JP2737535B2 - Internal reforming molten carbonate fuel cell - Google Patents

Internal reforming molten carbonate fuel cell

Info

Publication number
JP2737535B2
JP2737535B2 JP4130402A JP13040292A JP2737535B2 JP 2737535 B2 JP2737535 B2 JP 2737535B2 JP 4130402 A JP4130402 A JP 4130402A JP 13040292 A JP13040292 A JP 13040292A JP 2737535 B2 JP2737535 B2 JP 2737535B2
Authority
JP
Japan
Prior art keywords
reforming
catalyst
reformer
internal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4130402A
Other languages
Japanese (ja)
Other versions
JPH05325996A (en
Inventor
栄一 安本
順二 新倉
一仁 羽藤
孝治 蒲生
欣一 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4130402A priority Critical patent/JP2737535B2/en
Priority to US08/028,976 priority patent/US5348814A/en
Publication of JPH05325996A publication Critical patent/JPH05325996A/en
Application granted granted Critical
Publication of JP2737535B2 publication Critical patent/JP2737535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内部改質型溶融炭酸塩
燃料電池に関し、特には炭化水素系の原料ガスを改質す
る触媒材料を配置した内部改質型溶融炭酸塩燃料電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal reforming molten carbonate fuel cell, and more particularly to an internal reforming molten carbonate fuel cell in which a catalyst material for reforming a hydrocarbon-based source gas is disposed.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池等の高温型燃料電
池の燃料としては、一般的に水素ガスを主成分とする燃
料ガスが用いられる。すなわち大規模な中央発電代替用
溶融塩燃料電池と考えられているものは、燃料として石
油ガスや天然ガスを改質した水素を含む合成ガスが用い
られ、また比較的小規模な溶融炭酸塩燃料電池(オンサ
イト用)では、都市ガス(主成分はメタン)を水蒸気改
質して利用することができる。オンサイト用の場合、通
常はコンパクト性、システム効率やコストの面から電池
内部で改質反応を行う内部改質方式が実用的に有望とい
われ、検討されている。
2. Description of the Related Art As a fuel for a high-temperature fuel cell such as a molten carbonate fuel cell, a fuel gas mainly containing hydrogen gas is generally used. In other words, what is considered as a large-scale alternative molten salt fuel cell for central power generation uses synthetic gas containing hydrogen, which has been obtained by reforming petroleum gas or natural gas, as a fuel. In a battery (for on-site use), city gas (mainly methane) can be used after steam reforming. For on-site use, an internal reforming method for performing a reforming reaction inside the battery is usually considered to be practically promising in terms of compactness, system efficiency and cost, and is being studied.

【0003】この内部改質方式には、直接内部改質型、
間接内部改質型の2つがあり、直接内部改質型は効率が
高くなるが発電部分に触媒を設置するため電解質のしみ
だしや電解質蒸気との接触により改質触媒の劣化が起こ
るという問題がある。これに対して間接内部改質型は熱
効率の点で多少前者に劣るものの、発電部分と改質部分
が分離しているため触媒寿命が向上するという点で有利
である。ここで間接内部改質型を用いる場合は、電池本
体による発熱と改質反応による吸熱のバランスが重要な
ファクタ−となる。つまりこれらの熱バランスがうまく
とれていないと素電池の面内で局所的な温度上昇や温度
低下を引き起こし、電池の性能劣化につながる。これ
は、改質域の触媒の充填の仕方によって大きく異なる。
[0003] This internal reforming method includes a direct internal reforming type,
There are two types, the indirect internal reforming type, and the direct internal reforming type has higher efficiency, but the problem is that the catalyst is installed in the power generation part and the reforming catalyst deteriorates due to electrolyte seepage and contact with electrolyte vapor. is there. On the other hand, the indirect internal reforming type is somewhat inferior to the former in terms of thermal efficiency, but is advantageous in that the power generation part and the reforming part are separated, so that the catalyst life is improved. Here, when using the indirect internal reforming type, an important factor is the balance between heat generation by the battery body and heat absorption by the reforming reaction. In other words, if these heat balances are not well maintained, a local temperature rise or temperature drop will occur in the plane of the unit cell, leading to a deterioration in the performance of the cell. This greatly depends on how the catalyst in the reforming zone is charged.

【0004】これまで間接内部改質を行う場合、例え
ば、特開昭61−34865号公報に開示されるように
触媒作用の異なる複数の触媒を用いて改質を行うという
方法があるが、これは、燃料の多様化に対してこうじら
れている手段であり電池面内の温度分布を均一化すると
いった対策はとられていない。また、特開昭63−31
0574号公報に開示されるように原料ガスの流れ方向
に対して、上流側に下流側よりも炭素析出性の低い改質
触媒が配置れているものもある。これは、少ない水蒸気
量で改質を行わせるということを考慮しているが、先と
同様電池面内の温度分布を均一にするといった対策はと
られていない。
Until now, in the case of performing indirect internal reforming, there is a method of performing reforming using a plurality of catalysts having different catalytic actions as disclosed in Japanese Patent Application Laid-Open No. 61-34865. Is a measure against fuel diversification, and no measures have been taken to make the temperature distribution in the cell surface uniform. Further, Japanese Patent Application Laid-Open No. 63-31
As disclosed in Japanese Unexamined Patent Publication No. 0574, there is a case where a reforming catalyst having a lower carbon deposition property is disposed on the upstream side with respect to the flow direction of the raw material gas than on the downstream side. This takes into account that the reforming is performed with a small amount of water vapor, but no measures have been taken to make the temperature distribution in the battery surface uniform as in the above case.

【0005】[0005]

【発明が解決しようとする課題】従来、特開昭61−3
4865号公報に開示されるように触媒作用の異なる複
数の触媒を用いて改質を行うという方法や特開昭63−
310574号公報に開示されるように原料ガスの流れ
方向に対して、上流側に下流側よりも炭素析出性の低い
改質触媒が配置して改質を行うという方法があるが、前
者の方式では、多種の燃料ガスに対応できるという利点
はあるが、余分な触媒も一緒に充填していることになり
コスト面や効率の点で好ましくない。また、電池面内の
温度分布を考慮していないため面内でかなりの温度差が
出ると考えられる。また後者の場合は、燃料ガス流れ方
向に対して水蒸気が不足しやすい上流側に炭素析出性の
低い触媒を充填しているため、水蒸気投入量を低く抑え
られるという長所があるが、電池面内の温度制御は難し
いと思われる。
SUMMARY OF THE INVENTION Conventionally, JP-A-61-3
As disclosed in Japanese Patent No. 4865, a method of performing reforming using a plurality of catalysts having different catalytic actions,
As disclosed in Japanese Patent No. 310574, there is a method in which a reforming catalyst having a lower carbon deposition property is disposed on the upstream side with respect to the flow direction of the raw material gas than on the downstream side to perform reforming. Thus, although there is an advantage that various types of fuel gas can be handled, an extra catalyst is also filled together, which is not preferable in terms of cost and efficiency. Further, it is considered that a considerable temperature difference occurs in the plane because the temperature distribution in the plane of the battery is not considered. In the latter case, the upstream side where the water vapor tends to run short in the fuel gas flow direction is filled with a catalyst having a low carbon deposition property. Temperature control seems difficult.

【0006】[0006]

【課題を解決するための手段】本発明は、炭酸塩を原料
とする電解質層とこれを両側から挟む燃料極と酸化剤極
とからなる素電池または素電池を複数個積層した電池本
体と、内部改質器とからなる内部改質型溶融炭酸塩燃料
電池において、前記改質器として、改質性能の異なる少
なくとも2種類の改質触媒を備え、その改質触媒の混合
比を、原料ガスの流れ方向に対して改質能力の比較的優
れた触媒の配置密度が順次増大するような混合比にした
プレート型の改質器を用いることを特徴とする。これに
より、本来単一の触媒層を用いたとき触媒層上流部で生
じる急激な温度低下を回避する。また、本発明は、前記
改質器として、改質能力の比較的優れた触媒を中央部
に、改質能力の比較的劣った触媒をその周辺部に配置構
成した改質器を用いる。
According to the present invention, a carbonate is used as a raw material.
Electrolyte layer and the fuel and oxidizer electrodes sandwiching it from both sides
Or a battery unit in which a plurality of unit cells are stacked
Internal reforming molten carbonate fuel consisting of a body and an internal reformer
In the battery, as the reformer, small cells having different reforming performances may be used.
Equipped with at least two types of reforming catalysts and mixing the reforming catalysts
Ratio is relatively superior in the reforming capacity to the flow direction of the raw material gas.
The mixing ratio was set so that the arranged density of the catalyst
It is characterized by using a plate-type reformer. to this
Therefore, when a single catalyst layer is used,
Avoid rapid temperature drop. Further, the present invention provides the
As a reformer, a catalyst with relatively excellent reforming capacity is used in the center.
In addition, a catalyst with relatively poor reforming capacity is
Use the reformer that has been formed.

【0007】また、この混合比を改質器面内で変化させ
ることにより改質器面内の温度分布制御がはかれる。
Further, the temperature distribution in the reformer surface is controlled by changing the mixing ratio in the reformer surface.

【0008】[0008]

【作用】内部改質型燃料電池では、電池の反応発熱およ
び電池部材の抵抗発熱等が電池内部の温度を上昇させる
のに対して改質反応が吸熱反応であることを利用し、電
池スタック内部において改質反応を行なわせる方式であ
る。従って内部改質方式では外部の改質装置を必要とし
ないうえ電池を冷却する効果も得られる。こうした方式
は燃料ガスとして都市ガスを直接供給することができる
うえ電池の発熱を有効に利用できるため、システム効率
の向上、コスト低減、コンパクト性向上のうえで大変有
利である。しかし間接内部改質の場合、従来の技術でも
述べたように電池本体内部に積層する改質器への触媒の
配置が素電池との熱バランスをはかるうえでで重要とな
る。
The internal reforming type fuel cell utilizes the fact that the heat generated by the reaction of the battery and the heat generated by the resistance of the battery members increase the temperature inside the cell, while the reforming reaction is an endothermic reaction, and the inside of the cell stack is utilized. In which a reforming reaction is carried out. Therefore, the internal reforming method does not require an external reforming device and also has the effect of cooling the battery. Such a method can directly supply city gas as fuel gas and can effectively use the heat generated by the battery, which is very advantageous in improving system efficiency, reducing costs, and improving compactness. However, in the case of indirect internal reforming, as described in the related art, the arrangement of the catalyst in the reformer laminated inside the battery main body is important for balancing the heat with the unit cell.

【0009】ここで、改質器内部の触媒混合比を原料ガ
スの流れ方向に対して、改質能力の比較的優れた触媒の
配置密度が増大するようにしたことにより、触媒層上流
部での急激な改質反応が抑制され温度低下が小さくな
る。また、下流部でも改質反応が進行し改質器全体の温
度を均一にする。このように性能の異なる触媒を混合し
て用いると、性能の良い触媒(例えば貴金属担持触媒)
だけを用いるときよりも、性能の劣る触媒(例えばNi
触媒)を混ぜて使うので触媒のコスト低減につながる。
Here, the catalyst mixing ratio inside the reformer is
Of catalyst with relatively excellent reforming ability
By increasing the arrangement density , a sharp reforming reaction at the upstream portion of the catalyst layer is suppressed, and the temperature drop is reduced. Also, the reforming reaction proceeds in the downstream part, and the temperature of the entire reformer is made uniform. Mixing catalysts with different performances
High performance catalyst (eg noble metal supported catalyst)
Catalyst with lower performance than when only
(Catalyst) is mixed, which leads to a reduction in catalyst cost.

【0010】さらに、この改質器を用いて内部改質型溶
融炭酸塩燃料電池を構成する場合、電池本体との熱バラ
ンスを考慮して中央部に改質能力の比較的優れた触媒を
充填すると電池面内の温度が均一になる。
[0010] Furthermore, the internal reforming type melting is performed using this reformer.
When configuring a molten carbonate fuel cell, the thermal
Considering the cost, a catalyst with relatively excellent reforming capacity is
When filled, the temperature within the battery surface becomes uniform.

【0011】[0011]

【実施例】以下、本発明を用いた内部改質型溶融炭酸塩
燃料電池について図面を参照して述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An internal reforming molten carbonate fuel cell using the present invention will be described below with reference to the drawings.

【0012】(実施例1)図1は、一実施例である内部
改質型溶融炭酸塩燃料電池の構成図であり、図2は電池
に組み込まれた改質器プレ−トの内部の様子を示したも
のである。図1、図2において、改質器プレート1は素
電池2の間に挟持されて構成されており素電池2のバイ
ポーラ板と類似の形状を有している。このため燃料極
3、電解質板4、酸化剤極5と組み合わせて電池の一部
として機能することができる。また改質器プレート1お
よび素電池2はともにスタックを縦貫して設置された原
料ガス供給用内部マニホルド孔6、燃料ガス用マニホル
ド孔7、酸化剤ガス用マニホルド8およびそれらの排ガ
ス用マニホルド9、10とを有し、これらガスは下部の
ヘッダ11から供給あるいは排出される。
(Embodiment 1) FIG. 1 is a structural view of an internal reforming type molten carbonate fuel cell according to one embodiment, and FIG. 2 is an internal view of a reformer plate incorporated in the battery. It is shown. 1 and 2, the reformer plate 1 is sandwiched between the unit cells 2 and has a shape similar to that of the bipolar plate of the unit cell 2. Therefore, the fuel electrode 3, the electrolyte plate 4, and the oxidant electrode 5 can function as a part of the battery in combination. The reformer plate 1 and the unit cell 2 are both provided with a raw gas supply internal manifold hole 6, a fuel gas manifold hole 7, an oxidizing gas manifold 8 and their exhaust gas manifolds 9, which are installed through the stack. These gases are supplied or exhausted from a lower header 11.

【0013】原料ガス供給用内部マニホルド孔6に対し
ては改質器プレート内部へのみ開口部があり、ここから
原料ガスが供給され、素電池には供給されない。改質器
プレート内部に供給された原料ガスは改質触媒12a,
12b,12cにおいて電池から発生する熱を利用して
改質され、出口から燃料用マニホルド孔7を経て各素電
池に供給される。なお図2ではバイポーラ板としてみた
場合、燃料極3側が上面となっており、酸化剤極5側は
下面となる。また酸化剤ガスは酸化剤ガス用マニホルド
8から各素電池に供給され、反応後の排ガスは燃料排ガ
ス用マニホルド9、酸化剤排ガス用マニホルド10から
排出される。
The raw gas supply internal manifold hole 6 has an opening only inside the reformer plate, from which the raw material gas is supplied and not supplied to the unit cells. The raw material gas supplied into the reformer plate is supplied to the reforming catalyst 12a,
In the units 12b and 12c, the cells are reformed by utilizing the heat generated from the cells, and supplied to each unit cell from the outlet through the fuel manifold hole 7. In FIG. 2, when viewed as a bipolar plate, the fuel electrode 3 side is the upper surface and the oxidant electrode 5 side is the lower surface. The oxidizing gas is supplied to each unit cell from the oxidizing gas manifold 8, and the exhaust gas after the reaction is discharged from the fuel exhaust gas manifold 9 and the oxidizing exhaust gas manifold 10.

【0014】このような改質器プレート1を素電池2間
に設置した内部改質型溶融炭酸塩燃料電池に本発明を適
用した実施例について図2、図3に従って説明する。
2は、改質性能の異なる3種類の改質触媒12a、1
2b、12cを原料ガス(主にメタン)の流れ方向に対
して改質性能の良い触媒層が下流になるように充填して
ある。つまり改質性能の良い順に12a、12b、12
cである。このように触媒を詰めた場合には、単一の触
媒を改質器プレート全面に詰めた場合に比べて原料ガス
入口部分での急激な温度低下を防ぐことができる。ま
た、単一触媒では起こりにくかった下流部分の改質反応
がより起こり易くなるため、それぞれの触媒の性能を十
分に引き出せる。
[0014] described embodiments such reformer plate 1 according to the present invention the internal reforming type fused carbonate fuel cell installed between the unit cell 2 2, according to FIG. Figure
2 are three types of reforming catalyst layers 12a, 1
2b and 12c are packed so that a catalyst layer having good reforming performance is located downstream with respect to the flow direction of the raw material gas (mainly methane). That is, 12a, 12b, 12
c. When the catalyst is packed in this way, it is possible to prevent a sharp drop in the temperature at the raw material gas inlet portion as compared with the case where a single catalyst is packed on the entire reformer plate. Moreover, since the more likely to occur reforming reaction of the downstream portion it was hard to occur in a single catalyst, thereby sufficiently pull out each catalyst performance.

【0015】この触媒層の構成を詳しく示したのが図3
である。改質性能の異なる2種類の触媒14a、14b
を矢印で示す原料ガスの流れ方向に対して改質性能の良
い触媒14aの割合が増えるように充填してある。これ
により改質器プレート面内の温度分布をより厳密に均一
にすることができる。このように混合して充填すること
により、よりスムーズに改質反応が進行するようにな
る。また、改質触媒の低コスト化にもつながる。ここに
用いる性能の異なる改質触媒は、すべて異なる金属を担
持していても良いし、同じ触媒でも担持する金属の量が
違っていてもよい。また、形状に関しても通常水蒸気改
質に用いられる球形あるいはペレット状のものが好まし
いが、これに限定されるものではない。
FIG. 3 shows the structure of the catalyst layer in detail.
It is. Two types of catalysts 14a and 14b having different reforming performances
Are filled so that the ratio of the catalyst 14a having good reforming performance is increased in the flow direction of the raw material gas indicated by the arrow . Thereby, the temperature distribution in the reformer plate surface can be made more strictly uniform. By mixing and filling in this manner, the reforming reaction proceeds more smoothly. In addition, it leads to cost reduction of the reforming catalyst . here
Reforming catalysts with different performances all use different metals.
Or the amount of metal supported on the same catalyst
It may be different. Also, the shape is usually
Spherical or pellet-like materials used for quality
However, the present invention is not limited to this.

【0016】これ以外にスタックの構造や燃料ガス、酸
化材ガスの供給方向などによって、素電池面内に温度分
布が生じた場合には、適当な混合比で改質器プレ−トに
触媒を充填して面内温度分布を制御することができる。
つまりこの方法を用いることによって、素電池の温度分
布が分かればそれに見合った改質触媒を選択、充填しス
タック全体の温度均一化を図ることができる。
In addition, when a temperature distribution occurs in the unit cell surface due to the structure of the stack, the supply direction of the fuel gas and the oxidizing gas, etc., the catalyst is applied to the reformer plate at an appropriate mixing ratio. Filling can control the in-plane temperature distribution.
That is, by using this method, if the temperature distribution of the unit cell is known, a reforming catalyst corresponding to the temperature distribution can be selected and filled, and the temperature of the entire stack can be made uniform.

【0017】(実施例) 図は、実施例1と同様に改質器プレート1を上方から
たときの模式図を示している。ところで燃料電池では
一般的にえば周辺部分よりは中央部分のほうが高温化
する傾向がある。大型のスタックの場合には燃料ガスお
よび酸化剤ガスの供給方向、たとえば直行流か平行流か
等により素電池内部の温度上昇部位が変化するが、傾向
としてはやはり中心よりの部位が高温化する。特にオン
サイト発電等に用いられる比較的小規模のスタックの場
合、スタック側面からの放熱の影響が大きくなるためこ
うした傾向は顕著である。そこで実施例1で示した改質
性能の異なる2種類の触媒14a、14bを図4のよう
に充填することにより、素電池中央部の温度上昇を効果
的に抑制することができる。つまり、改質器プレート中
央部に性能の高い改質触媒14aを、その周辺部にそれ
よりも性能の劣る改質触媒14bを充填することにより
セル中央部で発生した熱を有効に改質反応に用い、セル
中央部の温度を下げ、セル面内温度を均一にすることが
できる。
(Embodiment 2 ) FIG. 4 shows a state in which the reformer plate 1 is placed from above in the same manner as in Embodiment 1.
A schematic diagram when viewed is shown. By the way in the fuel cell is more generally saying example, if the peripheral portion there is a tendency that more of the central portion is high temperature. In the case of a large-sized stack, the temperature rising portion inside the unit cell changes depending on the supply direction of the fuel gas and the oxidizing gas, for example, whether it is a direct flow or a parallel flow, but the temperature from the center also tends to increase. . In particular, in the case of a relatively small-sized stack used for on-site power generation or the like, such a tendency is remarkable because the influence of heat radiation from the side surface of the stack becomes large. Therefore, by filling the two types of catalysts 14a and 14b having different reforming performances shown in Embodiment 1 as shown in FIG. 4 , it is possible to effectively suppress the temperature rise in the central part of the unit cell. In other words, by filling a reforming catalyst 14a having high performance in the center of the reformer plate and a reforming catalyst 14b having lower performance in the periphery thereof, heat generated in the center of the cell can be effectively converted. The temperature of the central part of the cell can be lowered, and the temperature in the cell plane can be made uniform.

【0018】図は炭化水素系の原料ガスの一つである
メタンを水蒸気改質したときの触媒の改質器への充填率
とメタン転化率の関係を示したものである。改質条件
は、スチーム/カーボン比3.5、反応温度650℃で
ある。この図からも分かるように充填率が60%以上で
はメタン転化率が90%以上となりほぼ一定することが
分かった。つまり改質器面内の温度分布を制御し、かつ
十分な転化率を得るためには、触媒の充填率が60%以
上必要であることが分かった。よって、充填率を60%
以上にしてやることにより改質性能を十分に発揮させ、
さらに面内温度分布も均一な電池が構成できる。
[0018] Figure 5 shows the tactile filling rate and the methane conversion rate relation to the reformer of the medium when methane is one of the raw material gas of a hydrocarbon system was steam reforming. The reforming conditions are a steam / carbon ratio of 3.5 and a reaction temperature of 650 ° C. As can be seen from this figure, it was found that when the filling rate was 60% or more, the methane conversion rate was 90% or more and was almost constant. That is, in order to control the temperature distribution in the plane of the reformer and obtain a sufficient conversion, it was found that the catalyst filling rate was required to be 60% or more. Therefore, the filling rate is 60%
By doing the above, the reforming performance is fully exhibited,
Further, a battery having a uniform in-plane temperature distribution can be formed.

【0019】[0019]

【発明の効果】以上実施例の説明から明らかなように、
本発明の内部改質型溶融炭酸塩燃料電池によれば、改質
器プレ−トに充填する改質触媒の混合比、配置を変える
だけで電池全体の温度の均一化が図れる。これより電池
の部分温度上昇を防ぎ、電池の信頼性を向上することが
できる。
As is clear from the above description of the embodiments,
According to the internal reforming type molten carbonate fuel cell of the present invention, the temperature of the whole cell can be made uniform only by changing the mixing ratio and arrangement of the reforming catalyst filled in the reformer plate. This can prevent a partial temperature rise of the battery and improve the reliability of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の内部改質型溶融炭酸塩燃料
電池構成図
FIG. 1 is a configuration diagram of an internal reforming molten carbonate fuel cell according to one embodiment of the present invention.

【図2】同実施例における改質器プレートの構成図FIG. 2 is a configuration diagram of a reformer plate in the embodiment.

【図3】同実施例における改質器プレートの触媒充填状
態の要部を示す模式図
FIG. 3 is a schematic view showing a main part of the reformer plate in a state where the catalyst is charged in the embodiment.

【図4】本発明の異なる実施例の改質器プレートの触媒
充填状態を示す模式図
FIG. 4 is a schematic view showing a state in which a reformer plate according to another embodiment of the present invention is charged with a catalyst.

【図5】本発明の異なる実施例の改質器プレートの触媒
充填率とメタン転化率の関係を示す特性図
FIG. 5 is a characteristic diagram showing a relationship between a catalyst filling rate and a methane conversion rate of a reformer plate according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 改質器プレート 2 素電池 3 燃料極 4 電解質板 5 酸化剤極 6 原料ガス供給用内部マニホルド孔 7 燃料ガス用マニホルド孔 8 酸化剤ガス用マニホルド 9 燃料排ガス用マニホルド 10 酸化剤排ガス用マニホルド 11 ヘッダ 12a,12b,12c 改質触媒層 13 端板 14a,14b 改質触媒 DESCRIPTION OF SYMBOLS 1 Reformer plate 2 Unit cell 3 Fuel electrode 4 Electrolyte plate 5 Oxidant electrode 6 Internal manifold hole for raw material gas supply 7 Manifold hole for fuel gas 8 Manifold for oxidant gas 9 Manifold for fuel exhaust gas 10 Manifold for oxidant exhaust gas 11 Header 12a, 12b, 12c Reforming catalyst layer 13 End plate 14a, 14b Reforming catalyst

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 足立 欣一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−58174(JP,A) 特開 平5−258758(JP,A) 特開 平5−89896(JP,A) 実開 昭61−13467(JP,U) ──────────────────────────────────────────────────の Continuing on the front page (72) Koji Gamo, Inventor 1006 Odakadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kinichi Adachi, 1006 Odakadoma, Kadoma, Osaka Prefecture In-company (56) References JP-A-61-58174 (JP, A) JP-A-5-258758 (JP, A) JP-A-5-89896 (JP, A) )

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭酸塩を原料とする電解質層とこれを両
側から挟む燃料極と酸化極とからなる素電池または素
電池を複数個積層した電池本体と、内部改質器とからな
り、前記改質器が、改質性能の異なる少なくとも2種類
の改質触媒を備え、その改質触媒の混合比を、原料ガス
の流れ方向に対して改質能力の比較的優れた触媒の配置
密度が順次増大するような混合比にしたプレート型の改
質器であることを特徴とする内部改質型溶融炭酸塩燃料
電池。
1. A result of this and the electrolyte layer carbonate as a raw material and a fuel electrode sandwiching from both sides and the battery body in which a plurality stacked unit cells or battery cells made of an oxidizing agent electrode, the internal reformer, The reformer has at least two types having different reforming performances.
And the mixing ratio of the reforming catalyst is
Of catalyst with relatively excellent reforming ability in the flow direction
An internal reforming molten carbonate fuel cell, characterized in that it is a plate-type reformer with a mixing ratio such that the density increases gradually .
【請求項2】 炭酸塩を原料とする電解質層とこれを両
側から挟む燃料極と酸化極とからなる素電池または素
電池を複数個積層した電池本体と、内部改質器とからな
り、前記改質器が、改質能力の比較的優れた触媒を中央
部に、改質能力の比較的劣った触媒をその周辺部に配置
構成したプレート型の改質器であることを特徴とする内
部改質型溶融炭酸塩燃料電池。
2. A consists carbonate electrolyte layer as a raw material and fuel electrode sandwiching it from both sides and the battery body in which a plurality stacked unit cells or battery cells made of an oxidizing agent electrode, the internal reformer, The reformer is a plate-type reformer in which a catalyst having a relatively excellent reforming ability is arranged in a central portion, and a catalyst having a relatively poor reforming ability is arranged in a peripheral portion thereof. Internal reforming molten carbonate fuel cell.
JP4130402A 1992-03-11 1992-05-22 Internal reforming molten carbonate fuel cell Expired - Lifetime JP2737535B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4130402A JP2737535B2 (en) 1992-05-22 1992-05-22 Internal reforming molten carbonate fuel cell
US08/028,976 US5348814A (en) 1992-03-11 1993-03-10 Internal reforming type molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130402A JP2737535B2 (en) 1992-05-22 1992-05-22 Internal reforming molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH05325996A JPH05325996A (en) 1993-12-10
JP2737535B2 true JP2737535B2 (en) 1998-04-08

Family

ID=15033435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130402A Expired - Lifetime JP2737535B2 (en) 1992-03-11 1992-05-22 Internal reforming molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2737535B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960813B2 (en) 2002-06-10 2005-11-01 New Wave Research Method and apparatus for cutting devices from substrates
US6580054B1 (en) 2002-06-10 2003-06-17 New Wave Research Scribing sapphire substrates with a solid state UV laser
JP6194854B2 (en) * 2013-12-05 2017-09-13 株式会社デンソー Fuel cell device
JP6363389B2 (en) * 2014-05-13 2018-07-25 行政院原子能委員會核能研究所 Flat plate reformer for fuel cells
EP3322014B1 (en) * 2015-07-08 2020-06-17 Nissan Motor Co., Ltd. Fuel cell system
CN113261133B (en) * 2018-11-30 2023-09-01 燃料电池能有限公司 Reforming catalyst patterns for fuel cells operating with increased CO2 utilization
WO2020112812A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with enhanced co 2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
WO2020112895A1 (en) * 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced co2 utilization
EP4066301A1 (en) 2019-11-26 2022-10-05 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567117A (en) * 1982-07-08 1986-01-28 Energy Research Corporation Fuel cell employing non-uniform catalyst
JPS6113467U (en) * 1984-06-29 1986-01-25 株式会社 富士電機総合研究所 Fuel cell cooling plate structure

Also Published As

Publication number Publication date
JPH05325996A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
JPH06260189A (en) Fuel cell
US5100743A (en) Internal reforming type molten carbonate fuel cell
CA2354910C (en) Fuel cell with convoluted mea
JP5061450B2 (en) Fuel cell
JP3781942B2 (en) Solid oxide fuel cell system
JPH0613096A (en) Method and apparatus for reformation in fuel cell power generation system
JP2737535B2 (en) Internal reforming molten carbonate fuel cell
KR20080000674A (en) Fuel cell system
JP4956946B2 (en) Fuel cell
US8053119B2 (en) Reformer and fuel cell system having the same
JPH03283266A (en) Solid electrolyte fuel cell of inside reformed type
JP4513282B2 (en) Fuel cell
JPS63232275A (en) Fuel cell of lamination type
JP2009087809A (en) Fuel cell
JPH1167258A (en) Fuel cell
JP2697461B2 (en) Internal reforming molten carbonate fuel cell
JPS6134865A (en) Fuel cell power generating system
JP4385761B2 (en) Fuel cell
JP2005019034A (en) Solid oxide fuel cell
US8753784B2 (en) Separator for molten carbonate fuel cell
JP4706191B2 (en) Solid oxide fuel cell
JP2002164073A (en) Non-membrane type fuel cell module
JPH0355763A (en) Gas fuel battery and electrode for use in the same
JP2011210568A (en) Fuel electrode collector unit of solid oxide fuel battery
JPH01167958A (en) Internally reforming type molten carbonate fuel cell