JPS63305965A - Method for drying or baking film - Google Patents

Method for drying or baking film

Info

Publication number
JPS63305965A
JPS63305965A JP14076687A JP14076687A JPS63305965A JP S63305965 A JPS63305965 A JP S63305965A JP 14076687 A JP14076687 A JP 14076687A JP 14076687 A JP14076687 A JP 14076687A JP S63305965 A JPS63305965 A JP S63305965A
Authority
JP
Japan
Prior art keywords
infrared rays
far infrared
hot air
far
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14076687A
Other languages
Japanese (ja)
Inventor
Hiroo Ogoshi
大越 裕夫
Shinya Otsuka
大塚 晋也
Toshio Sue
俊雄 末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP14076687A priority Critical patent/JPS63305965A/en
Publication of JPS63305965A publication Critical patent/JPS63305965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To eliminate a film defect and to enhance the close adhesiveness to a substrate, by irradiating the wet film formed on the substrate with far infrared rays from a heat source using fuel gas and bringing said film into contact with the combustion hot air from the heat source to dry the same. CONSTITUTION:A heating mechanism 7 having a far infrared ray emitter 6 such as ceramic mounted to the surface thereof is provided to a far infrared ray heating region 4 and the heating of the far infrared ray emitter 6 is preformed using fuel gas as a heat source. That is, air 8 is sent to mixer 10 by a blower 9 to be mixed with the fuel gas 11 and the resulting mixture is sent to a burner 12 and ignited to be burnt in a combustion mechanism 7. The ceramic emitter 6 is heated to the radiation temp. of far infrared rays, for example, 100-500 deg.C by this combustion heat and, generally, far infrared rays 13 with a wavelength of 3-12mum are emitted. These far infrared rays are effectively absorbed by the wet film of an article 3 to be coated and a solvent is efficiently evaporated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塗膜の乾燥乃至焼付方法に関するものであり
、よシ詳細には、遠赤外線による照射と、燃焼熱風によ
る加熱とを併用することにょシ、塗料たれ、発泡等の欠
陥の無い塗膜形成させるとともに、下地と密着性のすぐ
れた乾燥乃至焼付塗膜を短時間の処理で得ると共に、熱
資源の省力化を達成した効率的な塗膜の乾燥乃至焼付方
法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for drying or baking a paint film, and more specifically, it uses a combination of far-infrared irradiation and heating with combustion hot air. It forms a paint film free of defects such as stains, paint dripping, and foaming, and provides a dried or baked paint film with excellent adhesion to the substrate in a short time. It is also an efficient method that saves heat resources. The present invention relates to a method for drying and baking a coating film.

(従来の技術) 基体に施された湿潤塗膜を乾燥乃至焼付けする場合、そ
の加熱源としては、熱風加熱オーブンを用いる方法が一
般に採られている。すなわち、ガスを燃焼させ、熱風を
作シ、この熱風を送風機にて被加熱物へ送シ、被加熱物
と接触させる方法である。
(Prior Art) When drying or baking a wet coating film applied to a substrate, a hot air heating oven is generally used as the heating source. That is, this is a method in which gas is combusted to produce hot air, and this hot air is sent to an object to be heated using an air blower and brought into contact with the object to be heated.

この熱風加熱方式は、加熱温度の制御が比較的容易で、
温度分布が平均化しておシ、かつ安定性に優れていると
いう点で一応意義のある方法として認識されている。
This hot air heating method is relatively easy to control heating temperature.
It is recognized as a meaningful method because it averages out the temperature distribution and has excellent stability.

ところが、これらの熱風による加熱方式では、特に塗料
が水性塗料の場合、熱風による加熱ではウィケット、ネ
ットコンベア、ビンチェンコンベア等で連続的に結ばれ
たシート乃至缶胴の塗膜焼付オーブンにおいて、微妙な
熱風風量のコントロールが機構上出来ない構造になって
おシ、このことが通常シート塗装速度及び製缶速度にお
いて、媒体である水が一気に蒸発してしまい、適切な乾
燥乃至焼付けが行い難い。また上記加熱方式で水性塗料
を塗装するためには、大巾に塗装・焼付速度を低下させ
ねばならないという問題がある。また上記方式で生産性
を確保しようとすれば乾燥炉の容積が大型のものを必要
とすること、また、熱効率が低く(被加熱物の加熱に消
費される熱の有効利用率は、発生熱の15〜30%でし
かない)、そのために燃費が割高になるという欠点を併
せもつものである。
However, with these hot air heating methods, especially when the paint is water-based, heating with hot air may cause slight problems in the coating baking oven of sheets or can bodies that are continuously connected using wickets, net conveyors, Binchen conveyors, etc. The structure is such that the amount of hot air cannot be controlled mechanically, and as a result, at normal sheet coating speeds and can manufacturing speeds, water, which is a medium, evaporates all at once, making it difficult to perform proper drying or baking. Furthermore, in order to apply water-based paint using the heating method described above, there is a problem in that the speed of painting and baking must be significantly reduced. In addition, if the above method is to ensure productivity, a drying furnace with a large capacity is required, and the thermal efficiency is low (the effective utilization rate of the heat consumed for heating the heated object is (only 15 to 30% of fuel consumption), which also has the disadvantage of relatively high fuel efficiency.

(発明が解決しようとする問題点) とくに、最近の塗装工業にあっては、生産のスピードア
ップが要求され、そのためにはオーブンを長大化しなけ
ればならないという問題が生じる。
(Problems to be Solved by the Invention) Particularly in the recent painting industry, there is a demand for speeding up production, which creates the problem that ovens must be made longer.

この場合、設備を長大化させずに生産のスピードアップ
を図ろうとすれば、乾燥時間を短縮させるために加熱温
度を上昇させるか、供給する熱風の量を増加させるとい
う方法が考えられる。
In this case, in order to speed up production without increasing the length of the equipment, it is possible to raise the heating temperature or increase the amount of hot air supplied in order to shorten the drying time.

しかしながら、加熱温度を上昇させる場合は、塗料構成
溶媒(水性塗料の場合、主体は水)の沸点、被加熱物の
溶融点や引火点などの特性に応じて当然にその温度上制
約を受けるものであるし、熱風の量を増加させる場合に
は、被加熱物(主として哀σ金属)が強い熱風による衝
撃であおられ、傷が付くなどの困難な問題が生じ、また
加熱温度の上昇程度、即ち温度〜時間カーブについては
、温度及び熱風風量が関係するが、焼付時の塗膜欠陥削
除について未だ十分な解決に至っていない。
However, when raising the heating temperature, there are naturally restrictions on the temperature depending on the boiling point of the paint constituent solvent (in the case of water-based paints, the main component is water), the melting point and flash point of the material to be heated, etc. However, when increasing the amount of hot air, difficult problems arise such as the object to be heated (mainly metal) being agitated by the strong hot air and being scratched, and the extent to which the heating temperature increases, That is, the temperature-time curve is related to the temperature and the amount of hot air, but a satisfactory solution has not yet been reached regarding the removal of coating film defects during baking.

一方、遠赤外線放射体から放射される遠赤外線は、直接
被加熱物に吸収され、急速に加熱されるという特性があ
るため熱風送風の場合のような中間での熱ロスがなく、
塗装置後の湿潤塗膜に照射すれば水を主体とする他有機
構成物に直接作用し、特に水の含有程度に応じて加熱程
度も制限されるので、塗膜欠陥が無く、しかも乾燥時間
の短縮を図れるという優れた長所を有する。反面、この
遠赤外線は、光と同じように直進するという特性を有す
るため、被加熱物が凹凸のある複雑な形状の場合は、陰
の部分を均一に加熱できないという困難性をも有してい
る。
On the other hand, the far-infrared rays emitted from the far-infrared radiator have the property of being directly absorbed by the object to be heated and rapidly heated, so there is no heat loss in the middle as in the case of blowing hot air.
If the wet paint film is irradiated after painting, it will directly act on other organic constituents, mainly water, and the degree of heating will be limited depending on the degree of water content, so there will be no paint film defects and the drying time will be shortened. It has the excellent advantage of being able to shorten the time. On the other hand, this far-infrared ray has the property of traveling in a straight line like light, so if the object to be heated has a complex shape with uneven surfaces, it has the difficulty of uniformly heating the shaded areas. There is.

塗膜の焼付けに遠赤外線を用いる場合に生じる他の欠点
は、硬化塗膜と金属基体との密着性が熱風加熱方式によ
る場合に比して低いということである。この理由は、遠
赤外線による加熱では、塗膜と金属基体との密着性の上
で最も重要な金属基体と塗膜との界面の部分の加熱が不
十分となるためと思われる。この傾向は、塗膜中に顔料
や充填剤が含有されている場合に特に顕著である。
Another disadvantage of using far infrared rays to bake the coating is that the adhesion between the cured coating and the metal substrate is lower than when using a hot air heating method. The reason for this is believed to be that heating with far infrared rays insufficiently heats the interface between the metal substrate and the coating film, which is the most important area in terms of adhesion between the coating film and the metal substrate. This tendency is particularly noticeable when pigments or fillers are contained in the coating film.

したがって、本発明の目的は、下地との密着性にすぐれ
た乾燥乃至焼付塗膜を短時間の処理で得ることができる
ということの他に、熱資源の省力化をも達成した効率的
な塗膜の乾燥乃至焼付方法を提供することにある。
Therefore, an object of the present invention is to provide an efficient coating film that achieves a dry or baked coating film with excellent adhesion to the substrate in a short processing time, and also saves heat resources. An object of the present invention is to provide a method for drying or baking a film.

本発明の他の目的は、水性塗料を施した缶用素材の塗膜
の乾燥乃至焼付けに特に適した方法を提供するにある。
Another object of the present invention is to provide a method particularly suitable for drying or baking a coating film on a can material coated with a water-based paint.

(問題点を解決するための手段) 本発明者等は、留膜(特に水性塗料塗膜)の乾燥乃至焼
付けに遠赤外線による加熱と燃焼熱風による加熱とを併
用することにより、上記課題が達成されることを見出し
た。
(Means for Solving the Problems) The present inventors have achieved the above-mentioned problems by using both far-infrared ray heating and combustion hot air heating for drying or baking the retention film (particularly the water-based paint film). I found out that it can be done.

本発明によれば、基体に施された湿潤塗膜に、燃料ガス
を熱源とした遠赤外線を照射すると共に、該熱源からの
燃焼熱風と接触させることを特徴とする塗膜の乾燥乃至
焼付方法、が扮供される。
According to the present invention, a method for drying or baking a wet paint film applied to a substrate is characterized by irradiating far infrared rays using a fuel gas as a heat source and bringing the wet paint film into contact with combustion hot air from the heat source. , is presented.

本発明の最も好適な態様では、湿潤塗膜に最初に遠赤外
線を照射し、次いで燃焼熱風と接触させる(以下逐次法
と呼ぶ)、又別の好適態様によれば、湿潤塗膜に対して
遠赤外線の照射と、燃焼熱風との接触を同時に行う(以
下同時法と呼ぶ)。
In a most preferred embodiment of the present invention, the wet paint film is first irradiated with far infrared rays and then brought into contact with combustion hot air (hereinafter referred to as the sequential method).According to another preferred embodiment, the wet paint film is Far-infrared ray irradiation and contact with combustion hot air are performed simultaneously (hereinafter referred to as the simultaneous method).

(作用) 本発明によると、遠赤外線による照射と遠赤外線輻射の
ための熱源として使用された燃焼熱風による加熱を併用
することによシ、きわめて効率的に塗膜の乾燥乃至焼付
けが達成されるものである。
(Function) According to the present invention, drying or baking of the coating film can be achieved extremely efficiently by using both irradiation with far infrared rays and heating with combustion hot air used as a heat source for far infrared rays. It is something.

この方法は、塗料が水性塗料の場合に、よシ効果的な乾
燥乃至焼付けが行われる。その理由は、塗料中の媒体で
ある水あるいは他の溶媒が遠赤外線をきわめて効率的に
吸収することによるものであり、湿潤塗膜中の水等の溶
媒の蒸発が、熱風加熱の場合に比して極めて短時間のう
ちに行われ、しかも水の蒸発の程度に応じて加熱の程度
も制限されるから塗膜欠陥の無い塗膜が形成される。
This method provides highly effective drying and baking when the paint is water-based. The reason for this is that the medium in the paint, water or other solvents, absorbs far infrared rays very efficiently, and the evaporation of water or other solvents in a wet paint film is faster than in the case of hot air heating. This is done in a very short time, and the degree of heating is limited depending on the degree of water evaporation, so a coating film without coating defects is formed.

一方、金属基体と塗膜との界面部分の加熱が遠赤外線照
射のみによる場合には不十分となることは前述したとお
シであるが、本発明では、溶媒が蒸発した塗膜に燃焼熱
風が接触することによシ、この部分への熱伝導による加
熱が迅速に行われて基体に対する密着性にすぐれた塗膜
が短時間の加熱処理によ多形成されるものである。
On the other hand, as mentioned above, heating of the interface between the metal substrate and the coating film by far-infrared irradiation alone would be insufficient, but in the present invention, hot combustion air is applied to the coating film from which the solvent has evaporated. Due to the contact, the area is rapidly heated by heat conduction, and a coating film with excellent adhesion to the substrate is formed in a short heat treatment.

また、被加熱物が三次元上の物体や凹凸のある複雑な形
状の物体である場合にも全体が比較的均一に加熱でき、
陰になる部分の乾燥乃至焼付不良をも解消しうるもので
ある。
In addition, even if the object to be heated is a three-dimensional object or an object with a complex shape with uneven surfaces, the entire object can be heated relatively uniformly.
It is also possible to eliminate dryness or poor printing in shaded areas.

(発明の好適態様) 逐次法の例を示す第1図において、 トンネル型焼付炉1には、入口2及び出口3′があシ、
スプレー塗装シームレス缶体の如き塗装物品3は入口2
から焼付炉1内に入シ塗膜の焼付けが行われた後出口3
′から排出される。
(Preferred embodiment of the invention) In FIG. 1 showing an example of the sequential method, a tunnel baking furnace 1 has an inlet 2 and an outlet 3';
A painted article 3, such as a spray-painted seamless can body, is at the entrance 2.
After entering the baking furnace 1 and baking the paint film, exit 3
It is discharged from '.

焼付炉1内には遠赤外線加熱域4及び燃焼熱風加熱域5
の順序に設けられている。遠赤外線加熱域4には、セラ
ミック等の遠赤外線放射体6を表面に備えた加熱機構7
が設けられている。遠赤外線放射体6の加熱は燃料ガス
を熱源として行われる。すなわち、空気8はブロワ−9
によシ混合機10に送られ燃料ガス11と混合され、バ
ーナー12に送られて着火し燃焼機構7内で燃焼する。
Inside the baking furnace 1, there is a far infrared heating area 4 and a combustion hot air heating area 5.
are provided in this order. The far-infrared heating region 4 includes a heating mechanism 7 having a far-infrared radiator 6 made of ceramic or the like on its surface.
is provided. The far-infrared radiator 6 is heated using fuel gas as a heat source. That is, the air 8 is sent to the blower 9.
It is sent to the mixer 10 and mixed with the fuel gas 11, sent to the burner 12, ignited, and burned in the combustion mechanism 7.

この燃焼熱によシ、セラミック放射体6は遠赤外線の放
射温度、例えば100乃至500℃の温度に加熱され、
一般に波長が3乃至12μmの範囲にある遠赤外線13
を放射する。この遠赤外線は、塗装物品3の湿潤塗膜に
有効に吸収され、溶媒の蒸発が効率よく行われる。
Due to this combustion heat, the ceramic radiator 6 is heated to a far-infrared radiation temperature, for example, 100 to 500°C.
Far infrared rays with wavelengths generally in the range of 3 to 12 μm13
radiates. This far-infrared rays are effectively absorbed by the wet coating film of the coated article 3, and the solvent is efficiently evaporated.

一方、加熱機構7からの燃焼熱風14は内面側に多孔性
の熱風吹出口15を備えた熱風ダクト16内に入シ、吹
出口15を経て遠赤外線加熱された塗装物品3に一様に
吹付けられる。この燃焼熱風14は、一般に150乃至
250℃の温度を有しておシ、溶媒が蒸発しつつある、
あるいは溶媒が蒸発した塗膜をよシ高温に加熱して塗膜
の乾燥乃至焼付けを塗装物品の面方向にも、又厚み方向
にも均〒に行う。
On the other hand, the combustion hot air 14 from the heating mechanism 7 enters a hot air duct 16 equipped with a porous hot air outlet 15 on the inner surface, passes through the outlet 15, and is uniformly blown onto the coated article 3 heated by far infrared rays. Can be attached. This combustion hot air 14 generally has a temperature of 150 to 250°C, and the solvent is evaporating.
Alternatively, the coating film from which the solvent has evaporated is heated to a higher temperature to dry or bake the coating film evenly in both the surface direction and the thickness direction of the coated article.

本発明においては、遠赤外線加熱と熱風加熱とを併用す
ることによシ、いずれか一方を使用した場合に比して同
一の硬化条件の塗膜を得るに必要な加熱時間が短縮され
ることが顕著な特徴であり、遠赤外線加熱に必要な時間
は、遠赤外線加熱単独を用いた場合の1/10〜V2、
また熱風加熱に必要な時間は、熱風加熱単独を用いた場
合の115〜捧でよい。
In the present invention, by using far-infrared heating and hot air heating in combination, the heating time required to obtain a coating film with the same curing conditions can be shortened compared to when either one is used. is a remarkable feature, and the time required for far-infrared heating is 1/10 to V2 when using far-infrared heating alone.
Further, the time required for hot air heating may be 115 to 100 minutes when hot air heating alone is used.

遠赤外線輻射材料としては、波長4μ以上、特に波長3
〜14μの遠赤外線を輻射し得る材料で、上記波長にお
ける輻射強度が可及的に黒体に近いものが望ましい。
As far-infrared radiating materials, wavelengths of 4 μ or more, especially wavelengths of 3
It is desirable to use a material that can radiate far infrared rays of ~14μ, and whose radiation intensity at the above wavelength is as close as possible to that of a black body.

このような遠赤外線輻射材料として、従来各種のセラミ
ックが知られている。このようなセラミックとしては、
アルミナ(At203)、ジルコニア(Zr02)、ム
ライト(3Az2o3−2SiO□)、コープイライト
(2Mg0・2)、t203・5S102)、チタニア
(T102)、ステアタイト(MgO−5to2)シリ
カ、シリカアルミナ等の酸化物セラミック;炭化ケイ素
(StC) 、炭化タングステン(WC)、炭化ジルコ
ニウム(ZrC)等の炭化物セラミック;窒化ホウ素(
BN)、窒化チタン(TIN)、窒化ケイ素(5t3N
4)等の窒化物セラミックニホウ化ジルコニウム(Zr
B)、ホウ化チタン(TiB2)等のホウ化物セラミッ
ク;ケイ化タングステン(WSi2)、ケイ化モリブテ
ン(MOS i 2 )等のケイ化物セラミック等が挙
げられる。
Various types of ceramics have been known as such far-infrared radiating materials. For such ceramics,
Oxidation of alumina (At203), zirconia (Zr02), mullite (3Az2o3-2SiO□), copierite (2Mg0・2), t203・5S102), titania (T102), steatite (MgO-5to2) silica, silica alumina, etc. Carbide ceramics such as silicon carbide (StC), tungsten carbide (WC), and zirconium carbide (ZrC); boron nitride (
BN), titanium nitride (TIN), silicon nitride (5t3N)
4) Nitride ceramics such as zirconium diboride (Zr
B), boride ceramics such as titanium boride (TiB2); silicide ceramics such as tungsten silicide (WSi2), molybdenum silicide (MOS i 2 ), and the like.

本発明に用いる遠赤外線輻射材料は、マイクロ波加熱温
度、一般に80乃至160℃の温度で、遠赤外域、特に
6乃至14μにおける分光放射率(黒体輻射強度光シの
試料輻射強度)が80%以上、特に90%以上であるも
のが望ましい。
The far-infrared radiating material used in the present invention has a spectral emissivity (sample radiation intensity of blackbody radiation intensity) of 80 in the far-infrared region, particularly in the range of 6 to 14μ, at a microwave heating temperature, generally 80 to 160°C. % or more, especially 90% or more is desirable.

燃料ガスとしては、液化天然ガス、液化石油ガス、液化
プロパンガス、液化ブタンがス、都市ガス等が好適に使
用される。。
As the fuel gas, liquefied natural gas, liquefied petroleum gas, liquefied propane gas, liquefied butane gas, city gas, etc. are preferably used. .

本発明は、缶用素材の塗装焼付けに特に有利でsb、缶
用素材としては、アルミニウム等の軽金属やブリキ、ニ
ッケルメッキ鋼板、電解クロムメ、キ鋼板等がコイル、
シート、絞シカツブ乃至缶、絞シしどき缶、蓋、型巻締
め缶等の形態で使用される。塗料としては、水あるいは
水と水混和性有機溶媒との組合せを媒体とした溶液型、
あるいは分散型の水性塗料、例えば、アクリル−エポキ
シ型、アクリル−アミノ型、アクリル−ポリエステル型
、ビニル−エポキシ型、フェノール−エポキシ型等の熱
硬化性水性塗料、あるいはビニル型、アクリル型、ポリ
エステル型、ポリアミド型、スチレン−ブタジェン共重
合体型等の熱可塑性水性塗料等が使用される。
The present invention is particularly advantageous for painting and baking can materials.As can materials, light metals such as aluminum, tinplate, nickel-plated steel sheets, electrolytic chrome plated steel sheets, etc. are used as coils,
It is used in the form of sheets, crimped cans, crimped cans, lids, molded cans, etc. As a paint, a solution type using water or a combination of water and a water-miscible organic solvent as a medium;
Alternatively, dispersed water-based paints, such as thermosetting water-based paints such as acrylic-epoxy type, acrylic-amino type, acrylic-polyester type, vinyl-epoxy type, and phenol-epoxy type, or vinyl type, acrylic type, and polyester type , polyamide type, styrene-butadiene copolymer type, and other thermoplastic water-based paints are used.

塗膜の厚みは、乾燥基準で1乃至20μm、特に2乃至
10μmの範囲が適当である。
The thickness of the coating film is suitably in the range of 1 to 20 μm, particularly 2 to 10 μm on a dry basis.

同時法の例を示す第2図において、 焼付炉1は、多孔板17によシ塗装缶の焼付域18と熱
風供給域19とに分離されておシ、多孔板17は金属等
からなる基体20と塗装缶の焼付域側に位置する遠赤外
線放射体層21とからなシ、これらを貫通する開孔22
が多数設けられている。
In FIG. 2, which shows an example of the simultaneous method, the baking furnace 1 is separated into a baking area 18 for coating cans and a hot air supply area 19 by a perforated plate 17, and the perforated plate 17 is a base made of metal or the like. 20 and the far-infrared radiator layer 21 located on the baking area side of the paint can, and an opening 22 penetrating these.
There are many.

塗装缶3はチェーンコンベアー23のピン24により支
持されており、焼付域18内を垂直方向に、かつジグザ
グ状に通過する。バーナー12からの熱風はファン25
及び配管26を経て熱風供給域19内に送られ、基体2
0を介して塩赤外線放射体層21を遠赤外線の放射温度
に加熱する。これにより、放射層21から遠赤外線13
が放射され、缶3の外面塗膜に吸収される。これと同時
に熱風14は多孔板17の開口22を通して焼付域18
内に流入し、缶3の外面塗膜と接触して外面塗膜を加熱
する。
The paint cans 3 are supported by pins 24 of a chain conveyor 23 and pass through the baking zone 18 in a vertical direction and in a zigzag pattern. Hot air from burner 12 is fan 25
and is sent into the hot air supply area 19 through the piping 26, and is sent to the base 2.
The salt infrared radiator layer 21 is heated to far infrared radiant temperature via 0. As a result, the far infrared rays 13 from the radiation layer 21
is emitted and absorbed by the outer coating of the can 3. At the same time, the hot air 14 passes through the openings 22 of the perforated plate 17 into the baking area 18.
The liquid flows into the interior of the can 3 and comes into contact with the outer coating film of the can 3 to heat the outer coating film.

この態様によれば、遠赤外線の吸収によシ塗膜からの水
分等の溶媒の蒸発が有効に行われるのは逐次法の場合と
同様であるが、塗膜表面に存在する蒸気が熱風によシ速
やかに除かれるため、溶媒の蒸発速度が速いという利点
がある。すなわち、前述した逐次法は、遠赤外を効率的
に吸収する、いわゆるクリアー塗料において塗膜欠陥の
無い塗膜を形成すること、および基体との密着性にすぐ
れた焼付塗膜を得るのに有利であるのに対して、後者の
同時法は酸化チタン、アルミニウム粉等の顔料、粉体を
添加した比較的遠赤外線の加熱効率の低下する塗膜の短
時間の乾燥乃至焼付けに有利であるという特徴がある。
According to this aspect, the absorption of far infrared rays effectively evaporates the solvent such as moisture from the paint film, as in the sequential method, but the vapor present on the paint film surface is evaporated by the hot air. Since the solvent can be removed quickly, it has the advantage that the evaporation rate of the solvent is fast. In other words, the above-mentioned sequential method is effective in forming a so-called clear paint film that efficiently absorbs far infrared rays without any film defects, and in obtaining a baked paint film with excellent adhesion to the substrate. On the other hand, the latter simultaneous method is advantageous for short-time drying or baking of paint films containing pigments and powders such as titanium oxide and aluminum powder, where the heating efficiency of far-infrared rays is relatively low. There is a characteristic that.

さらに、第2図に示す焼付炉は、それ自体公知のピンオ
ーブンの多孔板にセラミック塗料を塗布してセラミック
放射体層21を設けるという簡単な変更で本発明方法陀
適用しうるという利点があ沙、又多孔板の表面にセラミ
ック層を設けることKよシ、塗膜の焼付けによシ生ずる
ヒユーム乃至ミストの付着が少なく、あるいは付着して
もその清掃除去が簡単に行われるという利点がある。な
お、セラミック放射体層は予め形成されたセラミック板
を貼多付けてもよく、あるいはセラミックを溶射、蒸着
等の手段で設けることもできる。
Furthermore, the baking furnace shown in FIG. 2 has the advantage that the method of the present invention can be applied by simply changing the perforated plate of a pin oven, which is known per se, by applying a ceramic paint to the perforated plate and providing the ceramic radiator layer 21. Additionally, providing a ceramic layer on the surface of the perforated plate has the advantage that there is less adhesion of fumes or mist caused by baking the paint film, or that even if it does adhere, it can be easily cleaned and removed. . Note that the ceramic radiator layer may be formed by pasting a plurality of preformed ceramic plates, or may be provided by means of thermal spraying, vapor deposition, or the like.

セラミック放射体からの遠赤外線放射は、セラミック放
射体の温度が、例えば150乃至350℃のような比較
的低い温度で効率よく行うことができる。本発明の別の
好適な態様によれば、遠赤外線の照射を、表面がセラミ
ック放射体及び内部が触媒層から成る遠赤外線加熱機構
内に燃料ガス−酸素混合気体を供給して燃料ガスを接触
燃焼させ、これによりセラミック放射体から遠赤外線を
放射させることにより行ない、且つ燃焼熱風との接触を
、該遠赤外線加熱機構からの燃焼熱風を塗膜に吹付ける
ことにより行なう。
Far-infrared radiation from a ceramic radiator can be efficiently performed when the temperature of the ceramic radiator is relatively low, for example, from 150 to 350°C. According to another preferred embodiment of the present invention, far infrared rays are irradiated by supplying a fuel gas-oxygen mixture gas into a far infrared heating mechanism having a ceramic radiator on the surface and a catalyst layer on the inside to bring the fuel gas into contact with the irradiation. Combustion is effected by radiating far-infrared rays from the ceramic radiator, and contact with the hot combustion air is effected by blowing the hot combustion air from the far-infrared heating mechanism onto the paint film.

この態様を示す第3図において、 予熱バーナー12aで予熱された燃料ガス空気混合物2
7を触媒充填層28内に導入し、燃料ガスを比較的低い
温度で接触燃焼させる。これにょシ、遠赤外線放射体層
6は比較的低い温度に加熱され、遠赤外線13の放射が
効率よく行われる。
In FIG. 3 showing this embodiment, the fuel gas air mixture 2 is preheated in a preheating burner 12a.
7 is introduced into the catalyst packed bed 28, and the fuel gas is catalytically combusted at a relatively low temperature. In this way, the far-infrared radiator layer 6 is heated to a relatively low temperature, and the far-infrared rays 13 are efficiently radiated.

触媒としては、白金黒のような酸化触媒が使用される。As the catalyst, an oxidation catalyst such as platinum black is used.

(発明の効果) 本発明によれば、塗膜の乾燥乃至焼付けに遠赤外線によ
る加熱と燃焼熱風による加熱とを併用することによシ、
塗膜欠陥が無くしかも下地との密着性にすぐれた乾燥乃
至焼付塗膜を短時間の処理で得ることができるというこ
との他に、熱資源の省力化を達成でき、特に、水性塗料
を施こした缶用素材の塗膜の乾燥乃至焼付けを効率的に
行えるという利点がある。
(Effects of the Invention) According to the present invention, heating by far infrared rays and heating by combustion hot air are used in combination for drying or baking the coating film.
In addition to being able to obtain dried or baked paint films with no paint film defects and excellent adhesion to the substrate in a short time, it is also possible to save on heat resources, especially when applying water-based paints. This method has the advantage that the coating film on the strained can material can be efficiently dried or baked.

加熱機のみによる水性塗料からの塗膜形成は、水の突沸
現象等によシ表面の粗い塗膜となシ易いが、本発明によ
れば、表面が滑らかで塗膜欠陥のない均質塗膜を形成さ
せることができる。
Forming a coating film from water-based paint using only a heating machine tends to result in a coating film with a rough surface due to the bumping phenomenon of water, etc. However, according to the present invention, a homogeneous coating film with a smooth surface and no coating defects can be formed. can be formed.

上記塗料を焼付後の膜厚が約5μmになる様に板厚0.
30mの5052 At材に塗装し、遠赤外線を照射し
加熱した。
The board thickness is 0.0mm so that the film thickness after baking the above paint is about 5μm.
It was painted on a 30m long 5052 At material and heated by irradiating it with far infrared rays.

遠赤外線加熱には、ガス遠赤外線ヒーター(ヒーター有
効面積280mmX 530mm)を50mm間隔をあ
けて4台並べて使用した。その時のヒーター表面温度は
、360℃で照射距離は200闘であった。
For far-infrared heating, four gas far-infrared heaters (heater effective area: 280 mm x 530 mm) were used, lined up at intervals of 50 mm. At that time, the heater surface temperature was 360°C and the irradiation distance was 200°.

−19一 実施例3 実施例1の塗料りを使用し、逐次法によって下記条件下
での平板塗装による塗膜形成時の欠陥の有無を外観及び
202径の蓋を打抜いて金属露出程度を電気的測定法で
調べた。
-191 Example 3 Using the paint of Example 1, the presence or absence of defects during coating film formation by flat plate painting under the following conditions was determined by the sequential method and the extent of metal exposure by punching out a 202 diameter lid. It was investigated using electrical measurement method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法において逐次法の例を説明するた
めの図、 第2図は、本発明方法において同時法の例を説明するだ
めの図、 第3図は、本発明方法の更に別の好適態様を説明するた
めの図である。 1・−トンネル型焼付炉、3・・・塗装物品、4・・・
遠赤外線加熱域、5・・・燃焼熱風加熱域、6・・・遠
赤外線放射体、7・・・加熱機構、10・・・混合機、
11・・・燃料ガス、12・・・バーナー、14・・・
燃焼熱風、16・・・熱風ダクト。
FIG. 1 is a diagram for explaining an example of the sequential method in the method of the present invention, FIG. 2 is a diagram for explaining an example of the simultaneous method in the method of the present invention, and FIG. 3 is a diagram for explaining an example of the simultaneous method in the method of the present invention. FIG. 7 is a diagram for explaining another preferred embodiment. 1.-Tunnel type baking furnace, 3.. Painted article, 4..
Far infrared heating area, 5... Combustion hot air heating area, 6... Far infrared radiator, 7... Heating mechanism, 10... Mixer,
11...Fuel gas, 12...Burner, 14...
Combustion hot air, 16...Hot air duct.

Claims (7)

【特許請求の範囲】[Claims] (1)基体に施された湿潤塗膜に、燃料ガスを熱源とし
た遠赤外線を照射すると共に、該熱源からの燃焼熱風と
接触させることを特徴とする塗膜の乾燥乃至焼付方法。
(1) A method for drying or baking a wet coating applied to a substrate, which comprises irradiating a wet coating with far infrared rays using a fuel gas as a heat source and bringing it into contact with hot combustion air from the heat source.
(2)湿潤塗膜が水性塗料から形成された塗膜である特
許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the wet coating film is a coating film formed from an aqueous paint.
(3)湿潤塗膜への遠赤外線の照射を、表面温度が15
0乃至500℃に維持されたセラミック放射体で行ない
且つ150乃至250℃の温度の燃焼熱風を塗膜と接触
させる特許請求の範囲第1項記載の方法。
(3) Irradiation of far-infrared rays onto a wet coating film at a surface temperature of 15
A method according to claim 1, carried out in a ceramic radiator maintained at a temperature of 0 to 500°C and in which hot combustion air at a temperature of 150 to 250°C is brought into contact with the coating.
(4)湿潤塗膜に最初に遠赤外線を照射し、次いで燃焼
熱風と接触させる特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the wet coating film is first irradiated with far infrared rays and then brought into contact with combustion hot air.
(5)遠赤外線の照射を、表面がセラミック放射体及び
内部が触媒層から成る遠赤外線加熱機構内に燃料ガス−
酸素混合気体を供給して燃料ガスを接触燃焼させ、これ
によりセラミック放射体から遠赤外線を放射させること
により行ない、且つ燃焼熱風との接触を、該遠赤外線加
熱機構からの燃焼熱風を塗膜に吹付けることにより行な
う特許請求の範囲第1項記載の方法。
(5) Far-infrared rays are irradiated into a far-infrared heating mechanism consisting of a ceramic radiator on the surface and a catalyst layer on the inside.
Oxygen mixed gas is supplied to catalytically burn the fuel gas, thereby emitting far infrared rays from the ceramic radiator, and contact with the combustion hot air is performed by directing the combustion hot air from the far infrared heating mechanism to the coating film. The method according to claim 1, which is carried out by spraying.
(6)塩赤外線の照射を、少なくとも表面がセラミック
放射体で形成された多孔板に燃料ガスの燃焼熱風を供給
し、これによりセラミック放射体から遠赤外線を放射さ
せることにより行ない且つ燃焼熱風との接触を多孔板の
開口部から燃焼熱風を吹付けることにより行なう特許請
求の範囲第1項記載の方法。
(6) Irradiation with salt infrared rays is carried out by supplying combustion hot air of fuel gas to a porous plate whose surface is made of a ceramic radiator, thereby causing far infrared rays to be radiated from the ceramic radiator, and by irradiating with the combustion hot air. 2. The method according to claim 1, wherein the contact is carried out by blowing combustion hot air through the openings of the perforated plate.
(7)基体が缶用素材であり、湿潤塗膜が乾燥基準で1
乃至15μmの厚みに設けられる特許請求の範囲第1項
記載の方法。
(7) The substrate is a can material, and the wet coating film is 1 on a dry basis.
The method according to claim 1, wherein the thickness is between 15 μm and 15 μm.
JP14076687A 1987-06-06 1987-06-06 Method for drying or baking film Pending JPS63305965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14076687A JPS63305965A (en) 1987-06-06 1987-06-06 Method for drying or baking film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14076687A JPS63305965A (en) 1987-06-06 1987-06-06 Method for drying or baking film

Publications (1)

Publication Number Publication Date
JPS63305965A true JPS63305965A (en) 1988-12-13

Family

ID=15276246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14076687A Pending JPS63305965A (en) 1987-06-06 1987-06-06 Method for drying or baking film

Country Status (1)

Country Link
JP (1) JPS63305965A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298385A (en) * 1989-05-11 1990-12-10 Nippon Steel Corp Resin drying method of sandwich type resin composite metal plate
JPH0330875A (en) * 1989-06-28 1991-02-08 Okuno Seiyaku Kogyo Kk Method for baking aqueous inorganic coating material
US5060594A (en) * 1989-06-23 1991-10-29 Honda Giken Kogyo Kabushiki Kaisha Apparatus for painting
JPH08243463A (en) * 1995-03-08 1996-09-24 Matsushita Electric Ind Co Ltd Heat-drying method for film material and apparatus therefor
JP2007126549A (en) * 2005-11-02 2007-05-24 Sumitomo Light Metal Ind Ltd Water-based coating material for can lid, precoated aluminum alloy plate for can lid and method for producing the same
JP2012107780A (en) * 2010-11-15 2012-06-07 National Agriculture & Food Research Organization Grain drying apparatus
WO2012114567A1 (en) * 2011-02-24 2012-08-30 大日本スクリーン製造株式会社 Drying machine and thermal processing system
JP2015083920A (en) * 2015-01-26 2015-04-30 株式会社Screenホールディングス Dryer and heat treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010194B2 (en) * 1980-02-06 1985-03-15 株式会社日立製作所 moving vane mixed flow pump
JPS618478B2 (en) * 1976-11-03 1986-03-14 Nuovo Pignone Spa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618478B2 (en) * 1976-11-03 1986-03-14 Nuovo Pignone Spa
JPS6010194B2 (en) * 1980-02-06 1985-03-15 株式会社日立製作所 moving vane mixed flow pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298385A (en) * 1989-05-11 1990-12-10 Nippon Steel Corp Resin drying method of sandwich type resin composite metal plate
US5060594A (en) * 1989-06-23 1991-10-29 Honda Giken Kogyo Kabushiki Kaisha Apparatus for painting
JPH0330875A (en) * 1989-06-28 1991-02-08 Okuno Seiyaku Kogyo Kk Method for baking aqueous inorganic coating material
JPH08243463A (en) * 1995-03-08 1996-09-24 Matsushita Electric Ind Co Ltd Heat-drying method for film material and apparatus therefor
JP2007126549A (en) * 2005-11-02 2007-05-24 Sumitomo Light Metal Ind Ltd Water-based coating material for can lid, precoated aluminum alloy plate for can lid and method for producing the same
JP2012107780A (en) * 2010-11-15 2012-06-07 National Agriculture & Food Research Organization Grain drying apparatus
WO2012114567A1 (en) * 2011-02-24 2012-08-30 大日本スクリーン製造株式会社 Drying machine and thermal processing system
JP2012172960A (en) * 2011-02-24 2012-09-10 Dainippon Screen Mfg Co Ltd Drying device and thermal processing system
KR101422429B1 (en) * 2011-02-24 2014-07-22 다이니폰 스크린 세이조우 가부시키가이샤 Drying machine and thermal processing system
JP2015083920A (en) * 2015-01-26 2015-04-30 株式会社Screenホールディングス Dryer and heat treatment system

Similar Documents

Publication Publication Date Title
WO2011148955A1 (en) Drying furnace and drying method
JP5196967B2 (en) Coating drying method and coating drying apparatus
BG106956A (en) Process for the application of powder coatings to non-metallic substrates
JPS63305965A (en) Method for drying or baking film
JP2021511478A (en) Heat spreader and wave guide unit, and conveyor type paint drying furnace including them
US20150276311A1 (en) Finish curing method and system for leather-based substrates
JP2017201058A (en) Heat treatment method
US3149945A (en) Differential thermal treatment of glass objects
US2868166A (en) Device for spraying and drying of paints, varnish or the like
JPH07323257A (en) Short time heat treatment of organic coating
WO1993005353A1 (en) Paint baking oven with infrared lamps
JP2514179B2 (en) Gas discharge device in furnace
JPH09203514A (en) Method and device for decomposing organic matter in gas
JP3200174B2 (en) Heating equipment
JPH10109062A (en) Method for drying coating film
JP2525504B2 (en) Method and apparatus for drying coating film on automobile body
JP2514178B2 (en) Infrared and hot air combined dryer
JPH08261652A (en) Near infrared heating drying furnace freely alterable at illuminating angle of near infrared ray emitting unit corresponding to hanging angle of coated matter for heating furnace
JPH0930874A (en) Production of ceramic ware and apparatus for treating with binder
JPH0534068A (en) Drying device
JP2008309862A (en) Heating device
JPH07116593A (en) Coating film drying method
JP2022130780A (en) Water-based paint film formation method and water-based paint film formation device
JPS6212238Y2 (en)
JP2003251250A (en) Method and apparatus for applying water based coating material