JP2017201058A - Heat treatment method - Google Patents

Heat treatment method Download PDF

Info

Publication number
JP2017201058A
JP2017201058A JP2017089604A JP2017089604A JP2017201058A JP 2017201058 A JP2017201058 A JP 2017201058A JP 2017089604 A JP2017089604 A JP 2017089604A JP 2017089604 A JP2017089604 A JP 2017089604A JP 2017201058 A JP2017201058 A JP 2017201058A
Authority
JP
Japan
Prior art keywords
infrared
steel plate
heat treatment
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089604A
Other languages
Japanese (ja)
Other versions
JP6972640B2 (en
Inventor
溝尻 貴文
Takafumi Mizojiri
貴文 溝尻
優 向井
Masaru Mukai
優 向井
光昭 三玉
Mitsuaki Mitama
光昭 三玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Publication of JP2017201058A publication Critical patent/JP2017201058A/en
Application granted granted Critical
Publication of JP6972640B2 publication Critical patent/JP6972640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment method that heat-treats an object to be heated by heating means of radiating infrared rays equally in a direction toward the object to be heated, and which can uniformly heat the whole of the object to be heated to a desired temperature even when the object to be heated is an irregularly-shaped material such as a different thickness steel plate and a steel plate of which a contour has a special shape.SOLUTION: A heat treatment method includes: subjecting a part of an irradiation surface of an object to be heated formed from metal to infrared absorption treatment; then irradiating the irradiation surface with infrared rays from a heating lamp; and thereby heat-treating the object to be heated. The heat treatment method includes: subjecting a part of an irradiation surface of an object to be heated formed from metal to infrared absorption treatment; then irradiating the irradiation surface with infrared rays from a heat lamp; and thereby heat-treating the object to be heated.SELECTED DRAWING: Figure 3

Description

本発明は、金属板を加熱処理する加熱処理方法に関するものである。   The present invention relates to a heat treatment method for heat treating a metal plate.

従来、鋼板を高強度に加工する手段としてホットプレス(ダイクエンチ)がある。これは、鋼板を高温に加熱し、高温域でプレス加工する技術であり、特に鋼板を変態温度(約900℃)以上でプレス加工し、金型で急速に冷却することによってプレス圧がかかった状態で変態を生じさせることにより、高強度のプレス加工品を製造する技術である。
鋼板を高温に加熱する手段としては、赤外線の照射による加熱手段が期待されている。例えば、特許文献1には、鋼板の一面に赤外線を照射する直管型の加熱ランプが多数設けられ、鋼板の輪郭形状に応じて各々の加熱ランプの出力強度を調整することによって、所望の領域を高温に加熱する手段が開示されている。
Conventionally, there is a hot press (die quench) as a means for processing a steel plate with high strength. This is a technology that heats a steel plate to a high temperature and presses the steel plate in a high temperature range. In particular, the steel plate is pressed at a transformation temperature (about 900 ° C.) or higher and rapidly pressed with a mold to apply a press pressure. This is a technique for producing a high-strength pressed product by causing transformation in the state.
As a means for heating the steel sheet to a high temperature, a heating means by infrared irradiation is expected. For example, Patent Document 1 includes a large number of straight tube-type heating lamps that irradiate one surface of a steel plate with infrared rays, and by adjusting the output intensity of each heating lamp according to the contour shape of the steel plate, a desired region can be obtained. Means for heating to a high temperature is disclosed.

また、プレス加工品の生産性や品質を向上させるために、厚みの異なる部分を有する鋼板(以下、「差厚鋼板」ともいう。)をプレス加工する技術が提案されている(例えば、特許文献2参照)。このように差厚鋼板に対してプレス加工を行うことができると、溶接工程が不要となって生産時間を大きく短縮することができる。   In addition, in order to improve the productivity and quality of a press-processed product, a technique for pressing a steel plate having portions with different thicknesses (hereinafter also referred to as “different thickness steel plate”) has been proposed (for example, patent document). 2). Thus, if a press work can be performed with respect to a difference thickness steel plate, a welding process will become unnecessary and production time can be reduced significantly.

しかしながら、特許文献1や特許文献2に開示されたプレス加工の方法においては、差厚鋼板を一様に加熱処理するときに、鋼板の厚みによって到達する加熱温度が異なり易く、鋼板全体を均質に所望の温度に加熱することが難しい、という問題がある。
また、差厚鋼板に限らず、輪郭が特殊な形状の鋼板を加熱する際にも、一様に加熱処理するときに部分的な温度ムラが生じ易く、このような温度ムラがプレス加工時の鋼板の品質に影響を及ぼしてしまう、という問題もある。
However, in the press processing methods disclosed in Patent Document 1 and Patent Document 2, when the differential thickness steel sheet is uniformly heat-treated, the heating temperature reached easily varies depending on the thickness of the steel sheet, and the entire steel sheet is made homogeneous. There is a problem that it is difficult to heat to a desired temperature.
In addition, not only the difference thickness steel plate, but also when heating a steel plate having a special contour, partial temperature unevenness is likely to occur during uniform heat treatment. There is also a problem of affecting the quality of the steel sheet.

特開2014−149133号公報JP 2014-149133 A 特開2005−138112号公報JP 2005-138112 A

本発明は、以上のような事情に基づいてなされたものであって、その目的は、赤外線を加熱対象物に向かう方向に均等に放射する加熱手段によって加熱対象物を加熱処理する加熱処理方法において、加熱対象物が差厚鋼板や輪郭が特殊な形状の鋼板などの異形状のものである場合においても、その全体を均質に所望の温度に加熱することができる加熱処理方法を提供することにある。   The present invention has been made based on the circumstances as described above, and the object thereof is a heat treatment method in which a heating object is heat-treated by a heating means that radiates infrared rays in a direction toward the heating object. In addition, even when the object to be heated is an irregular shape such as a differential thickness steel plate or a steel plate having a special contour, it is possible to provide a heat treatment method capable of uniformly heating the whole to a desired temperature. is there.

本発明の加熱処理方法は、金属よりなる加熱対象物の被照射面の一部に赤外線吸収処理を施した後に、加熱ランプからの赤外線を照射することにより、当該加熱対象物を加熱処理することを特徴とする。   The heat treatment method of the present invention heat-treats the object to be heated by irradiating infrared rays from a heating lamp after performing infrared absorption treatment on a part of the irradiated surface of the object to be heated made of metal. It is characterized by.

本発明の加熱処理方法においては、前記加熱対象物が、鋼板である構成とすることができる。   In the heat processing method of this invention, the said heating target object can be set as the structure which is a steel plate.

本発明の加熱処理方法においては、前記赤外線吸収処理が、前記加熱対象物を前記加熱処理の温度よりも低い温度に予め加熱することであることが好ましい。   In the heat treatment method of the present invention, it is preferable that the infrared absorption treatment is to preheat the object to be heated to a temperature lower than the temperature of the heat treatment.

本発明の加熱処理方法においては、前記赤外線吸収処理が、前記加熱対象物における相対的に厚みが大きい部分に係る被照射面に対して行われることが好ましい。   In the heat processing method of this invention, it is preferable that the said infrared absorption process is performed with respect to the to-be-irradiated surface which concerns on the part with comparatively large thickness in the said heating target object.

本発明の加熱処理方法は、金属よりなる加熱対象物の被照射面の一部に赤外線反射処理を施した後に、加熱ランプからの赤外線を照射することにより、当該加熱対象物を加熱処理することを特徴とする。   The heat treatment method of the present invention heat-treats the heating object by irradiating infrared rays from a heating lamp after performing infrared reflection treatment on a part of the irradiated surface of the object to be heated made of metal It is characterized by.

本発明の加熱処理方法においては、前記加熱対象物が、鋼板である構成とすることができる。   In the heat processing method of this invention, the said heating target object can be set as the structure which is a steel plate.

本発明の加熱処理方法においては、前記赤外線反射処理が、前記加熱対象物における相対的に厚みが小さい部分に係る被照射面に対して行われることが好ましい。   In the heat processing method of this invention, it is preferable that the said infrared reflective process is performed with respect to the to-be-irradiated surface which concerns on the part with comparatively small thickness in the said heating target object.

本発明の加熱処理方法は、加熱対象物の被照射面の一部に赤外線吸収処理を施した後に、赤外線を加熱対象物に向かう方向に均等に放射する加熱手段によって加熱処理(以下、「本加熱処理」ともいう。)するものである。従って、加熱対象物における赤外線の照射による昇温速度が相対的に小さい部分に係る被照射面に赤外線吸収処理を施すことによって、当該部分における赤外線の吸収量が未処理領域よりも増大して赤外線の照射による昇温速度が大きくなるよう調整される。その結果、加熱手段から加熱対象物に向かう方向に均等に放射された赤外線が照射されたときの加熱対象物についての昇温速度の分布を、当該加熱対象物の厚みや輪郭、当該加熱対象物の表面の反射率などによらずに略均等にすることができるので、全体を均質に所望の温度に加熱することができる。
また、本発明の別の加熱処理方法は、加熱対象物の被照射面の一部に赤外線反射処理を施した後に、赤外線を加熱対象物に向かう方向に均等に放射する加熱手段によって本加熱処理するものである。従って、加熱対象物における赤外線の照射による昇温速度が相対的に大きい部分に係る被照射面に赤外線反射処理を施すことによって、当該部分における加熱ランプからの赤外線の吸収量が未処理領域よりも低減されて赤外線の照射による昇温速度が小さくなるよう調整される。その結果、加熱手段から加熱対象物に向かう方向に均等に放射された赤外線が照射されたときの加熱対象物についての昇温速度の分布を、当該加熱対象物の厚みや輪郭、当該加熱対象物の表面の反射率などによらずに略均等にすることができるので、全体を均質に所望の温度に加熱することができる。
本発明において、「均質に所望の温度に加熱することができる」とは、加熱対象物における所望の範囲について、加熱手段から加熱対象物に向かう方向に均等に放射された赤外線が照射されたときに、所定の時間内に本加熱処理の目的とする温度範囲まで昇温させ、当該温度範囲内の本加熱処理温度で本加熱処理を行うことができることを意味する。
In the heat treatment method of the present invention, after a part of the irradiated surface of the object to be heated is subjected to infrared absorption treatment, the heat treatment (hereinafter referred to as “book”) is performed by a heating means that radiates infrared rays in a direction toward the object to be heated. It is also referred to as “heat treatment”. Therefore, by performing infrared absorption treatment on the irradiated surface of the portion to be heated, which has a relatively low temperature increase rate due to infrared irradiation, the amount of infrared absorption in the portion increases more than that in the untreated region. It is adjusted so that the rate of temperature rise by irradiation is increased. As a result, the distribution of the heating rate for the heating object when the infrared rays uniformly emitted in the direction from the heating means toward the heating object are irradiated, the thickness and contour of the heating object, the heating object Therefore, the entire surface can be uniformly heated to a desired temperature.
In addition, another heat treatment method of the present invention includes a main heat treatment performed by a heating unit that radiates infrared rays uniformly in a direction toward the heating object after performing an infrared reflection process on a part of the irradiated surface of the heating object. To do. Therefore, by performing infrared reflection treatment on the irradiated surface of the portion to be heated, which has a relatively high temperature increase rate due to infrared irradiation, the amount of infrared absorption from the heating lamp in the portion is higher than that in the untreated region. It is adjusted so that the rate of temperature increase due to irradiation with infrared rays is reduced. As a result, the distribution of the heating rate for the heating object when the infrared rays uniformly emitted in the direction from the heating means toward the heating object are irradiated, the thickness and contour of the heating object, the heating object Therefore, the entire surface can be uniformly heated to a desired temperature.
In the present invention, “can be uniformly heated to a desired temperature” means that a desired range of a heating object is irradiated with infrared rays that are evenly emitted in a direction from the heating means toward the heating object. Furthermore, it means that the temperature can be raised to the target temperature range of the main heat treatment within a predetermined time, and the main heat treatment can be performed at the main heat treatment temperature within the temperature range.

本発明の加熱処理方法の加熱対象物における光吸収処理領域の一例を示す斜視図である。It is a perspective view which shows an example of the light absorption process area | region in the heating target object of the heat processing method of this invention. 本発明の加熱処理方法の加熱対象物における光吸収処理領域の別の一例を示す斜視図である。It is a perspective view which shows another example of the light absorption process area | region in the heating target object of the heat processing method of this invention. 本発明の加熱処理方法の加熱対象物における光吸収処理領域および光反射処理領域の一例を示す斜視図である。It is a perspective view which shows an example of the light absorption process area | region and light reflection process area | region in the heating target object of the heat processing method of this invention. 加熱対象物の形状の具体例を示す平面図である。It is a top view which shows the specific example of the shape of a heating target object. 実験例1に用いた差厚鋼板を示す斜視図である。It is a perspective view which shows the difference thickness steel plate used for Experimental example 1. FIG. 実験例1の結果を示すグラフである。6 is a graph showing the results of Experimental Example 1.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の加熱処理方法は、加熱対象物(以下、「ワーク」ともいう。)に加熱ランプによる面状光源から赤外線を照射することにより、当該ワークを加熱処理(本加熱処理)する方法である。
そして、この本加熱処理に先行して、ワークの被照射面の一部(以下、「補償領域」とする。)に赤外線吸収処理および/または赤外線反射処理を行う。
本発明において、ワークの被照射面とは、加熱ランプからの赤外線が照射される面をいう。具体的には、例えば加熱ランプがワークの上面に対向して設けられた状態において赤外線が放射される場合には、ワークの上面および側周面をいう。
The heat treatment method of the present invention is a method of heat-treating an object to be heated (hereinafter, also referred to as “work”) from a planar light source using a heating lamp to heat the work (main heat treatment). .
Prior to this main heat treatment, an infrared absorption treatment and / or an infrared reflection treatment is performed on a part of the irradiated surface of the workpiece (hereinafter referred to as “compensation region”).
In the present invention, the irradiated surface of the workpiece refers to a surface irradiated with infrared rays from a heating lamp. Specifically, for example, when infrared rays are emitted in a state where a heating lamp is provided facing the upper surface of the workpiece, the upper surface and the side circumferential surface of the workpiece are referred to.

赤外線吸収処理は、具体的には、例えば、ワークの被照射面の補償領域に赤外線吸収剤を含有する赤外線吸収膜を形成すること、あるいは、ワークそのものを本加熱処理温度よりも低い温度で予め加熱すること、または、薬品を塗布する酸化処理によって被照射面の色状態を黒化させることによって、赤外線の吸収率を補償領域以外の未処理領域よりも高くすることなどによって行うことができる。   Specifically, the infrared absorption treatment is performed by, for example, forming an infrared absorption film containing an infrared absorbent in the compensation region of the surface to be irradiated of the workpiece, or by previously moving the workpiece itself at a temperature lower than the main heat treatment temperature. It can be performed by heating, or by making the color state of the irradiated surface black by an oxidation treatment applying chemicals, thereby making the infrared absorption rate higher than that of the untreated region other than the compensation region.

赤外線吸収剤としては、赤外線吸収率が60%以上である材質のものを用いることが好ましく、具体的には、金属単体や、金属酸化物、金属窒化物、金属ホウ化物および金属炭化物などの金属化合物を用いることができる。
赤外線吸収膜としては、赤外線吸収剤を含有する塗料を塗布した塗布膜や、赤外線吸収剤のメッキによる膜または蒸着膜、赤外線吸収剤によるフィルムやテープなどが挙げられる。
赤外線吸収剤を含有する塗料としては、例えば赤外線吸収剤をナノ粒子状にして溶媒に混合したものを用いることができる。具体的には、赤外線吸収剤を分散した例えばシリコーン樹脂系塗料、アクリル樹脂系塗料、ウレタン樹脂系塗料、フッ素樹脂系塗料などを用いることができる。また、樹脂を含有しない溶剤に赤外線吸収剤が分散されてなる水性の塗料も用いることができる。また、本加熱処理温度の高さによっては、これらの溶液や溶液を含む半乾燥状態や粒子間をつなぐバインダーを赤外線吸収剤として用いてもよい。
これらの塗料のうち、ワークの材質や本加熱処理温度に応じて、適宜選定することができる。
As the infrared absorber, a material having an infrared absorptivity of 60% or more is preferably used. Specifically, a metal such as a single metal, a metal oxide, a metal nitride, a metal boride, and a metal carbide is used. Compounds can be used.
Examples of the infrared absorbing film include a coating film coated with a coating containing an infrared absorbent, a film or vapor deposition film formed by plating with an infrared absorbent, a film or a tape formed using an infrared absorbent, and the like.
As a coating material containing an infrared absorber, for example, an infrared absorber mixed in a solvent in the form of nanoparticles can be used. Specifically, for example, a silicone resin-based paint, an acrylic resin-based paint, a urethane resin-based paint, a fluororesin-based paint, or the like in which an infrared absorbent is dispersed can be used. Further, an aqueous coating material in which an infrared absorber is dispersed in a solvent not containing a resin can also be used. Further, depending on the high heat treatment temperature, these solutions, a semi-dry state containing the solution, or a binder that connects the particles may be used as an infrared absorber.
Among these paints, it can be appropriately selected according to the material of the workpiece and the main heat treatment temperature.

ワークそのものを本加熱処理温度よりも低い温度に予め加熱する予備加熱は、例えば大気中で行われ、ワークの材質によっても異なるが、例えばワークが鋼板である場合、約400℃に加熱することによって行うことができる。
予備加熱による赤外線吸収処理は、例えばワークが差厚鋼板である場合に好適に行うことができる。具体的には、例えば面積が大きい鋼板(大面積鋼板)上に面積が小さい鋼板(小面積鋼板)を積層させたワーク(差厚鋼板)において、スポット溶接を行う前に厚みが重なり合って昇温され難い小面積鋼板のみについて予備加熱を行うことにより、小面積鋼板のみに赤外線吸収処理を行うことができる。あるいは、スポット溶接後に、加熱手段における小面積鋼板に対応する加熱ランプのみを点灯することにより、小面積鋼板のみに赤外線吸収処理を行うことができる。
The preheating for preheating the work itself to a temperature lower than the main heat treatment temperature is performed in the air, for example, and differs depending on the material of the work. For example, when the work is a steel plate, it is heated to about 400 ° C. It can be carried out.
Infrared absorption treatment by preheating can be suitably performed, for example, when the workpiece is a differential thickness steel plate. Specifically, for example, in a workpiece (differential steel plate) in which a steel plate with a small area (small area steel plate) is laminated on a steel plate with a large area (large area steel plate), the thickness overlaps before spot welding is performed. By performing preheating only on a small area steel plate that is difficult to be performed, it is possible to perform infrared absorption treatment only on the small area steel plate. Alternatively, after spot welding, only the small area steel plate can be subjected to infrared absorption treatment by turning on only the heating lamp corresponding to the small area steel plate in the heating means.

予備加熱による赤外線吸収処理を行うことにより、赤外線吸収剤を含有する赤外線吸収膜を形成する必要がない。また、当該赤外線吸収膜の材料とワークの材料との間の反応性を考慮する必要がなく、さらに、本加熱処理後に赤外線吸収膜の材料がワーク上に残留する場合にはこれを除去する必要がないことなどの利点を得ることができる。   By performing the infrared absorption treatment by preheating, there is no need to form an infrared absorption film containing an infrared absorber. In addition, it is not necessary to consider the reactivity between the material of the infrared absorbing film and the material of the work, and further, if the material of the infrared absorbing film remains on the work after the main heat treatment, it is necessary to remove it. Advantages such as not having can be obtained.

赤外線反射処理は、具体的には、例えば、金属、金属酸化物、金属窒化物、金属ホウ化物、金属炭化物などの金属化合物によって赤外線反射率の高い赤外線反射膜を形成することや、メッキ処理を施すこと、または、表面を例えば研磨などによって表面粗さを変化させて鏡面化することなどによって行うことができる。
赤外線反射膜は、例えば赤外線反射率が70%以上である膜であることが好ましく、具体的には、例えばアルミメッキや金メッキなどのメッキによる膜であることが好ましい。
Specifically, the infrared reflection treatment is performed by, for example, forming an infrared reflection film having a high infrared reflectance with a metal compound such as metal, metal oxide, metal nitride, metal boride, metal carbide, or plating treatment. For example, the surface may be mirror-finished by changing the surface roughness by polishing or the like.
The infrared reflective film is preferably a film having an infrared reflectance of, for example, 70% or more, and specifically, a film formed by plating such as aluminum plating or gold plating is preferable.

ワークの被照射面の補償領域における赤外線吸収処理および/または赤外線反射処理は、本加熱処理の開始、すなわち赤外線の照射の開始から例えば1分間後に、ワーク全体が本加熱処理温度(例えば1000℃±50℃)に到達するよう、施されることが好ましい。   The infrared absorption process and / or the infrared reflection process in the compensation area of the surface to be irradiated of the work are performed at the main heat treatment temperature (for example, 1000 ° C. ± 50 ° C.) is preferably applied.

ワークの被照射面における赤外線吸収処理および/または赤外線反射処理は、例えば当該ワークの厚みや輪郭に応じて行われる。具体的には、赤外線吸収処理は、相対的に赤外線の照射による昇温速度が小さい領域、例えば相対的に厚みが大きい部分に係る被照射面に対して行われる。また、赤外線反射処理は、相対的に赤外線の照射による昇温速度が大きい領域、例えば相対的に厚みが小さい部分に係る被照射面に対して行われる。
本発明において、「赤外線の照射による昇温速度」とは、加熱ランプによる面状光源からワークに向かう方向に均等な強度分布で放射された赤外線がワークに照射されたときの、ワークの温度上昇に係る昇温速度をいう。
具体的に説明すると、図1に示されるように、例えば矩形の平板状のワークW1においては、ワークW1の当該ワークW1が伸びる面方向の中央部領域15は、それ以外の端部領域17に比べて赤外線の照射による昇温速度が小さい。これは、ワークW1の端部領域17においては、ワークW1の上面に加えて側周面にも赤外線が照射されるためである。従って、当該中央部領域15に係る被照射面に赤外線吸収処理を施して光吸収処理領域(図1において網線を付して示す。)Ab1を形成する。
また、図2に示されるように、例えば1枚の鋼板であって、厚みが大きい部分25と厚みが小さい部分27とを有する差厚鋼板であるワークW2においては、相対的に厚みが大きい部分25は厚みが小さい部分27に比べて、ワークW2の上面に係る単位面積当たりの体積の熱容量が大きいため、赤外線の照射による昇温速度が小さい。従って、当該厚みが大きい部分25に係る被照射面に赤外線吸収処理を施して光吸収処理領域(図2において網線を付して示す。)Ab2を形成する。
The infrared absorption process and / or the infrared reflection process on the surface to be irradiated of the work are performed according to the thickness and contour of the work, for example. Specifically, the infrared absorption treatment is performed on a surface to be irradiated related to a region where the rate of temperature increase due to infrared irradiation is relatively small, for example, a portion having a relatively large thickness. In addition, the infrared reflection process is performed on an irradiated surface in a region where the rate of temperature increase due to infrared irradiation is relatively large, for example, a portion having a relatively small thickness.
In the present invention, the “temperature increase rate by irradiation with infrared rays” means the temperature rise of the workpiece when the workpiece is irradiated with infrared rays radiated with a uniform intensity distribution in the direction from the planar light source by the heating lamp toward the workpiece. Refers to the rate of temperature increase.
More specifically, as shown in FIG. 1, for example, in a rectangular flat workpiece W <b> 1, the center region 15 in the surface direction of the workpiece W <b> 1 in which the workpiece W <b> 1 extends extends to the other end region 17. Compared with the infrared heating, the heating rate is small. This is because in the end region 17 of the workpiece W1, infrared rays are irradiated on the side circumferential surface in addition to the upper surface of the workpiece W1. Therefore, the surface to be irradiated related to the central region 15 is subjected to infrared absorption processing to form a light absorption processing region (shown with a mesh line in FIG. 1) Ab1.
Further, as shown in FIG. 2, for example, a workpiece having a relatively large thickness in workpiece W <b> 2, which is a differential steel plate having a thick portion 25 and a thin portion 27, which is a single steel plate. 25 has a larger heat capacity per unit area on the upper surface of the workpiece W2 than that of the portion 27 with a small thickness, and therefore the rate of temperature increase due to infrared irradiation is small. Therefore, the surface to be irradiated related to the portion 25 having the large thickness is subjected to infrared absorption treatment to form a light absorption treatment region (shown with a mesh line in FIG. 2) Ab2.

また、1つのワークにおいて、その厚みに応じて赤外線吸収処理および赤外線反射処理の両方が行われてもよい。
具体的には、互いに形状が異なる下層ワーク10および上層ワーク20が積層された差厚鋼板であるワークW3においては、2枚の積層部分30は単層部分40に比べて赤外線の照射による昇温速度が小さい。従って、図3(a)に示されるように、当該積層部分30に係る被照射面、すなわち上層ワーク20の加熱ランプに対向する表面(図3(a)において上面)に赤外線吸収処理を施して光吸収処理領域(図3(a)において網線を付して示す。)Ab3を形成する。
一方、単層部分40においては積層部分30に比べて赤外線の照射による昇温速度が大きい。従って、図3(a)に示されるように、当該単層部分40に係る被照射面、すなわち下層ワーク10の加熱ランプに対向する表面(図3(a)において上面)に赤外線反射処理を施して光反射処理領域(図3(a)において斜線を付して示す。)Re1を形成する。
Moreover, in one workpiece | work, both an infrared absorption process and an infrared reflection process may be performed according to the thickness.
Specifically, in the workpiece W3 which is a differential thickness steel plate in which the lower layer workpiece 10 and the upper layer workpiece 20 having different shapes are laminated, the two laminated portions 30 are heated by irradiation with infrared rays as compared with the single layer portion 40. The speed is small. Therefore, as shown in FIG. 3A, the surface to be irradiated according to the laminated portion 30, that is, the surface (upper surface in FIG. 3A) facing the heating lamp of the upper layer work 20 is subjected to infrared absorption treatment. A light absorption processing region (shown with a mesh line in FIG. 3A) Ab3 is formed.
On the other hand, in the single layer portion 40, the rate of temperature increase due to infrared irradiation is higher than that in the laminated portion 30. Therefore, as shown in FIG. 3A, an infrared reflection process is performed on the irradiated surface of the single-layer portion 40, that is, the surface (upper surface in FIG. 3A) facing the heating lamp of the lower layer workpiece 10. Then, a light reflection processing region (shown by hatching in FIG. 3A) Re1 is formed.

また、ワークW3においては、その輪郭に応じて赤外線吸収処理および赤外線反射処理が行われてもよい。具体的には、ワークW3の積層部分30の当該ワークW3が伸びる面方向の中央部領域は端部領域に比べて赤外線の照射による昇温速度が小さい。従って、図3(b)に示されるように、当該中央部領域に係る被照射面、すなわち上層ワーク20の加熱ランプに対向する表面(図3(b)において上面)における中央領域に赤外線吸収処理を施して光吸収処理領域(図3(b)2おいて網線を付して示す。)Ab4を形成する。
また、輪郭が長方形の短辺から連続して伸びる三角形状の突出部41を有する全体が五角形のワークW3においては、当該突出部41は、赤外線の照射による昇温速度が大きい。これは、側周面(肉厚部分)にも加熱ランプからの赤外線が照射されるので、ワークW3の突出部41においては表面(上面)からの加熱に対して側周面からの加熱の割合が大きくなるためである。従って、図3(b)に示されるように、単層部分40に係る被照射面であって、かつ、突出部41に係る被照射面、すなわち突出部41の加熱ランプに対向する表面(図3(b)において上面)に赤外線反射処理を施して光反射処理領域(図3(b)において斜線を付して示す。)Re2を形成する。また、下層ワーク10のワークW3が伸びる面方向の端部領域は中央部領域に比べて赤外線の照射による昇温速度が大きい。従って、図3(b)に示されるように、下層ワーク10の側周面に赤外線反射処理を施して光反射処理領域(図3(b)において斜線を付して示す。)Re3を形成する。
Moreover, in the workpiece | work W3, an infrared absorption process and an infrared reflection process may be performed according to the outline. Specifically, the rate of temperature increase due to infrared irradiation is smaller in the central region of the stacked portion 30 of the workpiece W3 in the surface direction in which the workpiece W3 extends than in the end region. Therefore, as shown in FIG. 3 (b), an infrared absorption treatment is applied to the irradiated region in the central region, that is, the central region on the surface (upper surface in FIG. 3 (b)) facing the heating lamp of the upper layer workpiece 20. To form a light absorption processing region (shown with a mesh line in FIG. 3 (b) 2) Ab4.
Further, in the whole pentagonal workpiece W3 having the triangular protrusion 41 whose outline continuously extends from the short side of the rectangle, the protrusion 41 has a high heating rate due to infrared irradiation. This is because the infrared rays from the heating lamp are also irradiated to the side peripheral surface (thick portion), and therefore the ratio of the heating from the side peripheral surface to the heating from the surface (upper surface) in the protrusion 41 of the workpiece W3. This is because of the increase. Therefore, as shown in FIG. 3B, the irradiated surface related to the single-layer portion 40 and the irradiated surface related to the protrusion 41, that is, the surface facing the heating lamp of the protrusion 41 (see FIG. 3B). 3 (b) is subjected to infrared reflection processing to form a light reflection processing region (shown by hatching in FIG. 3 (b)) Re2. Moreover, the temperature increase rate by irradiation of infrared rays is large in the edge part area | region where the workpiece | work W3 of the lower layer workpiece | work 10 is extended compared with a center part area | region. Accordingly, as shown in FIG. 3B, the side peripheral surface of the lower layer workpiece 10 is subjected to infrared reflection processing to form a light reflection processing region (shown by hatching in FIG. 3B) Re3. .

また、ワークの被照射面の補償領域における赤外線吸収処理および/または赤外線反射処理は、ワークの表面の反射率に応じて行われてもよい。
例えばワークの表面の光沢性が高い場合には、ワークの被照射面の全面に赤外線吸収処理を施して光吸収処理領域を形成することによって赤外線の照射による昇温速度を大きくすることができる。
また、互いに形状が異なる下層ワークおよび上層ワークが積層された差厚鋼板であって、例えば上層ワークの光沢性が下層ワークよりも高い場合などにおいては、当該上層ワークの被照射面に赤外線吸収処理を施して光吸収処理領域を形成することもできる。
Further, the infrared absorption process and / or the infrared reflection process in the compensation region of the irradiated surface of the work may be performed according to the reflectance of the work surface.
For example, when the gloss of the surface of the workpiece is high, the temperature rising rate by the infrared irradiation can be increased by performing infrared absorption treatment on the entire irradiated surface of the workpiece to form a light absorption treatment region.
Also, it is a differential thickness steel plate in which a lower layer work and an upper layer work having different shapes are laminated, and when the gloss of the upper layer work is higher than that of the lower layer work, for example, the irradiated surface of the upper layer work is subjected to infrared absorption treatment To form a light absorption treatment region.

〔ワーク〕
本発明の加熱処理方法において本加熱処理されるワークは、略平板状の金属よりなるものであって、例えば鋼板とされる。
本発明において「鋼板」とは鉄を主成分とする板材を指す。例えば、炭素含有量が2質量%以下の鋼の板等が対象として含まれる。
ワークの詳細な形状については限定されず、厚みが均一な平板状の鋼板であっても差厚鋼板であってもよく、また、輪郭が長方形や正方形のものであっても輪郭が特殊な形状のものであってもよい。
具体的には、長方形の輪郭のワークWa(図4(a))、平行四辺形の輪郭を有して鋭角の角部42を有するワークWb(図4(b))、平行四辺形の輪郭における一角が円弧状に切り欠かれた、輪郭に曲線を有するワークWcもの(図4(c))、辺の長さが互いに異なる輪郭のワークWd,We(図4(d)や図4(e))、穴45を有するワークWf(図4(f))などや、これらの異なる2種を積層させた、厚みの異なる部分を有する差厚鋼板などが挙げられる。
差厚鋼板としては、例えば図2に示されるような厚みが大きい部分25と厚みが小さい部分27とを有する1枚の鋼板からなるワークW2や、図3に示されるように、互いに形状が異なる下層ワーク10および上層ワーク20が積層された差厚鋼板であるワークW3が挙げられる。
〔work〕
In the heat treatment method of the present invention, the work subjected to the main heat treatment is made of a substantially flat metal and is, for example, a steel plate.
In the present invention, the “steel plate” refers to a plate material mainly composed of iron. For example, steel plates having a carbon content of 2% by mass or less are included as targets.
The detailed shape of the workpiece is not limited, it may be a flat steel plate or a differential thickness steel plate with a uniform thickness, and even if the contour is rectangular or square, the contour is a special shape It may be.
Specifically, the workpiece Wa having a rectangular outline (FIG. 4A), the workpiece Wb having a parallelogram outline and an acute corner 42 (FIG. 4B), and the parallelogram outline. A workpiece Wc having a curved line in the outline (FIG. 4 (c)), and the workpieces Wd, We (FIG. 4 (d) and FIG. e)), a workpiece Wf having a hole 45 (FIG. 4 (f)) and the like, and a differential thickness steel sheet having different thicknesses obtained by laminating these two different types.
As the differential thickness steel plate, for example, a workpiece W2 made of a single steel plate having a portion 25 having a large thickness and a portion 27 having a small thickness as shown in FIG. 2, or different shapes as shown in FIG. Examples include a workpiece W3 that is a differential thickness steel plate in which the lower layer workpiece 10 and the upper layer workpiece 20 are laminated.

〔熱処理装置〕
本発明の加熱処理方法を行う加熱手段としては、例えば、処理室を有し、この処理室内において支持部上に支持されるワークの被照射面と対向するよう設けられた面状光源である光照射部を備える熱処理装置を用いることができる。
この熱処理装置は、光照射部からワークに向かって赤外線を一定方向に均等に放射することにより、ワークを被照射面から加熱して本加熱処理するものである。
[Heat treatment equipment]
As a heating means for performing the heat treatment method of the present invention, for example, a light that is a planar light source having a processing chamber and provided so as to face an irradiated surface of a work supported on a support portion in the processing chamber. A heat treatment apparatus including an irradiation unit can be used.
This heat treatment apparatus heats the work from the surface to be irradiated and performs the main heat treatment by uniformly radiating infrared rays from the light irradiation unit toward the work in a certain direction.

〔光照射部〕
光照射部は、例えばワークが伸びる面方向に沿って縦横に並設された複数の点光源型の加熱ランプ(以下、「点状ランプ」ともいう。)よりなるものとすることができる。
点状ランプの各々は、隣接する点状ランプの距離が全て等間隔となるよう設置されていることが好ましい。
点状ランプとしては、例えばシングルエンド型のフィラメントランプを用いることができる。
シングルエンド型のフィラメントランプは、例えば球欠体状のバルブを備え、当該バルブの割平面が封止部によって封止され、バルブ内に、その両端部が各々内部リードを介してソケット内に設けられた2つの電極に接続されたフィラメントが収容されたものである。
(Light irradiation part)
The light irradiating unit may be composed of, for example, a plurality of point light source type heating lamps (hereinafter also referred to as “dot lamps”) arranged side by side along the surface direction in which the workpiece extends.
Each of the spot lamps is preferably installed such that the distances between the adjacent spot lamps are all equal.
As the point lamp, for example, a single-ended filament lamp can be used.
A single-ended filament lamp has, for example, a bulb-shaped bulb, the split plane of the bulb is sealed by a sealing portion, and both end portions thereof are provided in sockets via internal leads. The filament connected to the two electrodes is accommodated.

光照射部は、例えば複数の棒状の加熱ランプ(以下、「棒状ランプ」ともいう。)が、各々のランプ中心軸がワークの伸びる面と平行となるように一平面内に位置された状態で、互いに離間して並設されているものであってもよい。
棒状ランプの各々は、隣接する棒状ランプの距離が全て等間隔となるよう設置されていることが好ましい。
棒状ランプとしては、例えばダブルエンド型のフィラメントランプを用いることができる。
ダブルエンド型のフィラメントランプは、例えば両端部が封止部によって封止された直管状のバルブを備え、当該バルブ内にフィラメントが同軸方向に伸びた状態で収容され、当該フィラメントの両端がそれぞれ封止部を介して2つの電極に接続されたものである。
For example, the light irradiating unit has a plurality of rod-shaped heating lamps (hereinafter also referred to as “bar-shaped lamps”) in a state where each lamp central axis is positioned in one plane so as to be parallel to the surface on which the workpiece extends. Alternatively, they may be arranged in parallel with each other.
Each of the bar lamps is preferably installed such that the distance between the adjacent bar lamps is equal.
As the rod-shaped lamp, for example, a double-ended filament lamp can be used.
A double-ended filament lamp includes, for example, a straight tubular bulb sealed at both ends by a sealing portion, and the filament is accommodated in the bulb in a state of extending in the coaxial direction, and both ends of the filament are sealed. It is connected to two electrodes via a stop.

本発明の加熱処理方法においては、まず、ワークの厚みや輪郭、当該ワークの表面の反射率などに応じて、ワークの被照射面の一部に対して、上述のように赤外線吸収処理および/または赤外線反射処理を施す。これにより、ワークの全体が、所定の時間内に本加熱処理の目的とする温度範囲内に昇温されるものとされる。その後、ワークの被照射面の全面に光照射部からワークに向かう一定方向に均等な強度分布で放射された赤外線が照射され、所定の時間内に本加熱処理の目的とする温度範囲まで昇温され、当該本加熱処理の目的とする温度範囲内の本加熱処理温度に維持されて本加熱処理が行われる。
本加熱処理温度は、例えば1000℃±50℃とされる。
なお、赤外線吸収処理において形成される、赤外線吸収剤を含有する塗料を塗布した塗布膜は、塗料の種類によっても異なるが、本加熱処理温度で加熱することによって加熱分解させて消失させることもできる。
In the heat treatment method of the present invention, first, according to the thickness and contour of the workpiece, the reflectance of the surface of the workpiece, etc., a part of the irradiated surface of the workpiece is subjected to infrared absorption treatment and / or as described above. Alternatively, an infrared reflection process is performed. As a result, the entire workpiece is heated within a predetermined temperature range within a predetermined time. After that, the entire irradiated surface of the workpiece is irradiated with infrared rays radiated with a uniform intensity distribution in a certain direction from the light irradiation section toward the workpiece, and the temperature is raised to the target temperature range for the main heat treatment within a predetermined time. Then, the main heat treatment is performed while maintaining the main heat treatment temperature within the target temperature range of the main heat treatment.
The main heat treatment temperature is, for example, 1000 ° C. ± 50 ° C.
In addition, the coating film to which the paint containing the infrared absorbent formed in the infrared absorption treatment is applied varies depending on the kind of the paint, but can be thermally decomposed and disappeared by heating at the main heat treatment temperature. .

以上のような加熱処理方法は、ワークの被照射面の一部に赤外線吸収処理および/または赤外線反射処理を施した後に、赤外線をワークに向かう方向に均等に放射する熱処理装置によって本加熱処理するものである。従って、ワークにおける赤外線の照射による昇温速度が相対的に小さい部分に係る被照射面に赤外線吸収処理を施すことによって、および/または、ワークにおける赤外線の照射による昇温速度が相対的に大きい部分に係る被照射面に赤外線反射処理を施すことによって、各部分における赤外線の吸収量がそれぞれ制御されて所定の時間内に本加熱処理の目的とする温度範囲まで昇温される。その結果、ワークについての赤外線の照射による昇温速度の分布を、当該ワークの厚みや輪郭、当該ワークの表面の反射率などによらずに略均等にすることができる。換言すると、赤外線の照射による昇温速度の分布の不均一を是正することができる。従って、全体を均質に所望の温度に加熱することができる。   In the heat treatment method as described above, after a part of the irradiated surface of the workpiece is subjected to infrared absorption treatment and / or infrared reflection treatment, the heat treatment is performed by a heat treatment apparatus that radiates infrared rays uniformly toward the workpiece. Is. Therefore, by performing infrared absorption treatment on the irradiated surface related to the portion where the heating rate by infrared irradiation in the workpiece is relatively small, and / or the portion where the heating rate by infrared irradiation in the workpiece is relatively large By subjecting the irradiated surface to infrared reflection processing, the amount of infrared absorption in each portion is controlled, and the temperature is raised to the target temperature range of the main heat treatment within a predetermined time. As a result, it is possible to make the temperature increase rate distribution of the workpiece by infrared irradiation substantially uniform regardless of the thickness and contour of the workpiece, the reflectance of the surface of the workpiece, and the like. In other words, it is possible to correct uneven temperature distribution due to infrared irradiation. Therefore, the whole can be heated uniformly to a desired temperature.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、種々の変更を加えることができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be added.

以下、本発明の効果を確認するために行った実験例について説明するが、本発明はこれに限定されるものではない。   Hereinafter, although the experiment example performed in order to confirm the effect of this invention is demonstrated, this invention is not limited to this.

<実験例1>
図5に示すように、縦100mm×横200mm×厚み2mmの矩形の鋼板(大面積鋼板(1))の一面(上面)上に、縦50mm×横50mm×厚み2mmの矩形の鋼板(小面積鋼板(2))を、一角が一致するよう積層させた差厚鋼板(3)を用意した。
この差厚鋼板(3)の小面積鋼板(2)の、大面積鋼板(1)と接触された面と反対の面(上面)の全面に、シリコーン樹脂を含有する塗料「耐熱耐候マーカー 黒」(オキツモ社製)を塗布して塗布膜を形成した。これを加熱対象物〔A1〕とする。
一方、比較用として上記の塗料を塗布していない差厚鋼板(3)を用意し、これそのものを加熱対象物〔B〕とする。
<Experimental example 1>
As shown in FIG. 5, a rectangular steel plate (small area: 50 mm long × 50 mm wide × 2 mm thick) on one surface (upper surface) of a rectangular steel plate (large area steel plate (1)) having a length of 100 mm × width of 200 mm × thickness of 2 mm. A differential thickness steel plate (3) was prepared by laminating steel plates (2)) so that the corners coincided.
On the entire surface of the small-area steel plate (2) of the differential thickness steel plate (3) opposite to the surface in contact with the large-area steel plate (1) (upper surface), a paint containing a silicone resin “heat resistant weather resistant marker black” (Okitsumo Co., Ltd.) was applied to form a coating film. This is the heating object [A1].
On the other hand, the differential thickness steel plate (3) to which the above-mentioned paint is not applied is prepared for comparison, and this is the heating object [B].

これらの加熱対象物〔A1〕,〔B〕を、点光源型のフィラメントランプ(定格電力7000W、外径13mm)が、ランプ間配列ピッチ18mmで加熱対象物が伸びる面方向に沿って縦横に並設された熱処理装置を用いて本加熱処理を行った。
そして、各加熱対象物〔A1〕,〔B〕の被照射面における、小面積鋼板(2)の上面における隣接する2辺からそれぞれ10mm離間した位置、小面積鋼板(2)が積層されていない大面積鋼板(1)の上面における隣接する2辺からそれぞれ10mm離間した位置のそれぞれの時間に対する温度を熱電対(4,5)によってそれぞれ測定した。結果を図6に示す。
図6において、加熱対象物〔A1〕の小面積鋼板(2)の表面についての結果を太い実線(A1−2)で示し、加熱対象物〔A1〕の大面積鋼板(1)の表面についての結果を太い破線(A1−1)で示す。また、加熱対象物〔B〕の小面積鋼板(2)の表面についての結果を細い実線(B−2)で示し、加熱対象物〔B〕の大面積鋼板(1)の表面についての結果を細い破線(B−1)で示す。
また、本加熱処理中の温度変化について、表1に示す。
These heating objects [A1] and [B] are arranged vertically and horizontally along a surface direction in which a point light source type filament lamp (rated power of 7000 W, outer diameter of 13 mm) extends with a lamp-to-lamp arrangement pitch of 18 mm. The main heat treatment was performed using the heat treatment apparatus provided.
And in the irradiated surface of each heating object [A1], [B], the position spaced apart 10 mm from the two adjacent sides on the upper surface of the small area steel plate (2), the small area steel plate (2) is not laminated. The temperature with respect to each time at a position 10 mm apart from two adjacent sides on the upper surface of the large-area steel plate (1) was measured with a thermocouple (4, 5). The results are shown in FIG.
In FIG. 6, the result about the surface of the small area steel plate (2) of the heating object [A1] is shown by a thick solid line (A1-2), and the surface of the large area steel plate (1) of the heating object [A1] is shown. A result is shown by a thick broken line (A1-1). Moreover, the result about the surface of the small area steel plate (2) of the heating object [B] is shown by a thin solid line (B-2), and the result about the surface of the large area steel plate (1) of the heating object [B] is shown. This is indicated by a thin broken line (B-1).
Moreover, it shows in Table 1 about the temperature change during this heat processing.

<実験例2>
縦50mm×横50mm×厚み2mmの矩形の鋼板(小面積鋼板(2))を、点光源型のフィラメントランプ(定格電力7000W、外径13mm)が、ランプ間配列ピッチ18mmで加熱対象物が伸びる面方向に沿って縦横に並設された熱処理装置を用いて、600℃まで予備加熱した。その後、縦100mm×横200mm×厚み2mmの矩形の鋼板(大面積鋼板(1))の一面(上面)上に、一角が一致するよう積層させた。これを加熱対象物〔A2〕とする。
<Experimental example 2>
A rectangular steel plate (small area steel plate (2)) having a length of 50 mm, a width of 50 mm, and a thickness of 2 mm, a point light source type filament lamp (rated power of 7000 W, outer diameter of 13 mm), and an object to be heated extends at an inter-lamp arrangement pitch of 18 mm. Preheating was performed up to 600 ° C. using heat treatment devices arranged in the vertical and horizontal directions along the surface direction. Then, it laminated | stacked so that a corner might correspond on one surface (upper surface) of a rectangular steel plate (large area steel plate (1)) of length 100mm x width 200mm x thickness 2mm. This is the heating object [A2].

この加熱対象物〔A2〕を、上記の熱処理装置を用いて本加熱処理を行った。
そして、加熱対象物〔A2〕の被照射面における、小面積鋼板(2)の上面における隣接する2辺からそれぞれ10mm離間した位置、小面積鋼板(2)が積層されていない大面積鋼板(1)の上面における隣接する2辺からそれぞれ10mm離間した位置のそれぞれの時間に対する温度を熱電対(4,5)によってそれぞれ測定した。本加熱処理中の温度変化について0.5秒間刻みで測定し、小面積鋼板が950℃以上の温度域に達した時点の「小面積鋼板の温度」および「大面積鋼板の温度」の温度を表1に示す。
This heating object [A2] was subjected to the main heat treatment using the above heat treatment apparatus.
And in the irradiated surface of the heating object [A2], a position separated by 10 mm from two adjacent sides on the upper surface of the small area steel plate (2), a large area steel plate (1) on which the small area steel plate (2) is not laminated (1 The temperature with respect to each time at a position 10 mm away from two adjacent sides on the upper surface was measured with thermocouples (4, 5). The temperature change during the heat treatment was measured in 0.5 second increments, and the temperature of the “small area steel plate temperature” and “large area steel plate temperature” when the small area steel plate reached a temperature range of 950 ° C. or higher. Table 1 shows.

Figure 2017201058
Figure 2017201058

図6のグラフから明らかなように、赤外線吸収処理を行った加熱対象物〔A1〕においては、小面積鋼板(2)の温度が、加熱対象物〔B〕における小面積鋼板(2)と比較して急激に上昇することが確認された。また、表1から明らかなように、この加熱対象物〔A1〕においては、小面積鋼板(2)の温度が950℃前後に達した時点の大面積鋼板(3)の温度との差(温度差183℃)は、赤外線吸収処理を行わなかった加熱対象物〔B〕(温度差224℃)よりも小さくなることが確認された。
さらに、加熱対象物〔A1〕,〔A2〕においては、950℃前後に達するまでの加熱時間も、比較用の加熱対象物〔B〕に比べて短縮されることが確認された。
予備加熱による赤外線吸収処理を行った加熱対象物〔A2〕についても、同様の傾向が確認された。
As apparent from the graph of FIG. 6, in the heating object [A1] subjected to the infrared absorption treatment, the temperature of the small area steel plate (2) is compared with that of the small area steel plate (2) in the heating object [B]. It was confirmed that it rose rapidly. Further, as is apparent from Table 1, in this heating object [A1], the difference (temperature) from the temperature of the large area steel plate (3) when the temperature of the small area steel plate (2) reached around 950 ° C. It was confirmed that the difference (183 ° C.) was smaller than the heating object [B] (temperature difference 224 ° C.) that was not subjected to infrared absorption treatment.
Furthermore, in the heating objects [A1] and [A2], it was confirmed that the heating time to reach around 950 ° C. was shortened as compared with the heating object [B] for comparison.
The same tendency was confirmed also about the heating object [A2] which performed the infrared absorption process by preheating.

1 大面積鋼板
2 小面積鋼板
3 差厚鋼板
4,5 熱電対
10 下層ワーク
15 中央部領域
17 端部領域
20 上層ワーク
25 厚みが大きい部分
27 厚みが小さい部分
30 積層部分
40 単層部分
41 突出部
42 角部
45 穴
Ab1,Ab2,Ab3,Ab4 光吸収処理領域
Re1,Re2,Re3 光反射処理領域
W1,W2,W3,Wa,Wb,Wc,Wd,We,Wf ワーク

DESCRIPTION OF SYMBOLS 1 Large area steel plate 2 Small area steel plate 3 Differential thickness steel plate 4,5 Thermocouple 10 Lower layer work 15 Center part area | region 17 End part area 20 Upper layer work 25 Thick part 27 Small part 30 Laminated part 40 Single layer part 41 Protrusion Part 42 Corner part 45 Hole Ab1, Ab2, Ab3, Ab4 Light absorption processing region Re1, Re2, Re3 Light reflection processing region W1, W2, W3, Wa, Wb, Wc, Wd, We, Wf

Claims (7)

金属よりなる加熱対象物の被照射面の一部に赤外線吸収処理を施した後に、加熱ランプからの赤外線を照射することにより、当該加熱対象物を加熱処理することを特徴とする加熱処理方法。   A heat treatment method comprising: heat treating an object to be heated by irradiating infrared rays from a heating lamp after performing infrared absorption treatment on a part of an irradiated surface of the object to be heated made of metal. 前記加熱対象物が、鋼板であることを特徴とする請求項1に記載の加熱処理方法。   The heat treatment method according to claim 1, wherein the heating object is a steel plate. 前記赤外線吸収処理が、前記加熱対象物を前記加熱処理の温度よりも低い温度に予め加熱することであることを特徴とする請求項1または請求項2に記載の加熱処理方法。   3. The heat treatment method according to claim 1, wherein the infrared absorption treatment is preheating the object to be heated to a temperature lower than a temperature of the heat treatment. 前記赤外線吸収処理が、前記加熱対象物における相対的に厚みが大きい部分に係る被照射面に対して行われることを特徴とする請求項1〜請求項3のいずれかに記載の加熱処理方法。   The said infrared absorption process is performed with respect to the to-be-irradiated surface which concerns on the relatively thick part in the said heating target object, The heat processing method in any one of Claims 1-3 characterized by the above-mentioned. 金属よりなる加熱対象物の被照射面の一部に赤外線反射処理を施した後に、加熱ランプからの赤外線を照射することにより、当該加熱対象物を加熱処理することを特徴とする加熱処理方法。   A heat treatment method comprising: heat treating an object to be heated by irradiating an infrared ray from a heating lamp after performing an infrared reflection process on a part of an irradiated surface of the object to be heated made of metal. 前記加熱対象物が、鋼板であることを特徴とする請求項5に記載の加熱処理方法。   The heat treatment method according to claim 5, wherein the heating object is a steel plate. 前記赤外線反射処理が、前記加熱対象物における相対的に厚みが小さい部分に係る被照射面に対して行われることを特徴とする請求項5または請求項6に記載の加熱処理方法。


The heat treatment method according to claim 5, wherein the infrared reflection treatment is performed on an irradiated surface related to a portion having a relatively small thickness in the heating object.


JP2017089604A 2016-04-28 2017-04-28 Heat treatment method Active JP6972640B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090244 2016-04-28
JP2016090244 2016-04-28

Publications (2)

Publication Number Publication Date
JP2017201058A true JP2017201058A (en) 2017-11-09
JP6972640B2 JP6972640B2 (en) 2021-11-24

Family

ID=60264658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089604A Active JP6972640B2 (en) 2016-04-28 2017-04-28 Heat treatment method

Country Status (1)

Country Link
JP (1) JP6972640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032434A (en) * 2018-08-28 2020-03-05 株式会社キーレックス Hot press molding method
JP2020163429A (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Production method for hot press-molded article, and steel sheet
CN114260376A (en) * 2021-12-23 2022-04-01 哈尔滨工业大学 Method for controlling contact heating temperature uniformity of differential thickness plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292498A (en) * 2006-04-21 2007-11-08 Jfe Steel Kk Oxide film thickness measuring method, and instrument therefor
WO2011016518A1 (en) * 2009-08-06 2011-02-10 新日本製鐵株式会社 Metal plate for radiation heating, process for producing same, and processed metal having portion with different strength and process for producing same
WO2013145229A1 (en) * 2012-03-29 2013-10-03 アイシン高丘株式会社 Metal processing method and metal article processed thereby
JP2014040657A (en) * 2012-07-24 2014-03-06 Hitachi Metals Ltd Hardening method of steel member
JP2017082262A (en) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 Heat treatment method of metal component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292498A (en) * 2006-04-21 2007-11-08 Jfe Steel Kk Oxide film thickness measuring method, and instrument therefor
WO2011016518A1 (en) * 2009-08-06 2011-02-10 新日本製鐵株式会社 Metal plate for radiation heating, process for producing same, and processed metal having portion with different strength and process for producing same
WO2013145229A1 (en) * 2012-03-29 2013-10-03 アイシン高丘株式会社 Metal processing method and metal article processed thereby
JP2014040657A (en) * 2012-07-24 2014-03-06 Hitachi Metals Ltd Hardening method of steel member
JP2017082262A (en) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 Heat treatment method of metal component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032434A (en) * 2018-08-28 2020-03-05 株式会社キーレックス Hot press molding method
JP2020163429A (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Production method for hot press-molded article, and steel sheet
JP7260765B2 (en) 2019-03-29 2023-04-19 日本製鉄株式会社 Method for manufacturing hot press-formed product, and steel plate
CN114260376A (en) * 2021-12-23 2022-04-01 哈尔滨工业大学 Method for controlling contact heating temperature uniformity of differential thickness plate
CN114260376B (en) * 2021-12-23 2024-03-08 哈尔滨工业大学 Differential plate contact heating temperature uniformity control method

Also Published As

Publication number Publication date
JP6972640B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP2017201058A (en) Heat treatment method
RU2577562C2 (en) Method for producing a low-emissivity layer system
US20150048075A1 (en) Curing System
WO2011016518A1 (en) Metal plate for radiation heating, process for producing same, and processed metal having portion with different strength and process for producing same
CA2394426C (en) Device for fast and uniform heating of a substrate with infrared radiation
MX2011012989A (en) Method for depositing a thin film, and resulting material.
US20150211084A1 (en) Metal processing method and metal product processed thereby
TWI419234B (en) Managing thermal budget in annealing of substrates
JP2012144773A (en) Metal plate for radiation transfer heating and method for producing the same, and metal worked product with different strength parts and method for producing the same
CN104969020A (en) Infrared furnace and method for infrared heating
KR101780441B1 (en) Apparatus and method for fabricating Graphene films using a laser
CN107530725B (en) Tailored material properties using infrared radiation and infrared absorber coatings
KR100863012B1 (en) Infrared ray heating apparatus for electrostatic spray coating of power paint
US20050221017A1 (en) Method of heat treating coatings by using microwave
JPS63305965A (en) Method for drying or baking film
KR101639906B1 (en) Hot Press Formed Part Having Strength-gradient and Manufacturing Method Thereof
KR101375878B1 (en) Method for forming fine pattern
CA2527206A1 (en) Thermosetting material; process and apparatus for forming thermosetting material
KR101643925B1 (en) A laser heat treatment method of steel sheets
US20030061726A1 (en) Method for drying coatings on substrates for lamps
CN103692091A (en) Surface plate laser stitch welding technology
JP7431843B2 (en) How to increase the strength of glass substrates
TWI637805B (en) Laser processing system and method for metallic surface
JP6692431B2 (en) Steel plate heat treatment apparatus and method
CN207958426U (en) A kind of device for the quenching of part bilateral inner wall laser

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6972640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151