JPS63306353A - Heat pump hot water supplying apparatus - Google Patents

Heat pump hot water supplying apparatus

Info

Publication number
JPS63306353A
JPS63306353A JP62142637A JP14263787A JPS63306353A JP S63306353 A JPS63306353 A JP S63306353A JP 62142637 A JP62142637 A JP 62142637A JP 14263787 A JP14263787 A JP 14263787A JP S63306353 A JPS63306353 A JP S63306353A
Authority
JP
Japan
Prior art keywords
tank
temperature
sub
main tank
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62142637A
Other languages
Japanese (ja)
Inventor
Minoru Tagashira
実 田頭
Toshihiko Hasegawa
長谷川 俊彦
Osamu Asakawa
浅川 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP62142637A priority Critical patent/JPS63306353A/en
Publication of JPS63306353A publication Critical patent/JPS63306353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To allow high performance operation with little loss and supply high- temperature water in a short period of time by disposing a sub-tank in a main tank and intermittently boiling water in the sub-tank, which water is then effectively transferred to the main tank. CONSTITUTION:High-temperature, high-pressure refrigerant from a compressor 21 is circulated through condenser 23, expansion valve 25 and evaporator 26. Meanwhile, heating medium having exchanged heat in the condenser 23 enters a sub-tank 29 via its lower part and leaves via its upper part for circulation by the action of a pump 34, and is heated until a temperature sensor 38 senses a high temperature. When the high temperature is sensed by the sensor 38, a regulator 39 closes a valve 31, whereupon the internal pressure of the sub-tank 29 rises to cause a check valve 40 to open to allow the high-temperature heating medium to enter the upper part of a main tank 28. And, low-temperature heating medium from an outlet 41 in the lower part of the main tank 28 enters the sub-tank 29 through the pump 34 and condenser 23 while the mixing of the high- and low-temperature heating media is inhibited by means of a flow flux diffuser 37. In this way, an operation can be performed with little loss, and high-temperature water can be obtained in a short period of time.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ヒートポンプ装置を用いた、一般家庭用給
湯システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a general domestic hot water supply system using a heat pump device.

従来の技術 従来、ヒートポンプを用いた給湯機には、第3図に示す
ようなものがあり、これは、タンク内の熱媒体をヒート
ポンプ装置の凝縮器を一度通過させるだけで給湯利用可
能温度まで上昇させタンク内へ貯えるものである。また
、タンク内の熱媒体を凝縮器に循環させながら徐々に給
湯利用可能温度まで上昇させるものもある。
Conventional technology Conventionally, there is a type of water heater using a heat pump as shown in Figure 3, in which the heat medium in the tank can be heated to a usable temperature by simply passing it through the condenser of the heat pump device. It is raised and stored in a tank. There is also a system that circulates the heat medium in the tank to the condenser and gradually raises the temperature to the point at which hot water can be supplied.

以下その動作について第3図を基に説明する。The operation will be explained below based on FIG.

第3図は従来のヒートポンプ給湯機の構成図である。1
は作動媒体(R12)を圧縮するだめの圧縮機で、吐出
されだR12の高温高圧のガスは、管路2を通り凝縮器
3へ入り凝縮熱を熱媒体へ伝え液化し管路4を通り膨張
弁5で減圧され蒸発器6内で大気等の熱源と熱交典し蒸
発ガス化し管路7を通り再び圧縮機1で吸入、圧縮され
る。熱媒体は、タンク8内に貯えられており、熱媒体出
口9からポンプ1oで凝縮器3へ送られたR12の凝縮
熱により給湯利用可能温度まで加熱され管路11を通り
熱媒体人口12からタンク8内へ戻る。
FIG. 3 is a configuration diagram of a conventional heat pump water heater. 1
is a compressor for compressing the working medium (R12), and the discharged high-temperature, high-pressure gas R12 passes through pipe 2 and enters condenser 3, transfers the heat of condensation to the heat medium, liquefies it, and passes through pipe 4. It is depressurized by the expansion valve 5, exchanges heat with a heat source such as the atmosphere in the evaporator 6, becomes evaporated and gasified, passes through the pipe 7, and is sucked and compressed by the compressor 1 again. The heat medium is stored in a tank 8, heated to a usable temperature for hot water supply by the condensation heat of R12 sent from a heat medium outlet 9 to a condenser 3 by a pump 1o, and then passed through a pipe 11 from a heat medium population 12. Return to tank 8.

加熱された熱媒体は、給湯口13から利用され新たな熱
媒体は入口14から流入する。
The heated heat medium is utilized from the hot water supply port 13, and a new heat medium flows from the inlet 14.

制御については、熱媒体の凝縮器出口15の温度が給湯
利用可能温度になるようポンプ1oの回転数もしくはコ
ントロールパルプ(図示せずン等により熱媒体の流量を
コントロールし、タンク8内へ貯える。また別の方法と
して熱媒体流量は一定とし凝縮器3から出た熱媒体をタ
ンク8の熱媒体出口のわずか上部に設けた熱媒体人口1
6に戻しく管路は破線17で示す)タンク8内の温度が
給湯利用可能温度となるまで徐々に沸き上げる方法もあ
る。
Regarding control, the flow rate of the heat medium is controlled by the rotational speed of the pump 1o or a control pulp (not shown) so that the temperature at the condenser outlet 15 of the heat medium becomes a temperature at which hot water can be supplied, and the flow rate of the heat medium is stored in the tank 8. Another method is to set the heat medium flow rate constant and place the heat medium discharged from the condenser 3 slightly above the heat medium outlet of the tank 8.
6 is shown by a broken line 17) There is also a method of gradually boiling the water until the temperature inside the tank 8 reaches a temperature at which hot water can be used.

発明が解決しようとする問題点 前者の凝縮器出口温度を給湯利用可能温度まで一度に上
昇させる方法では、凝縮器内の作動媒体(R12)温度
は、熱媒体温度より高くなければならず、そのため凝縮
圧が高い状態で運転開始から終了まで動作し、ヒートポ
ンプ装置の性能は高い値が得られないという問題があり
、さらに熱媒体の循環流量を可変にするだめの制御が必
要である。
Problems to be Solved by the Invention In the former method of raising the condenser outlet temperature to the usable hot water temperature at once, the working medium (R12) temperature in the condenser must be higher than the heating medium temperature; There is a problem in that the heat pump device operates under a high condensing pressure from start to finish, making it difficult to obtain high performance values, and furthermore, it requires control to make the circulating flow rate of the heat medium variable.

後者の一定流量で夕/り内熱媒体を加熱する方法は、タ
ンク内水温が徐々に上昇するため凝縮器内のR12の凝
縮圧も運転初期は低くくおさえられ徐々に上昇するため
ヒートポンプ装置の性能は前者と比べ高くなるが、前述
したようにタンク内熱媒体温度が徐々に上昇するため一
度タンク内熱媒体を使用してしまうと再び沸き上げるま
でに長時間かかり使い勝手が悪いという問題がある。
The latter method, which heats the internal heat medium at a constant flow rate, is effective for heat pump equipment because the water temperature in the tank gradually rises and the condensation pressure of R12 in the condenser is kept low at the beginning of operation and gradually increases. The performance is higher than the former, but as mentioned above, the temperature of the heat medium inside the tank gradually rises, so once the heat medium inside the tank is used, it takes a long time to boil again, making it difficult to use. .

そこで本発明は、メインタンク内にサブタンクを設けサ
ブタンクを間欠的に沸き上げメインタンクに高温となっ
た熱媒体を間欠的に効率よく送り込むことにより高性能
で使い勝手を良くするものである。
Therefore, the present invention improves performance and usability by providing a sub-tank within the main tank, intermittently boiling the sub-tank, and intermittently and efficiently sending a high-temperature heat medium into the main tank.

問題点を解決するための手段 圧縮機、蒸発器、凝縮器を備えたヒートポンプ装置とメ
インタンクとを構成要素とし、前記メインタンクと一体
もしくは別個にサブタンクを設け、前記サブタンク下部
内へ熱媒体の流束拡散器を設け、前記メインタンク下部
と前記凝縮器との間をポンプを介して管路で接続し、前
記凝縮器と前記流束拡散器とを管路で接続し、前記サブ
タンク上部の隔壁に逆止弁を設け、前記サブタンク上部
から前記メインタンクと前記ポンプとの間を開閉弁を介
して管路で接続し、前記逆止弁を介して前記メインタン
クの上部を連通させ、サプタ/り内に温度センサ(TS
 )を設け前記開閉弁を制御し、メインタンク内に温度
センナ(TM)を設け、前記温度センサ(TS )と前
記温度センサ(TM)とにより前記圧縮機を制御し、前
記温度センサ(TM )の取付位置は、前記メインタン
ク下部からサブタンクの容量とほぼ等しい高さとし、前
記逆止弁は、サブタンク側からメインタンク側へのみ流
れることができる逆止効果があり、サブタンクの内圧と
メインタンクの内圧との差圧により開閉されるようにし
たものである。
Means for Solving the Problems A main tank and a heat pump device equipped with a compressor, an evaporator, and a condenser are used as constituent elements, and a sub-tank is provided either integrally with or separately from the main tank, and a heat medium is introduced into the lower part of the sub-tank. A flux diffuser is provided, the lower part of the main tank and the condenser are connected by a pipe via a pump, the condenser and the flux diffuser are connected by a pipe, and the lower part of the main tank and the condenser are connected by a pipe. A check valve is provided on the partition wall, a pipe connects the main tank and the pump from the upper part of the sub tank via an on-off valve, and the upper part of the main tank is communicated via the check valve. Temperature sensor (TS
) is provided to control the on-off valve, a temperature sensor (TM) is provided in the main tank, the compressor is controlled by the temperature sensor (TS) and the temperature sensor (TM), and the temperature sensor (TM) is provided. The installation position of the check valve is approximately equal to the capacity of the sub-tank from the bottom of the main tank, and the check valve has a check effect that allows flow only from the sub-tank side to the main tank side. It is designed to open and close based on the pressure difference between the internal pressure and the internal pressure.

作用 この技術的手段による作用は、次のようになる。action The effect of this technical means is as follows.

本発明はサブタンク内の熱媒体を徐々に加熱し、Tsで
設定温度を検知したなら開閉弁を閉じる。
The present invention gradually heats the heat medium in the sub-tank and closes the on-off valve when the set temperature is detected at Ts.

するとポンプの吐出圧力がサブタンク内へかかり、ポン
プの吸入側であるメインタンクより圧力が高くなり隔壁
に設けた逆止弁が開き、サブタンク内の高温熱媒体がメ
インタンク内へ流入する。サブタンク内下部に設けた流
速拡散器により、メインタンク下部の低温熱媒体が高温
熱媒体を押し上げる。Tsが低温を検知すると、開閉弁
が開となり、再び凝縮器とサブタンク間で熱媒体を循環
させ徐々に加熱が始まる。サブタンク容量の熱媒体を徐
々に加熱するため性能が高くなる。この動作を繰り返し
ながらメインタンク内へ間欠的に高温熱媒体を送り込む
。メインタンク内温度センサ(TM)が設定温度を検知
すると、圧縮機を停止させ同時に開閉弁も閉じるが、T
Sが低温を検知するまでポンプは運転される。サブタン
ク内の残溜高温熱媒体は、サブタンク容量とメインタン
クの7M以下の容量がほぼ等しくしであるためメインタ
ンクへ流入し、替って温度センサ(TM)以下の低温熱
媒体がサブタンク間へ流入しTSが低温を検知し沸き上
げを完了する。従ってサブタンク内へは、高温熱媒体の
残溜が無く加熱した熱媒体は有効に利用される。
Then, the discharge pressure of the pump is applied to the sub-tank, and the pressure becomes higher than that of the main tank, which is the suction side of the pump, and a check valve provided on the partition wall opens, allowing the high-temperature heat medium in the sub-tank to flow into the main tank. A flow rate diffuser installed at the bottom of the sub-tank causes the low-temperature heat medium at the bottom of the main tank to push up the high-temperature heat medium. When Ts detects a low temperature, the on-off valve opens and the heat medium is circulated again between the condenser and the sub-tank to gradually start heating. Performance is improved because the heat medium in the sub-tank capacity is gradually heated. While repeating this operation, high-temperature heat medium is intermittently fed into the main tank. When the main tank temperature sensor (TM) detects the set temperature, the compressor is stopped and the on-off valve is closed at the same time.
The pump is operated until S detects a low temperature. The residual high-temperature heat medium in the sub-tank flows into the main tank because the sub-tank capacity and the main tank's capacity below 7M are almost equal, and instead the low-temperature heat medium below the temperature sensor (TM) flows between the sub-tanks. The TS detects the low temperature and completes boiling. Therefore, there is no residual high-temperature heat medium in the sub-tank, and the heated heat medium can be used effectively.

また、サフリンクから高温の熱媒体がメインタンクへ比
較的短時間で間欠的に送ることが可能であり、一端メイ
ンタンクの熱媒体温度が低下しても短時間で高温熱媒体
をメインタンク上部へ送り込むことが可能となる。
In addition, it is possible to send high-temperature heat medium from Saflink to the main tank intermittently in a relatively short period of time, and even if the temperature of the heat medium in the main tank drops, the high-temperature heat medium can be sent to the top of the main tank in a short period of time. It is possible to send it.

実施例 以下、本発明の一実施例を図面に基づいて説明する。第
1図は、本発明の一実施例であるヒートポンプ給湯機の
構成図である。21は圧縮機で、作動媒体(R12)の
ガスを吸入圧縮し高温高圧のガスとし管路22で凝縮器
23へ送る。凝縮器23内ではR12と熱媒体との間で
熱交換しR12は凝縮・液化する。液化したR12は、
管路24を通り膨張弁25で膨張し低温低圧となり蒸発
器26内で外気等の熱源から熱をうばい蒸発ガス化する
。ガス化したR12は管路2アを通り再び圧縮機21で
吸入され圧縮される。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a configuration diagram of a heat pump water heater that is an embodiment of the present invention. A compressor 21 sucks and compresses the gas of the working medium (R12) to form a high-temperature, high-pressure gas and sends it to a condenser 23 through a pipe 22. In the condenser 23, heat is exchanged between R12 and the heat medium, and R12 is condensed and liquefied. The liquefied R12 is
It passes through the conduit 24 and is expanded by the expansion valve 25 to become low temperature and low pressure, and in the evaporator 26, it absorbs heat from a heat source such as outside air and evaporates into gas. The gasified R12 passes through the conduit 2a and is again sucked into the compressor 21 and compressed.

熱媒体の動きは、メインタンク28内のサブタンク29
の上部の熱媒体出口30から開閉弁31を介した管路3
2を通り管路33を通りポンプ34で凝縮器23へ送ら
れる。凝縮器23内でR12の凝縮熱により加熱された
熱媒体は、管路36を通りサフリンク29の下部の熱媒
体入口36より流束拡散器37を通りサブタンク29内
へ入る。この時の熱媒体循環量では凝縮器23での加熱
量で給湯利用可能温度まで上昇させるには至らないので
この循環をくり返しながらサラリンク29内の熱媒体は
温度センサ(TS)3Bで高温を検知するまで加熱され
る。(第2図の制御フローチャート図参照)(TS)3
sが高温を検知すると、コントローラ39により開閉弁
31が閉じられ、ポンプ34の吐出圧がサブタンク29
へかかる。ポンプ34の吸入側であるメインタンク28
の内圧よシサプタンク29の内圧が大きくなり逆止弁4
oからメインタンク28の上部へ高温の熱媒体が流入す
る。サブタンク29内へはメインタンク28の下部の流
出口41より低温の熱媒体がポンプ34により凝縮器2
3を通りわずかに加熱されながらサブタンク29内の流
束拡散器3了を通り流入する。流束拡散器370作用は
、サブタンク29内の高温となった熱媒体をメインタン
ク28へ流出させる時、低温の熱媒体の流束をサブタン
ク29の全断面へ拡散させ、高温と低温の熱媒体の混合
を防ぐ働きがある。これによりサブタンク29で加熱さ
れた熱媒体は有効にメインタンク28へ流入させること
ができる。
The heat medium moves through the sub tank 29 inside the main tank 28.
The pipe line 3 is connected from the heat medium outlet 30 at the upper part of the
2 and is sent to the condenser 23 by a pump 34 through a conduit 33. The heat medium heated by the heat of condensation of R12 in the condenser 23 passes through the pipe line 36 and enters into the sub-tank 29 from the heat medium inlet 36 at the lower part of the saflink 29 through the flux diffuser 37. The amount of heat medium circulated at this time is not enough to raise the temperature to a usable temperature with the amount of heating in the condenser 23, so while repeating this circulation, the heat medium in the Saralink 29 is heated to a high temperature by the temperature sensor (TS) 3B. It is heated until it is detected. (Refer to the control flowchart in Figure 2) (TS) 3
When s detects a high temperature, the on-off valve 31 is closed by the controller 39, and the discharge pressure of the pump 34 is reduced to the sub-tank 29.
It takes a toll. Main tank 28 which is the suction side of pump 34
The internal pressure of the tank 29 increases and the check valve 4
A high-temperature heat medium flows into the upper part of the main tank 28 from o. A low-temperature heat medium is transferred into the sub-tank 29 from the outlet 41 at the bottom of the main tank 28 by a pump 34 to the condenser 2.
3 and flows into the sub-tank 29 through a flux diffuser 3 while being slightly heated. The action of the flux diffuser 370 is to diffuse the flux of the low-temperature heat medium to the entire cross section of the sub-tank 29 when the high-temperature heat medium in the sub-tank 29 flows out to the main tank 28, thereby distributing the high-temperature and low-temperature heat medium. It works to prevent mixing of Thereby, the heat medium heated in the sub-tank 29 can effectively flow into the main tank 28.

この動作を繰り返しながらメインタンク28内の熱媒体
を間欠的に加熱して行く。温度センサ(TM )42が
熱媒体の沸き上がりを検知したならコントローラ39が
圧縮機を停止させ同時に開閉弁31も閉じる。しかしサ
ラリンク29内へ高温の熱媒体が残溜している場合が多
いので、、(TS)38が低温を検知するまでポンプ3
4の運転は続行される。
While repeating this operation, the heat medium in the main tank 28 is intermittently heated. When the temperature sensor (TM) 42 detects boiling of the heat medium, the controller 39 stops the compressor and simultaneously closes the on-off valve 31. However, in many cases, high-temperature heat medium remains in the Saralink 29, so the pump 3
4 operation continues.

従ってサブタ/り29内の高温熱媒体はメインタンク2
8へ流入しくTs )3 Bが低温を検知するとすべて
が停止する。
Therefore, the high temperature heat medium in the sub tank 29 is transferred to the main tank 2.
When Ts ) 3 B detects a low temperature, everything stops.

(TM )42の取付位置はサブタンク29の容量(斜
線部)とほぼ等しいメインタンク28の下部容量(斜線
部)の位置としており、(Tに)42が沸き上がりを検
知後、サブタ/り29の容量をメインタンク28で吸収
できるようにしている。
(TM) The installation position of 42 is at the lower capacity (shaded area) of the main tank 28, which is approximately equal to the capacity of the sub-tank 29 (shaded area). capacity can be absorbed by the main tank 28.

43は給湯栓であり高温の熱媒体が利用でき低温の熱媒
体は市水口44から流入する。
Reference numeral 43 denotes a hot water supply tap where a high-temperature heat medium can be used, and a low-temperature heat medium flows in from the city water outlet 44.

第2図は今まで説明した制御のフローチャート図である
。(TS)38の高温側設定温度は66°Cで低温側は
55°Cとしている。(TM)42の沸き上がり設定温
度は60°Cとしている。
FIG. 2 is a flowchart of the control described so far. The set temperature on the high temperature side of (TS) 38 is 66°C and the set temperature on the low temperature side is 55°C. The boiling temperature setting for (TM) 42 is 60°C.

以上説明でわかるように、サブタンク29内の下部に流
束拡散器37を設け、サブタンク29内での高温熱媒体
を低温熱媒体と混合させず、有効にメインタンク28内
へ流入させることができ、しかも運転終了時におけるサ
ブタンク29内の高温熱媒体の残溜もなく効率的にメイ
ンタンク28の加熱が可能となる。また一度メインタン
ク28内の熱媒体を使用温度が低下した後でもサブタン
ク29を一度加熱することにより比較的短時間の内に高
温の熱媒体をメインタンク28の上部へ溜めることが可
能となり使い勝手が良くなる。46は、圧縮機21を中
心としたヒートポンプ装置である。
As can be seen from the above explanation, the flux diffuser 37 is provided at the lower part of the sub-tank 29, and the high-temperature heat medium in the sub-tank 29 can be effectively flowed into the main tank 28 without being mixed with the low-temperature heat medium. Moreover, there is no residual high-temperature heat medium in the sub-tank 29 at the end of the operation, and the main tank 28 can be heated efficiently. Furthermore, even after the operating temperature of the heat medium in the main tank 28 has dropped, by heating the sub-tank 29 once, it is possible to store the high-temperature heat medium in the upper part of the main tank 28 within a relatively short period of time, making it easier to use. Get better. 46 is a heat pump device centered on the compressor 21.

まだサブタンクはメインタンクの外部に設けても同一の
効果が得られることは言うまでもない。
It goes without saying that the same effect can be obtained even if the sub-tank is placed outside the main tank.

発明の効果 本発明は、メインタンク内にサブタンクを設け、間欠的
にサブタンク内の水を沸き上げ、メインタンクへ有効に
移し替えることによりムダのない高性能な運転が行なえ
るというすぐれた効果がある。
Effects of the Invention The present invention has the excellent effect of providing a sub-tank within the main tank, and by intermittently boiling the water in the sub-tank and effectively transferring it to the main tank, efficient and high-performance operation can be performed. be.

さらには、高温の湯が短時間で得られるというすぐれた
効果もある。(サブタンク容量分)
Another advantage is that hot water can be obtained in a short amount of time. (Sub tank capacity)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のヒートポンプ給湯機の構成
図、第2図は同ヒートポンプ給湯機の制御フローチャー
ト図、第3図は従来例のヒートポンプ給湯機の構成図で
ある。 21・・・・圧縮機、23・・・・凝縮器、28・・・
・メインタンク、29・・・・・・サブタンク、31・
・・・・開閉弁、34・・・・・ポンプ、37・・・・
・・流束拡散器、38・・・・・・温度センサ(TS)
、40・・・・・逆止弁、42・・・90.@度センサ
(TM )。 伏ツV、α銘刺壮中尾敏男fわ11名 t  1iiltiiii \亡がぬ□+−寸F−00C3N −〜NNす)))ζ聾 第2図
FIG. 1 is a block diagram of a heat pump water heater according to an embodiment of the present invention, FIG. 2 is a control flowchart of the same heat pump water heater, and FIG. 3 is a block diagram of a conventional heat pump water heater. 21... Compressor, 23... Condenser, 28...
・Main tank, 29...Sub tank, 31・
...Opening/closing valve, 34...Pump, 37...
...Flux diffuser, 38...Temperature sensor (TS)
, 40...Check valve, 42...90. @degree sensor (TM). Fushitsu V, α Meishi So Nakao Toshio fwa 11 names t 1iiltiii \ death □ + - size F-00C3N - ~ NNsu))) ζ Deaf Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、蒸発器、凝縮器を備えたヒートポンプ装
置とメインタンクとを構成要素とし、前記メインタンク
と一体もしくは別個にサブタンクを設け、前記サブタン
ク下部内へ熱媒体の流束拡散器を設け、前記メインタン
ク下部と前記凝縮器との間をポンプを介して管路で接続
し、前記凝縮器と前記流束拡散器とを管路で接続し、前
記サブタンク上部の隔壁に逆止弁を設け、前記サブタン
ク上部から前記メインタンクと前記ポンプとの間を開閉
弁を介して管路で接続し、前記逆止弁を介して前記メイ
ンタンクの上部を連通させ、サブタンク内に温度センサ
(T_S)を設け前記開閉弁を制御し、メインタンク内
に温度センサ(T_M)を設け、前記温度センサ(T_
S)と前記温度センサ(T_M)とにより前記圧縮機を
制御することを特徴とするヒートポンプ給湯機。
(1) A heat pump device equipped with a compressor, an evaporator, and a condenser and a main tank are the constituent elements, a sub-tank is provided either integrally with the main tank or separately, and a flux diffuser for the heat medium is provided in the lower part of the sub-tank. A pipe line connects the lower part of the main tank and the condenser via a pump, a pipe line connects the condenser and the flux diffuser, and a check valve is provided in the partition wall of the upper part of the sub tank. A temperature sensor ( A temperature sensor (T_M) is provided in the main tank to control the on-off valve, and a temperature sensor (T_M) is provided in the main tank to control the on-off valve.
A heat pump water heater characterized in that the compressor is controlled by the temperature sensor (T_M) and the temperature sensor (T_M).
(2)メインタンク内の温度センサ(T_M)の取付位
置はメインタンク下部からサブタンクの容量とほぼ等し
い容量に対応する高さとした特許請求の範囲第1項記載
のヒートポンプ給湯機。
(2) The heat pump water heater according to claim 1, wherein the temperature sensor (T_M) in the main tank is installed at a height from the bottom of the main tank that corresponds to a capacity that is approximately equal to the capacity of the sub tank.
(3)逆止弁は、サブタンク側からメインタンク側への
み流れることのできる逆止効果があり、サブタンクの内
圧とメインタンクの内圧との差圧により開閉されること
を特徴とする特許請求の範囲第1項または第2項記載の
ヒートポンプ給湯機。
(3) The check valve has a check effect that allows flow only from the sub-tank side to the main tank side, and is opened and closed by the differential pressure between the internal pressure of the sub-tank and the internal pressure of the main tank. A heat pump water heater according to item 1 or 2 of the scope.
JP62142637A 1987-06-08 1987-06-08 Heat pump hot water supplying apparatus Pending JPS63306353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142637A JPS63306353A (en) 1987-06-08 1987-06-08 Heat pump hot water supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142637A JPS63306353A (en) 1987-06-08 1987-06-08 Heat pump hot water supplying apparatus

Publications (1)

Publication Number Publication Date
JPS63306353A true JPS63306353A (en) 1988-12-14

Family

ID=15319979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142637A Pending JPS63306353A (en) 1987-06-08 1987-06-08 Heat pump hot water supplying apparatus

Country Status (1)

Country Link
JP (1) JPS63306353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086187A1 (en) * 2010-12-21 2012-06-28 株式会社デンソー Heat exchange system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086187A1 (en) * 2010-12-21 2012-06-28 株式会社デンソー Heat exchange system
JP2012144245A (en) * 2010-12-21 2012-08-02 Denso Corp Heat exchange system
US9925845B2 (en) 2010-12-21 2018-03-27 Denso Corporation Heat exchange system

Similar Documents

Publication Publication Date Title
US4718248A (en) Four element refrigeration heat pump and geothermal control systems
US4674446A (en) Gas dehydrator with gas recovery system
US3500897A (en) Air temperature control system
CN102326038A (en) Heat pump system
JPS6155018B2 (en)
JPH04254156A (en) Heat pump type hot water supply device
JPS63306353A (en) Heat pump hot water supplying apparatus
JP2000329401A5 (en)
JPH03125856A (en) Heat pump hot water feeder
JPS63150554A (en) Heat pump type hot water supplier
JPS63123948A (en) Heat pump hot water supplier
EP2613102A1 (en) Hot-water storage type heating unit
JPH0914778A (en) Air conditioner
JP2512161B2 (en) Air conditioner
JP3448682B2 (en) Absorption type cold heat generator
JPS6144125Y2 (en)
JPS5855643A (en) Hot water supply device
JPS62272032A (en) Method of controlling operation of space heater-hot water supplier
JPS63187048A (en) Heat pump type hot water supplier
JPH0416112Y2 (en)
JPH0476393A (en) Liquid receiving device for air conditioning
JPS632859Y2 (en)
JP2783025B2 (en) Heat transfer device
JPH02298766A (en) Heat pump type air conditioner
JPS63233264A (en) Heat pump type air conditioner