JPS63310574A - Internal reforming type fuel cell - Google Patents

Internal reforming type fuel cell

Info

Publication number
JPS63310574A
JPS63310574A JP62145923A JP14592387A JPS63310574A JP S63310574 A JPS63310574 A JP S63310574A JP 62145923 A JP62145923 A JP 62145923A JP 14592387 A JP14592387 A JP 14592387A JP S63310574 A JPS63310574 A JP S63310574A
Authority
JP
Japan
Prior art keywords
fuel
reforming
catalysts
steam
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145923A
Other languages
Japanese (ja)
Inventor
Shoichi Kaneko
彰一 金子
Yoji Mori
洋司 森
Shigeto Nakagawa
中川 重人
Toshihide Tanaka
俊秀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Mitsubishi Electric Corp
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP62145923A priority Critical patent/JPS63310574A/en
Publication of JPS63310574A publication Critical patent/JPS63310574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To be able to operate under the small quantity of steam by arranging plural kinds of fuel reforming catalysts in the fuel flowing direction, and arranging fuel reforming catalysts on which carbon deposition rate is lower compared with those in the downstream side on the upstream side. CONSTITUTION:Upstream fuel reforming catalysts 8a are arranged on the upstream side of a fuel passage 7, and downstream fuel reforming catalysts 8b on its downstream side. The catalysts 8a have lower carbon deposition rate than the catalysts 8b. Raw fuel supplied to the passage 7 reacts with steam simultaneously supplied there to produce hydrogen, carbon monoxide, and carbon dioxide. Even when the supply of steam is insufficient, carbon deposition in reforming reaction is retarded by the catalysts 8a arranged on the upstream side. Since the steam produced in the cell reaction can be utilized on the downstream side of the passage 7, the quantity of steam is made sufficient, and reforming reaction is conducted with usual catalysts 8b. As a whole, a fuel cell can be operated under the small quantity of steam, and cell performance is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池の燃料通路に燃料改質触媒を充填
し、電池の発生熱によって原燃料を改質する内部改質型
燃料電池に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an internal reforming fuel cell in which a fuel passage of the fuel cell is filled with a fuel reforming catalyst and raw fuel is reformed using the heat generated by the cell. It is something.

〔従来の技術〕[Conventional technology]

第2図は例えば特開昭60−32255号公報に示され
た従来の内部改質型燃料電池を一部破断して示す斜視図
であり、図において、(l)は多孔性のセラミックスで
構成され、その空間には炭酸塩が充填されている電解質
マトリックス、(2)は多孔性のニッケルなどで構成さ
れた燃料電極、(3)は酸化ニッケルなどの多孔性材料
で構成されfta化剤化種電極シ、燃料電極(2)と酸
化剤電極(3)とは電解質マトリックスfilを介して
対向するように配置され、これらで単電池を構成してい
る。(4)は酸化剤電極(3)に対して設けられた酸化
剤通路、(6)は燃料電極(2)に接して設けられ、多
数の孔を有する燃料側スペーサ、(6)は燃料スペーサ
(6)に直角に設けられたリプであり、燃料側スペーサ
(6)とリプ[8)とで燃料通路(7)を形成している
。(8)は燃料通路(7)に充填された燃料改質触媒で
ある。叫は酸化剤通路(4)と燃料通路(7)を分離す
るためのセパレータ板である。セパレータ板四は上面お
よび下面においてそれぞれ相対する2返に沿って凸起部
分を有し、上記凸起部分は電解質マトリックスf1)と
接触し、接触部分くおいてウェットシールを形成する。
FIG. 2 is a partially cutaway perspective view of a conventional internal reforming fuel cell disclosed in, for example, Japanese Patent Application Laid-Open No. 60-32255. In the figure, (l) is composed of porous ceramics. (2) is a fuel electrode made of porous nickel, etc., and (3) is made of porous material such as nickel oxide, which is used as an fta-forming agent. A seed electrode, a fuel electrode (2), and an oxidizer electrode (3) are arranged to face each other with an electrolyte matrix film in between, and constitute a single cell. (4) is an oxidizer passage provided for the oxidizer electrode (3), (6) is a fuel-side spacer provided in contact with the fuel electrode (2) and has a large number of holes, and (6) is a fuel spacer. (6) is provided perpendicularly to the lip [8], and the fuel side spacer (6) and the lip [8] form a fuel passage (7). (8) is a fuel reforming catalyst filled in the fuel passage (7). A separator plate is used to separate the oxidizer passage (4) and the fuel passage (7). The separator plate 4 has convex portions along two opposing sides on the top and bottom surfaces, and the convex portions contact the electrolyte matrix f1) and form a wet seal at the contact portions.

このようなウェットシール部分(l1m)、(llb)
は反応ガスの気密性呆持を機能とし、燃料側ウェットシ
ール部分(11亀)は燃料通路(7)を、酸化剤側ウェ
ットシール部分(llb)は酸化剤通路(4)を形成す
る。
Wet seal parts like this (l1m), (llb)
Its function is to maintain airtightness of the reactant gas, and the fuel side wet seal portion (11) forms a fuel passage (7), and the oxidizer side wet seal portion (llb) forms an oxidizer passage (4).

なお、第1図は従来の内部改質型燃料電池の一部を示し
ておシ、図中、破線は同様の積層・状態が続いているこ
とを示す。
Note that FIG. 1 shows a part of a conventional internal reforming fuel cell, and the broken lines in the figure indicate that the same stacking and state continues.

次に動作について説明する。燃料通路(7)に炭化水素
などの燃料と水蒸気が供給されると、燃料改質触媒(8
)との接触反応により、炭化水素は水蒸気と反応して水
素、−酸化炭素、および炭酸ガスに変換される。炭化水
素がメタンの場合には、この反応は以下の式で表わされ
る。
Next, the operation will be explained. When fuel such as hydrocarbons and steam are supplied to the fuel passage (7), the fuel reforming catalyst (8)
), hydrocarbons react with water vapor and are converted into hydrogen, -carbon oxide, and carbon dioxide gas. When the hydrocarbon is methane, this reaction is represented by the following equation.

C’H4+ H2O4Co + 3H2生成された水素
および一酸化炭素は、燃料側スペーサ(器)に設けられ
た孔を通夛、多孔性の燃料電極(2)の細孔を拡散する
。他方、酸化剤通路(4)には空気と炭酸ガスとの混合
ガスが供給され、多孔性の酸化剤TIE 極[3)の細
孔を拡散する。電解質マトリックスHに含浸され、動作
温度である600’C付近では溶融状態になっている炭
酸塩、1埋極t21 、+31および上記水素と酸素を
主成分とする反応ガスの間に生ずる電気化学反応によシ
反応ガスが消費され、電流コレクタ(図示せず)間に電
位が生じ、外部に電力が取り出される。なお、燃料改質
触媒(8)上で起こる改質反応は吸熱反応であシ、この
反応を持読させるのに必要な熱量は、上記゛或気化学度
応に伴う非過逆反応が熱ロスとなシ、燃料電層(2)お
よびスペーサ(5)を介して燃料改質触11$ +81
に供給される。
C'H4+ H2O4Co + 3H2 The generated hydrogen and carbon monoxide pass through the holes provided in the fuel side spacer and diffuse through the pores of the porous fuel electrode (2). On the other hand, a mixed gas of air and carbon dioxide is supplied to the oxidizer passage (4) and diffuses through the pores of the porous oxidizer TIE electrode [3]. The electrochemical reaction that occurs between the carbonate impregnated in the electrolyte matrix H and in a molten state near the operating temperature of 600'C, the 1-embedded electrode t21, +31, and the above-mentioned reaction gas mainly composed of hydrogen and oxygen. The reactant gas is consumed, a potential is created across a current collector (not shown), and power is extracted to the outside. The reforming reaction that occurs on the fuel reforming catalyst (8) is an endothermic reaction, and the amount of heat required to sustain this reaction is the Loss and fuel reforming contact via fuel cell layer (2) and spacer (5) 11$ +81
supplied to

さらに上記電気化学反応に伴って発生する水蒸気は、燃
料通路(7)において改質反応に必要な水蒸気としても
利用される。従って、内部改質型燃料電池の場合外部改
質型燃料電池に比較して原燃料に対する最初に供給する
水蒸気の量は少なくてすむ。このことは、燃料カス中の
水素、−酸化炭素の割合を増加させ、電池の発電特性を
向上させることになる。−試算例によるスチームカーボ
ン比と電池電圧(mV )およびシステム発電効率(@
この関係を第3図に示す。
Furthermore, the water vapor generated along with the electrochemical reaction is also used as water vapor necessary for the reforming reaction in the fuel passageway (7). Therefore, in the case of an internal reforming fuel cell, the amount of water vapor initially supplied to the raw fuel can be smaller than that in an external reforming fuel cell. This increases the proportion of hydrogen and carbon oxide in the fuel scum and improves the power generation characteristics of the battery. - Steam carbon ratio, battery voltage (mV) and system power generation efficiency (@
This relationship is shown in FIG.

このように供給水蒸気量の低減は発電効率の改善に大き
な効果がある。しかしながら、従来の内部改質型燃料電
池においても燃料通路(7)の燃料ガス入口部分に設置
された燃料改質触媒(8)に関しては、電気化学反応に
よ多発生した水蒸気がまだ十分には蓄積されていないた
め、スチームカーボン比に関して従来の外部改質反応器
とほぼ同じ状況での運転となシ、水蒸気供給量を低減で
きるという内部改質型燃料電池の特長を子分生かせなか
った。
In this way, reducing the amount of supplied steam has a great effect on improving power generation efficiency. However, even in the conventional internal reforming fuel cell, the water vapor generated by the electrochemical reaction is still not sufficient for the fuel reforming catalyst (8) installed at the fuel gas inlet of the fuel passage (7). Because there was no accumulation, the steam-carbon ratio had to be operated under almost the same conditions as a conventional external reforming reactor, and the internal reforming fuel cell's advantage of reducing the amount of steam supplied could not be utilized.

特に燃料通路(7)の上流側すなわち燃料ガス入口部分
で酸化剤側ウェットシール部分(llb)に対応する領
域に設置せられた燃料改質触媒(8)に関しては、この
領域では第2図に示すように対応する酸化剤電極(3)
が欠けている念め電気化学反応が殆ど起こらず水蒸気の
生成も少なく、スチームカーボン比を低減する際のボト
ルネックとなっている。
In particular, regarding the fuel reforming catalyst (8) installed in the upstream side of the fuel passage (7), that is, in the area corresponding to the oxidizer side wet seal part (llb) at the fuel gas inlet part, in this area, as shown in FIG. Corresponding oxidizer electrode (3) as shown
Because of the lack of electrochemical reactions, almost no electrochemical reactions occur and little water vapor is produced, which is a bottleneck in reducing the steam-carbon ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の内部改質型燃料電池は、燃料通路に同一の炭素析
出性を有した改ズ触謀を充填している念め、最初供給す
る水蒸気址を余シ少なくすると、電気化学反応によシ生
成した水蒸気の蓄積が十分でない上流側すなわち燃料通
路入口付近、とくに酸化剤側のウェットシール部分に相
当する領域において水蒸気が不足し、炭素が析出する可
能性がある。
In conventional internal reforming fuel cells, the fuel passage is filled with a reforming catalyst with the same carbon deposition properties, so if the amount of water vapor initially supplied is reduced, the electrochemical reaction will occur. There is a possibility that there is a shortage of water vapor on the upstream side, that is, near the entrance of the fuel passage, where the generated water vapor is not accumulated sufficiently, and particularly in a region corresponding to the wet seal portion on the oxidizing agent side, causing carbon to precipitate.

この発明は上記のような問題点を解消する念めになされ
たもので、上流側においても改質反応で炭素析出がしに
<<、供給水蒸気量を少なくできるような内部改質型燃
料電池を得ることを目的とする。
This invention was made with the aim of solving the above-mentioned problems, and it is an internal reforming fuel cell that can reduce the amount of water vapor supplied by preventing carbon precipitation through the reforming reaction on the upstream side. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内部改質型燃料電池は、燃料改質触媒が
燃料の流れ方向に複数種配置され、上流側には下流側よ
シも炭素析出性の低い燃料改質触媒が配置されているも
のである。
In the internal reforming fuel cell according to the present invention, a plurality of types of fuel reforming catalysts are arranged in the direction of fuel flow, and fuel reforming catalysts with lower carbon deposition properties are arranged on the upstream side as well as on the downstream side. It is something.

〔作用〕[Effect]

この発明における触媒の配置方法は、上流側に配置され
た炭素を析出しにくい触媒によシ、入口付近での改質反
応における炭素析出を抑制し、下流側では電池反応によ
って発生した水蒸気も利用することによシ、比較的高価
な炭素析出性の低い改質触媒の利用を最小限に抑え、且
つ電池全体として低水蒸気供給量で動作させることが可
能となる。
The method of arranging the catalyst in this invention suppresses carbon precipitation in the reforming reaction near the inlet by placing the catalyst on the upstream side that is difficult to deposit carbon, and on the downstream side, the water vapor generated by the cell reaction is also utilized. By doing so, it is possible to minimize the use of a relatively expensive reforming catalyst with low carbon deposition properties, and to operate the battery as a whole with a low amount of water vapor supplied.

〔実施例〕〔Example〕

以下、この発明の一実施例を図を用いて説明する。第1
図において、(8m)は燃料通路(7)の上流側に配置
された燃料改質触媒、(8b)は燃料通路(7)の下流
側に配置された燃料改質触媒であシ、上流側燃料改質触
媒(8m)は下流側燃料改質触媒(8b)よシも炭素析
出性の低いものが用いられている。このような炭素析出
のしにくい改質触媒としては、白金、ルテニウムなどの
貴金属をセラミック担体に担持させた改質触媒が一般に
広く利用できる。また近年、ニッケルを触媒活物質とし
た改質触媒においても、他に第3成分を含有した。b、
te一部ニッケルの活性を調整するなどして、低スチー
ムカーボン比動作用の改質触媒が開発されておシ、これ
を利用できる。下流側燃料改質触11X(8b)として
は従来と同様に一般的な改質触媒が利用できる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (8m) is a fuel reforming catalyst placed on the upstream side of the fuel passage (7), and (8b) is a fuel reforming catalyst placed on the downstream side of the fuel passage (7). The fuel reforming catalyst (8m) has a lower carbon deposition property than the downstream fuel reforming catalyst (8b). As such a reforming catalyst that is difficult to deposit carbon, a reforming catalyst in which a noble metal such as platinum or ruthenium is supported on a ceramic carrier is generally widely used. Furthermore, in recent years, reforming catalysts using nickel as a catalytic active material also contain a third component. b,
A reforming catalyst for low steam carbon ratio operation has been developed by partially adjusting the activity of nickel, and can be utilized. As the downstream fuel reforming catalyst 11X (8b), a general reforming catalyst can be used as in the past.

(X匂は燃料の流れ方向を示す矢印である。(X is an arrow indicating the direction of fuel flow.

なお、第1図においても第2図の従来例の場合と同様に
、破線は同様の積層状態が続いていることを示す。
Incidentally, in FIG. 1 as well, the broken lines indicate that the same stacked state continues, as in the case of the conventional example shown in FIG.

つぎに動作について説明する。燃料通路(7)に投入さ
れた天然ガス等の原燃料は同時に投入された水蒸気と反
応して、水素、−酸化炭素、炭酸ガスを生成する。この
時燃料通路(7)の上流側に設置された炭素析出のしに
くい改質m謀(8a)により水蒸気が少ない場合でも改
質反応での炭素析出を抑制し、燃料通路(7)の下流側
は電池反応で生じた水蒸気も利用することによシ十分な
水蒸気量のもとに一般的な改質触媒(8b)によ)改質
反応を行なう。
Next, the operation will be explained. The raw fuel such as natural gas input into the fuel passage (7) reacts with the water vapor input at the same time to generate hydrogen, carbon oxide, and carbon dioxide gas. At this time, the reforming mechanism (8a) installed on the upstream side of the fuel passage (7) that makes it difficult to deposit carbon suppresses carbon deposition in the reforming reaction even when there is little water vapor, and On the other hand, by also utilizing the water vapor generated in the cell reaction, the reforming reaction is carried out using a general reforming catalyst (8b) under a sufficient amount of water vapor.

以上の動作によシ、電池全体としては、水蒸気量が少な
い状態で動作可能となり、電池特性を向上させることが
できる。
As a result of the above operation, the battery as a whole can operate with a small amount of water vapor, and the battery characteristics can be improved.

すなわち、高価な低スチームカーポジ比用の改質触媒(
8a)の使用量を最少限に抑え、しかも内部改質型燃料
電池を少ない水蒸気量の投入で動作させることかでき、
電池特性の向上が図れる。
In other words, an expensive reforming catalyst for low steam carposit ratio (
8a) can be minimized, and the internal reforming fuel cell can be operated with a small amount of water vapor input.
Battery characteristics can be improved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、燃料改質触媒が燃料
の流れ方向に複数種類配置され、水蒸気量の不足しやす
い上流側には下流側よりも炭素析出性の低い燃料改質触
媒が配置されているので、少ない水蒸気投入量で動作可
能な内部改質型燃料電池が得られる効果がある。
As described above, according to the present invention, a plurality of types of fuel reforming catalysts are arranged in the direction of fuel flow, and a fuel reforming catalyst with a lower carbon deposition property is placed on the upstream side where the amount of water vapor tends to be insufficient than on the downstream side. This arrangement has the effect of providing an internal reforming fuel cell that can operate with a small amount of water vapor input.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による内部改質型燃料電池
を一部破断して示す斜視図、第2図は従来の内部改質型
燃料電池を一部破断して示す斜視図、第3図は一試算例
によるスチームカーボン比に対する電池電圧およびシス
テム発電効率の関係を示す特性図である。 図において、(1)は電解質マトリックス、(2)は燃
料電極、(3)は酸化剤W極、(4)は酸化剤通路、(
7)は燃料通路、(8)は燃料改質触媒、(8m) #
ri上流側燃料改質触媒、(8b)は下流側燃料改質触
媒、(lolはセパレータ板、(l1m)、(llb)
はウェットシール部分、(l@は燃料の流れ方向を示す
矢印である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a partially cutaway perspective view of an internal reforming fuel cell according to an embodiment of the present invention; FIG. 2 is a partially cutaway perspective view of a conventional internal reforming fuel cell; FIG. 3 is a characteristic diagram showing the relationship between the steam carbon ratio, the battery voltage, and the system power generation efficiency according to an example of trial calculation. In the figure, (1) is an electrolyte matrix, (2) is a fuel electrode, (3) is an oxidant W electrode, (4) is an oxidant passage, (
7) is the fuel passage, (8) is the fuel reforming catalyst, (8m) #
ri upstream fuel reforming catalyst, (8b) downstream fuel reforming catalyst, (lol separator plate, (l1m), (llb)
is a wet seal portion, and (l@ is an arrow indicating the direction of fuel flow. In each figure, the same reference numerals indicate the same or equivalent portions.

Claims (1)

【特許請求の範囲】[Claims]  燃料電極と酸化剤電極とを電解質マトリックスを介し
て対向するように配置した単電池、上記燃料電極に対し
て設けられた燃料通路、この燃料通路に充填された燃料
改質触媒、および上記酸化剤電極に対して設けられた酸
化剤通路を備え、燃料および酸化剤をそれぞれ上記通路
に供給して燃料を改質しながら発電を行なう内部改質型
燃料電池において、上記燃料改質触媒は上記燃料の流れ
方向に複数種類配置され、上流側には下流側よりも炭素
析出性の低い燃料改質触媒が配置されていることを特徴
とする内部改質型燃料電池。
A unit cell in which a fuel electrode and an oxidizer electrode are arranged to face each other with an electrolyte matrix interposed therebetween, a fuel passage provided for the fuel electrode, a fuel reforming catalyst filled in the fuel passage, and the oxidizer. In an internal reforming fuel cell that includes an oxidizer passage provided to the electrode and generates power while reforming the fuel by supplying fuel and oxidizer to the passage respectively, the fuel reforming catalyst An internal reforming fuel cell characterized in that a plurality of types of fuel reforming catalysts are arranged in the flow direction of the fuel, and a fuel reforming catalyst having a lower carbon deposition property is arranged on the upstream side than on the downstream side.
JP62145923A 1987-06-11 1987-06-11 Internal reforming type fuel cell Pending JPS63310574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145923A JPS63310574A (en) 1987-06-11 1987-06-11 Internal reforming type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145923A JPS63310574A (en) 1987-06-11 1987-06-11 Internal reforming type fuel cell

Publications (1)

Publication Number Publication Date
JPS63310574A true JPS63310574A (en) 1988-12-19

Family

ID=15396206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145923A Pending JPS63310574A (en) 1987-06-11 1987-06-11 Internal reforming type fuel cell

Country Status (1)

Country Link
JP (1) JPS63310574A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246791A (en) * 1988-07-06 1993-09-21 Johnson Matthey Public Limited Company Fuel cell containing a reforming catalyst
US5436091A (en) * 1989-05-11 1995-07-25 Valence Technology, Inc. Solid state electrochemical cell having microroughened current collector
US5470670A (en) * 1993-03-01 1995-11-28 Matsushita Electric Industrial Co., Ltd. Fuel cell
EP0760531A1 (en) * 1994-09-29 1997-03-05 Haldor Topsoe A/S Process for the production of electrical energy in an internal reforming high temperature fuel cell
EP1617501A2 (en) * 2004-07-13 2006-01-18 Ford Motor Company Controlling kinetic rates for internal reforming of fuel in solid oxide fuel cells
US7291417B2 (en) 2003-01-16 2007-11-06 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials
WO2019189843A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal-supported fuel cell, and fuel cell module
WO2019189845A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Fuel battery single cell unit, fuel battery module, and fuel battery device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158174A (en) * 1984-08-20 1986-03-25 Mitsubishi Electric Corp Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158174A (en) * 1984-08-20 1986-03-25 Mitsubishi Electric Corp Fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246791A (en) * 1988-07-06 1993-09-21 Johnson Matthey Public Limited Company Fuel cell containing a reforming catalyst
US5436091A (en) * 1989-05-11 1995-07-25 Valence Technology, Inc. Solid state electrochemical cell having microroughened current collector
US5470670A (en) * 1993-03-01 1995-11-28 Matsushita Electric Industrial Co., Ltd. Fuel cell
EP0760531A1 (en) * 1994-09-29 1997-03-05 Haldor Topsoe A/S Process for the production of electrical energy in an internal reforming high temperature fuel cell
US7291417B2 (en) 2003-01-16 2007-11-06 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials
EP1617501A2 (en) * 2004-07-13 2006-01-18 Ford Motor Company Controlling kinetic rates for internal reforming of fuel in solid oxide fuel cells
EP1617501A3 (en) * 2004-07-13 2008-06-11 Ford Motor Company Controlling kinetic rates for internal reforming of fuel in solid oxide fuel cells
US7638226B2 (en) 2004-07-13 2009-12-29 Ford Motor Company Apparatus and method for controlling kinetic rates for internal reforming of fuel in solid oxide fuel cells
WO2019189843A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal-supported fuel cell, and fuel cell module
WO2019189845A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Fuel battery single cell unit, fuel battery module, and fuel battery device

Similar Documents

Publication Publication Date Title
US4647516A (en) Internal reforming type fuel cell
AU2002219941B2 (en) Multipurpose reversible electrochemical system
US4454207A (en) Steam reforming of fuel to hydrogen in fuel cells
EP0067423B1 (en) Electrochemical cell system with internal reforming
CA2237632C (en) High temperature electrochemical converter for hydrocarbon fuels
US5518827A (en) Internal reforming type fuel cell device and fuel cell generating system
US20030072700A1 (en) Reactor system including auto ignition and carbon suppression foam
EP1362383B1 (en) Fuel cell system
AU2002219941A1 (en) Multipurpose reversible electrochemical system
JP2002184426A (en) Fuel cell provided with complicated mea
JPH07109770B2 (en) Fuel cell and fuel cell stack
JP2007128716A (en) Fuel cell
JP3317535B2 (en) Fuel cell
JPS63310574A (en) Internal reforming type fuel cell
JP2737535B2 (en) Internal reforming molten carbonate fuel cell
JPS63232275A (en) Fuel cell of lamination type
JPH0147863B2 (en)
US7632596B2 (en) Distributed feed fuel cell stack
JPH04243537A (en) Reforming device
JP2009129701A (en) Fuel cell module
JP2604393B2 (en) Internal reforming molten carbonate fuel cell
JP2971543B2 (en) Internal reforming fuel cell
JP6993488B1 (en) Fuel cell power generation system and control method of fuel cell power generation system
JP2734716B2 (en) Internal reforming fuel cell
JPH0773057B2 (en) Internal reforming fuel cell