによって逆の反応を起こさせることも可能である
。つまり、ある系において、高温高圧で発熱反応、低温
低圧で吸熱反応を進行させられる。本発明はこのような
系を利用して新方式ヒートポンプシステムを形成するも
のであり、反応系として炭酸ガスの液相への吸収および
脱離の可逆反応を利用する。即ち、高温高圧での炭酸ガ
スの液相への吸収反応時の発熱を暖熱として取り出し、
低温低圧での炭酸ガスの液相からの脱離反応時の吸熱を
冷熱として取り出すこととなる。
Generally, in a reversible chemical reaction system, an endothermic reaction proceeds at high temperatures and an exothermic reaction proceeds at low temperatures, but it is also possible to cause the opposite reaction to occur by changing the pressure of the system. In other words, in a certain system, an exothermic reaction can proceed at high temperature and high pressure, and an endothermic reaction can proceed at low temperature and low pressure. The present invention utilizes such a system to form a new heat pump system, and utilizes a reversible reaction of absorption and desorption of carbon dioxide gas into a liquid phase as a reaction system. That is, the heat generated during the absorption reaction of carbon dioxide into the liquid phase at high temperature and high pressure is extracted as warm heat,
The heat absorbed during the desorption reaction of carbon dioxide from the liquid phase at low temperature and low pressure is extracted as cold heat.

そしてこのとき、液相の溶質として三級アミンを用いる
と、吸収脱離時の炭酸ガス/アミンのモル比の変化に対
するそれぞれの反応速度の変化が小さく、また溶液循環
量に対する炭酸ガスの吸収脱離量を大きく取ることが可
能となり、システムとしての操作性、性能が向上する。
At this time, if a tertiary amine is used as the solute in the liquid phase, the change in the reaction rate with respect to the change in the molar ratio of carbon dioxide gas/amine during absorption and desorption is small, and the absorption and desorption of carbon dioxide gas with respect to the amount of solution circulation is small. It becomes possible to take a large amount of separation, improving operability and performance as a system.

実施例 本発明による冷暖熱発生装置の概念図を第1図に示す。Example A conceptual diagram of the cooling/heating heat generating device according to the present invention is shown in FIG.

1は炭酸ガスの脱離反応による冷熱を発生させる第一反
応器であり、2が吸収反応による暖熱を発生させる第二
反応器であり、両反応器は、外界と熱交換が可能であり
、また途中に気体圧送機6を設けた気体輸送路3、液体
圧送機7を設けた液体輸送路4、減圧弁、キャピラリイ
等からなる圧力開放機8を設けた液体返送路6でそれぞ
れ結ばれる。9,1oは気体輸送路3と液体輸送路40
両方と、液体返送路6との間で熱交換を行なう熱回収器
であり、ここでは二カ所に設けているが、必要に応じて
どちらか一カ所に、また液体輸送路4と液体返送路5の
間でだけ熱交換する構成にしても基本的性能に大きな影
響は与えない。図中の矢印は反応物あるいは反応生成物
の流れ方向をしめす。
1 is a first reactor that generates cold heat due to a desorption reaction of carbon dioxide, and 2 is a second reactor that generates warm heat due to an absorption reaction. Both reactors are capable of exchanging heat with the outside world. , and are connected by a gas transport path 3 with a gas pump 6 in the middle, a liquid transport path 4 with a liquid pump 7, and a liquid return path 6 with a pressure relief device 8 consisting of a pressure reducing valve, capillary, etc. It will be done. 9 and 1o are the gas transport path 3 and the liquid transport path 40
It is a heat recovery device that performs heat exchange between both of these and the liquid return path 6. Here, it is installed in two places, but if necessary, it can be installed in either one place or between the liquid transport path 4 and the liquid return path. Even if the configuration is such that heat is exchanged only between 5 and 5, the basic performance will not be significantly affected. The arrows in the figure indicate the flow direction of reactants or reaction products.

次に反応系について説明する。Next, the reaction system will be explained.

炭酸ガスと反応する液相の溶質としてここでは、トリエ
タノールアミンを採用し水溶液として用いているが、目
的とする温度レベル、系の設定圧力などと考え合わせて
、アミンとしてはメチルジェタノールアミン、ジメチル
エタノールアミン、ジエチルエタノールアミン等の三級
アミンを、そして溶媒としては、水、あるいはエチレン
グリコールなどのアルコール系をはじめとする有機溶媒
、あるいはそれらの混合溶媒を適切に組み合わせて用い
ることが望ましい。
Here, triethanolamine is used as a solute in the liquid phase that reacts with carbon dioxide gas, and is used as an aqueous solution, but considering the target temperature level and set pressure of the system, methyljetanolamine, methyljetanolamine, It is desirable to use a tertiary amine such as dimethylethanolamine or diethylethanolamine, and as a solvent, water, an organic solvent including an alcohol such as ethylene glycol, or a mixed solvent thereof in an appropriate combination.

これらのうちから、炭酸ガスとトリエタノールアミン(
TEA)との反応系を用いてサイクルを作動したときの
成績例について以下に示す。
Among these, carbon dioxide gas and triethanolamine (
Examples of results when a cycle is operated using a reaction system with TEA) are shown below.

炭酸ガスと3.5 N (規定度)トリエタノールアミ
ン水溶液から成る系において、低温低圧側:5”C,1
0kPa 、高温高圧側=6o′C1160kPa、な
る条件において、気体および液体圧送機の軸入力に対す
る第一反応器からの冷房出力で約560係を得た。ここ
で比較のため、同じ温度圧力条件下において二級アミン
であるジェタノールアミン(D E A ) 3.5 
N水溶液を液相に採用した結果を示すと、同じく冷房出
力で約400係であった。この両者の冷房出力効率の差
は主として単位溶液量当たシの炭酸ガス移動量の差によ
るところが大きく、τEム系に対してDEA系ではその
量が小さいため溶液循環量が大きくなってしまい、液体
圧送機の軸動力が増大するためである。
In a system consisting of carbon dioxide gas and a 3.5 N (normality) triethanolamine aqueous solution, low temperature and low pressure side: 5"C, 1
Under the following conditions: 0 kPa, high temperature/high pressure side = 6o'C, 1160 kPa, the cooling output from the first reactor was approximately 560 times the shaft input of the gas and liquid pumping machine. Here, for comparison, under the same temperature and pressure conditions, jetanolamine (DE A ), a secondary amine, was 3.5
The results of using an N aqueous solution as the liquid phase also showed that the cooling output was approximately 400 units. The difference in cooling output efficiency between the two is mainly due to the difference in the amount of carbon dioxide gas transferred per unit solution amount, and because the amount is smaller in the DEA system than in the τEM system, the amount of solution circulation becomes larger. This is because the shaft power of the liquid pumping machine increases.

また、反応速度に関しては上記の値に直接影響するもの
ではないが、DEA系では炭酸ガスのDEAに対するモ
ル比(X)がO,Sを超えると吸収時の反応速度が極め
て遅くなってしまい、これは反応器の大型化につながる
ため、X(0,5で操作するとか、反応器に特別の工夫
を凝らすとかの改善策が要求される。この原因は一級、
二級アミンと炭酸ガスとの反応においては、反応が進行
しX〉0.6になると極めて安定な中間生成物であるカ
ーバメート(−RCOO−)が生成し以後の反応進行を
阻害するためである。一方、三級アミン系では反応機構
が一級、二級アミン系と異なるためカーバメートの生成
がな(X>o、sにおいても反応速度の低下は緩やかで
あり、Xの直に制約されることなく操作条件の選択が可
能であり、性能面のみならず操作上、設計上においても
メリットが発揮される。この性質は三級アミンの立体構
造の特徴によるものであり、炭酸ガス分子はアミンの窒
素原子にアタックして反応しカーバメートが形成される
のであるが、三級アミンの場合には窒素原子のまわシが
空間的に混みあっておシ、つまり立体障害性が強いため
炭酸ガス分子の窒素原子へのアタックがしにくくなるこ
とによる。よって、立体構造によっては三級アミン以外
のアミンでも反応機構上同様な特徴を示すものも稀に存
在するが、コスト、分子量の大きさ等をも考え合わせる
と三級アミンが有利である。
In addition, although the reaction rate does not directly affect the above values, in a DEA system, if the molar ratio (X) of carbon dioxide to DEA exceeds O, S, the reaction rate during absorption becomes extremely slow. This leads to an increase in the size of the reactor, so improvement measures are required, such as operating it at
This is because in the reaction between a secondary amine and carbon dioxide gas, when the reaction progresses and reaches X>0.6, carbamate (-RCOO-), which is an extremely stable intermediate product, is produced and inhibits the subsequent progress of the reaction. . On the other hand, in the case of tertiary amine systems, the reaction mechanism is different from that of primary and secondary amine systems, so no carbamate is produced (even when X>o, s, the reaction rate decreases slowly, and is not directly constrained by It is possible to select the operating conditions, which has advantages not only in terms of performance but also in terms of operation and design.This property is due to the characteristics of the tertiary amine's three-dimensional structure, and the carbon dioxide molecule is attached to the nitrogen of the amine. Carbamates are formed by attacking atoms and reacting, but in the case of tertiary amines, the nitrogen atoms are spatially crowded, which means they have strong steric hindrance, so the nitrogen atoms of carbon dioxide molecules This is because it becomes difficult to attack atoms. Therefore, depending on the tertiary structure, there are rare amines other than tertiary amines that exhibit similar characteristics in terms of reaction mechanism, but considering cost, molecular weight, etc. In combination, tertiary amines are preferred.

発明の効果 以上のように本発明によれば次のような効果が得られる
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

a1作動ガスとしてCO□を用いているため、低温から
高温まで熱安定性に優れ、安価であり、漏洩時にも安全
性に優れる。
a1 Since CO□ is used as the working gas, it has excellent thermal stability from low to high temperatures, is inexpensive, and has excellent safety even in the event of a leak.

61作動圧力が低いために、配管等にそれほどの耐圧構
造がいらず、安価にシステムを構成できる。
61 Since the operating pressure is low, the system does not require much pressure-resistant structure for piping, etc., and the system can be configured at low cost.

C1フロンを用いないため、オゾン層破壊云々という懸
念がない。
Since C1 CFCs are not used, there is no concern about ozone layer depletion.

d1気体および液体という流体で反応系が構成されるた
め、サイクルを組むのが簡単である。
d1 Since the reaction system is composed of fluids such as gas and liquid, it is easy to set up a cycle.

θ、結晶等固体の析出が起こシにくいので、空冷水冷等
の熱交換の形態が自由であり、また小型から大型まで機
器の大きさに関しても自由度が大きい。
Since the precipitation of solids such as θ and crystals is less likely to occur, there is freedom in the form of heat exchange such as air cooling and water cooling, and there is also a large degree of freedom in terms of the size of the equipment, from small to large.

f1動力源は電気のみであり制御性が良い。The f1 power source is only electricity and has good controllability.

g1三級アミンの水溶液を用いているため他のアミンに
比較して操作性に優れ、設計の自由度も大きい。
Since it uses an aqueous solution of g1 tertiary amine, it has superior operability compared to other amines and has a greater degree of freedom in design.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例による冷暖熱発生装置の概念図で
ある。 1・・・・・・第一反応器、2・・・・・・第二反応器
、3・・・・・・気体輸送路、4・・・・・・液体輸送
路、5・・・・・・液体返送路、6・・・・・・気体圧
送機、7・・・・・・液体圧送機、8・・・・・・圧力
開放器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名6−
 戦 イネ圧 ま 機 7一−R体圧迭機 8−圧力間メ器
The figure is a conceptual diagram of a cooling/heating heat generating device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...First reactor, 2...Second reactor, 3...Gas transport path, 4...Liquid transport path, 5... ...Liquid return path, 6...Gas pressure feeder, 7...Liquid pressure feeder, 8...Pressure release device. Name of agent: Patent attorney Toshio Nakao and 1 other person6-
War rice pressure machine 71 - R body pressure machine 8 - pressure machine

Claims (2)

【特許請求の範囲】[Claims] (1)高温高圧側では炭酸ガスの液相に対する吸収反応
に伴う発熱を、低温低圧側では脱離反応に伴う吸熱をそ
れぞれ利用して冷暖熱を発生する装置にして、前記液相
は三級アミンを主たる溶質とする溶液であることを特徴
とする冷暖熱発生装置。
(1) On the high temperature and high pressure side, the heat generated by the absorption reaction with respect to the liquid phase of carbon dioxide is used, and on the low temperature and low pressure side, the heat generated by the desorption reaction is used to generate cooling and heating heat. A cooling/heating heat generating device characterized by a solution containing amine as the main solute.
(2)溶液は、水溶液、有機溶液あるいは両者の混合溶
液の内から選ばれたことを特徴とする特許請求の範囲第
1項記載の冷暖熱発生装置。
(2) The cooling/heating heat generating device according to claim 1, wherein the solution is selected from an aqueous solution, an organic solution, or a mixed solution of both.
JP31137186A 1986-12-25 1986-12-25 Cold and hot heat generator Pending JPS63163743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31137186A JPS63163743A (en) 1986-12-25 1986-12-25 Cold and hot heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31137186A JPS63163743A (en) 1986-12-25 1986-12-25 Cold and hot heat generator

Publications (1)

Publication Number Publication Date
JPS63163743A true JPS63163743A (en) 1988-07-07

Family

ID=18016368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31137186A Pending JPS63163743A (en) 1986-12-25 1986-12-25 Cold and hot heat generator

Country Status (1)

Country Link
JP (1) JPS63163743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014333A (en) * 2001-04-24 2003-01-15 Univ Nihon Heat pump
JP2015508886A (en) * 2012-03-01 2015-03-23 スティリアラス.ヴァシリオスSTYLIARAS.Vasilios High efficiency heat pump combining absorption and solution concentration change

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014333A (en) * 2001-04-24 2003-01-15 Univ Nihon Heat pump
JP2015508886A (en) * 2012-03-01 2015-03-23 スティリアラス.ヴァシリオスSTYLIARAS.Vasilios High efficiency heat pump combining absorption and solution concentration change

Similar Documents

Publication Publication Date Title
EP0500720B1 (en) Continuous constant pressure staging of solid-vapor compound reactors
EP0603199B1 (en) Dual temperature heat pump apparatus
JPH0893633A (en) Energy converter
Willers et al. The two-stage metal hydride heat transformer
Drost et al. Miniature heat pumps for portable and distributed space conditioning applications
KR20010041159A (en) Heat pumps using organometallic liquid absorbents
JPS63163743A (en) Cold and hot heat generator
US5079928A (en) Discrete constant pressure staging of solid-vapor compound reactors
Offenhartz et al. A heat pump and thermal storage system for solar heating and cooling based on the reaction of calcium chloride and methanol vapor
US4896509A (en) Working fluid for Rankine cycle
JPH0670534B2 (en) Chemical heat pump equipment
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
JPH0355738B2 (en)
Kevin Drost et al. Recent developments in microtechnology-based chemical heat pumps
JPS63311052A (en) Cold and hot heat generator
JPS6246172A (en) Air-conditioning heat generator
JPH07198222A (en) Heat pump including reverse rectifying part
EP0500527B1 (en) Discrete constant pressure staging of solid-vapor compound reactors
Riffat et al. Rotary absorption-recompression heat pump
EP0208427B1 (en) Heat pumps
Riffat et al. Gas-driven absorption/recompression system
JPH05280825A (en) Absorption heat pump
JPS6249164A (en) Air-conditioning heat generator
KR100364717B1 (en) expansion valve of ammonia absorption-type heat punp
JPS62266368A (en) Air-conditioning heat generator