JPS63305013A - Caterpillar propulsion type high speed ship - Google Patents

Caterpillar propulsion type high speed ship

Info

Publication number
JPS63305013A
JPS63305013A JP14104787A JP14104787A JPS63305013A JP S63305013 A JPS63305013 A JP S63305013A JP 14104787 A JP14104787 A JP 14104787A JP 14104787 A JP14104787 A JP 14104787A JP S63305013 A JPS63305013 A JP S63305013A
Authority
JP
Japan
Prior art keywords
paddle
water
caterpillar
hull
paddles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14104787A
Other languages
Japanese (ja)
Inventor
Kimio Tanaka
田中 公夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUEIBAA KK
Original Assignee
FUEIBAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUEIBAA KK filed Critical FUEIBAA KK
Priority to JP14104787A priority Critical patent/JPS63305013A/en
Publication of JPS63305013A publication Critical patent/JPS63305013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To improve high speed sailing and to enable execution of running on a land, by a method wherein caterpillars with paddles are disposed to outside of the two gunwales of a ship hull, when the caterpillar is moved down, it is submerged in water, and it strokes water in water to produce a running force. CONSTITUTION:After, paddles 15 are regulated through a flange 18 so that they have an angle of elevation of 45 deg. with a belt 16 when paddles 15 are moved to below, an engine is driven to drive caterpillars 13. As a result, the paddle 15 strokes water to start sailing. Since the paddle 15 has an angle of elevation of 45 deg., buoyancy is generated to lift up a ship hull, and water resistance is reduced. When a speed is increased to a specified value, the paddle 15 is regulated so that it is inclined at 90 deg. with the belt 16. This method maximizes the thrust of the paddle 15. The paddle 15 is displaced to a state in which it is positioned parallel to the belt 16 at a point of time when it is moved around a rear drive wheel 12a. This constitution provides a speed of 100 knot or more.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は商船、漁船、レクリエーションポート、更には
艦船用として100ノット以上の航行性能を有し、自刃
で浜辺上陸や陸地走行並びに係留が可能な高速船舶に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is suitable for commercial ships, fishing boats, recreational ports, and even ships, and has a navigation performance of 100 knots or more, and is capable of landing on beaches, traveling on land, and mooring with its own blade. Regarding high-speed ships.

[従来技術] 従来船舶は、船体が水中に没し、スクリューでの回転で
推進するものが多いが、このような船舶では主として水
の粘性による形状・#擦抵抗と波を起すために生ずる造
波抵抗並びに船体及びその構造物が水面上の大気から受
ける空気抵抗等の諸々の抵抗を受けながら航行している
。しかも、水は空気の800倍の密度になっているので
、水に漬って航行する従来の船舶は自動車や飛行機に比
較して高速では極めて抵抗が大きく、例えば航行速度が
1100K/)−1(54ノツト)以上になる場合、有
効揚抗比はOとなり、効率が悪くなる。
[Prior art] In many conventional ships, the hull is submerged in water and propelled by rotation of a screw, but such ships mainly rely on the shape and friction caused by the viscosity of water and the structure that occurs due to waves. Ships navigate while experiencing various resistances such as wave resistance and air resistance that the hull and its structures receive from the atmosphere above the water surface. Moreover, water is 800 times more dense than air, so conventional ships that navigate while submerged in water experience extremely high resistance at high speeds compared to cars and airplanes, for example, at a cruising speed of 1100K/)-1. (54 knots) or more, the effective lift-drag ratio becomes O and the efficiency deteriorates.

又、このような水の抵抗を排除するために高速走行中は
船体を空気中に浮上させる水中翼船、ホバークラフト、
ジェットフォイル等ちるあるが、いずれも水の粘性によ
る強い形状抵抗、又は造波抵抗を受け、推進のためのエ
ネルギー効率は良くない。
In addition, in order to eliminate such water resistance, hydrofoils, hovercraft, etc. whose hulls float in the air while traveling at high speeds
There are jet foils and the like, but all of them are subject to strong form resistance or wave-making resistance due to the viscosity of water, and their energy efficiency for propulsion is not good.

[発明が解決しようとする問題点] このように従来の船舶では、水の抵抗を受けて軍用の高
速艇で精々45ノット、船体を浮上させる水中翼船でも
55ノツト、ホバークラフトで90ノツト位が実用的な
限界である。
[Problems to be solved by the invention] As described above, in conventional ships, military high-speed boats can reach 45 knots at most due to water resistance, 55 knots for hydrofoils that float the hull, and 90 knots for hovercraft. This is the limit.

本発明は上記の点に鑑み、100ノット以上の速度で走
行でき且つ水上のみでなく陸上走行や係留が可能な新規
な高速船舶を提供することに目的がある。
In view of the above-mentioned points, an object of the present invention is to provide a new high-speed ship that can travel at speeds of 100 knots or more, and can travel not only on water but also on land and mooring.

[問題を解決するための手段] 本発明は船体の両舷外側前後に動輪を取付け、前後の動
輪を対にして両側にキャタピラを輪掛けし、各キャタピ
ラに一定間隔で多数のパドルを取付け、下側にきたキャ
タピラは水中に没するような構造となし、前記動輪の一
部又は全部に回転力を与えるエンジンを搭載し、該エン
ジンの回転力を4i+記キヤタピラの移動に変換し、そ
のキャタピラに設置した多数のパドルにより水を掻くこ
とで船体を走行させるように構成したキャタピラ推進式
高速船舶に特徴を有する。
[Means for Solving the Problems] The present invention includes driving wheels attached to the front and rear sides of both sides of the hull, pairing the front and rear driving wheels, hooking caterpillars on both sides, and attaching a large number of paddles to each caterpillar at regular intervals. The caterpillar that has come to the bottom has a structure that is submerged in water, and is equipped with an engine that provides rotational force to part or all of the driving wheels.The rotational force of the engine is converted into movement of the 4i+ caterpillar, and the caterpillar is A caterpillar-propelled high-speed ship is characterized by a structure in which the ship is propelled by scraping the water with a large number of paddles installed in the water.

[実施例〕 第1図は本発明の一実施例を示ず斜視図であり、1は船
体を示す。この船体の外形は、飛行機の翼形を取入れ、
高さを低くして横幅を広くとり、空気抵抗が大きい構造
物を一切排除した流線形にすることにより、ある速度以
−FにJ3いて揚力を発生させるようにしている。又、
船体や構造物の材料は鉄鋼材料に代えて、軽金属や強化
プラスティックなどを多く使用し、重囲及び容量を極力
小さくし低速で揚力を発生できるようにしている。又、
船体は万一の衝撃・浸水の防御策として二重構造にし、
更に外板と内側の隔壁の間には船体の大きさに応じて発
砲スチロール等の軽く疎水性に富んだM雨林を充填し、
耐防水性及び耐i撃性を持たしである。2は操縦席であ
り、フロントガラス3を通して前方の視界が良好なよう
に作られている。
[Embodiment] FIG. 1 is a perspective view of an embodiment of the present invention, and numeral 1 indicates a hull. The exterior shape of this hull takes the shape of an airplane airfoil,
By reducing the height, widening the width, and creating a streamlined shape that eliminates any structures with high air resistance, it is possible to generate lift above a certain speed. or,
Instead of steel, the ship's hull and structures are made of light metals and reinforced plastics to minimize weight and volume, allowing it to generate lift at low speeds. or,
The hull has a double structure to protect against shock and flooding.
Furthermore, depending on the size of the hull, M rainforest, which is light and highly hydrophobic, such as styrene foam, is filled between the outer panel and the inner bulkhead.
It is waterproof and i-shock resistant. Reference numeral 2 denotes a pilot's seat, which is designed to provide good visibility ahead through a windshield 3.

4は船体の側方に設けた窓ガラス、5は後方に設けた窓
ガラス、6aと6bは乗降口である。船尾には両舷に近
く船体縦軸に平行して薄い板の垂直尾1j17a、7b
を対向して2枚立て、走行時の偏揺れ(ヨーイング)を
安定させている。又、左右垂直尾翼の上端には一枚の流
線形の水平尾翼8を取付け、その一部又は全部は操縦に
より迎角または俯角に傾斜させることができ、船首上げ
や船尾上げ、波を乗り越えるための船体上昇等縦揺れ(
ピッチング)の安定並びに昇降舵の役を果させている。
4 is a window glass provided on the side of the hull, 5 is a window glass provided at the rear, and 6a and 6b are entrances and exits. At the stern, there are vertical sterns 1j17a, 7b made of thin plates parallel to the longitudinal axis of the hull near both sides.
Two panels are placed facing each other to stabilize yawing during driving. In addition, a single streamlined horizontal stabilizer 8 is attached to the upper ends of the left and right vertical stabilizers, and part or all of it can be tilted to the angle of attack or depression by maneuvering, and can be used to raise the bow or stern, or to overcome waves. pitching, such as the hull rising (
It serves as a stabilizer (pitching) and as an elevator.

両舷外側には個別に回転する鉄鋼製の前軸9a、9b 
(9bは図示せず)と後軸10a。
Steel front axles 9a and 9b that rotate individually on the outside of both sides
(9b is not shown) and the rear shaft 10a.

10b(10bは図示せず)が張出して独立懸架として
取付けである。但し、これらの軸は上下方向のみに個々
に運動して緩衝の役を果し、前後については軸間距離が
変化しないよう、前後輪軸を互いに突っ張るようにバネ
で反発力を与え、前後軸が平行のまま緩衝運動が行なわ
れるような構造にしである。各軸にはキャタピラ駆動輪
11a。
10b (10b is not shown) extends and is attached as an independent suspension. However, these axles move individually only in the vertical direction to act as a buffer, and in order to keep the distance between the axles from changing in the front and rear, springs apply a repulsive force to the front and rear wheel axles so that they are stretched against each other. The structure is such that buffering motion is performed while remaining parallel. Each shaft has a caterpillar drive wheel 11a.

11b及び12a、12b(11bと12bは図示せず
)が固定されており、11aと12aにはキャタピラ1
3が、又11bと12bにはキャタピラ14が輪掛けし
である。両キャタピラには一定間隔で多数のパドル15
が取付けてあり、このパドルが水中を移動することによ
り水を掻き、船体に推進力を与えるようにしである。
11b, 12a, and 12b (11b and 12b are not shown) are fixed, and a caterpillar 1 is fixed to 11a and 12a.
3, and caterpillars 14 are hooked to 11b and 12b. Both caterpillars have many paddles 15 at regular intervals.
A paddle is attached to the boat, and by moving through the water, this paddle scrapes the water and provides propulsion to the hull.

前記キャタピラ13.14は第2図に示すように、張力
に富んだ合成1ltI41(例えばナイロン系グブラ等
)を束ねた2列のベルト16a、16bを輪にしたもの
で構成され、このベルトは第3図のようにあらかじめ各
パドル15の軸17の両端に設けられたn通孔を通して
両者一体化し、動輪11a、11b、12a、12bに
設けた多数の幅18の先端(輻先)に輪掛けしである。
As shown in FIG. 2, the caterpillars 13 and 14 are constructed by looping two rows of belts 16a and 16b made of synthetic 1ltI41 (for example, nylon rubber) with high tension. As shown in Figure 3, the paddles 15 are integrated through the N through holes provided at both ends of the shaft 17 in advance, and the wheels are hooked onto the tips (radius tips) of the multiple widths 18 provided on the driving wheels 11a, 11b, 12a, and 12b. It is.

前記バドル軸17の両ベルトの内側には鍔18a、18
bが取付けられ、第2図に示す二股状に分れた輻の打設
状の矢先がパドルとこの鍔との間で軸17を食わえ、動
輪を回したとき、この矢先でパドルの軸17を送るよう
にする。前記キャタピラ13゜14の下側は、船底より
5Qcm以上のクリアランスを取るようにする。このク
リアランスの長さは、船体の大きさにより異なるも、高
波を避けるためには大きい程有効である。又、船体の満
載吃水時においても、キャタピラの上半分は水面に露出
するように各動輪11a、11b、12a、12bの直
径、回転軸9a、9b、10a、10bの船体1への取
付は位置等を設定する。
Flanges 18a, 18 are provided on the inside of both belts of the paddle shaft 17.
b is installed, and the tip of the cast-shaped arrow of the bifurcated shaft shown in Fig. 2 catches the shaft 17 between the paddle and this collar, and when the driving wheel is rotated, the shaft of the paddle is at the tip of the arrow. 17. The lower sides of the caterpillars 13 and 14 are designed to have a clearance of 5Qcm or more from the bottom of the ship. The length of this clearance varies depending on the size of the hull, but the longer it is, the more effective it is for avoiding high waves. Also, the diameters of the driving wheels 11a, 11b, 12a, 12b and the mounting positions of the rotating shafts 9a, 9b, 10a, 10b on the hull 1 are adjusted so that the upper half of the caterpillar is exposed on the water surface even when the hull is fully loaded. etc.

前記パドル15は硬質ゴム、合成ゴム、プラスティク等
で形成され、断面を厚目の半円形に成型し、反りの多い
面Aと少ない面Bとで構成する。
The paddle 15 is made of hard rubber, synthetic rubber, plastic, etc., has a thick semicircular cross section, and has a surface A with more warp and a surface B with less warp.

これにより、平行流又は水圧中にパドルを置いた場合、
第4図aの状態にあったパドルは、水圧を受けてbの状
態へ、更にCの状態へと回転し、水流に反りの大きい面
Aを向けて安定する。バドル軸17の外周には、数列の
楕円形状の突起物19a、19b、19cを併置し、又
パドル15の穴の内側にもこの突起に対応する突起列又
は満208.20b、20cを併設し、通常はスプリン
グ21の力により、軸とパドルの突起が嵌合して、軸と
パドルが一体化するように引合わされている。
This means that when the paddle is placed in parallel flow or water pressure,
The paddle, which was in the state shown in Fig. 4a, rotates to the state shown in b and then to the state shown in C in response to the water pressure, and stabilizes with the side A, which has a large warp, facing the water flow. On the outer periphery of the paddle shaft 17, several rows of elliptical projections 19a, 19b, and 19c are placed side by side, and inside the hole of the paddle 15, there are also rows of projections or rows of projections 208.20b, 20c corresponding to these projections. Normally, the force of the spring 21 causes the protrusions of the shaft and paddle to fit together, and the shaft and paddle are drawn together so as to be integrated.

第3図は両突起が離されている状態を示し、パドル15
を矢印の方向に押すことにより両者の分離が達せられる
。前記キャタピラの内側ベルト16b側の幅の打設の先
端には内側にベアリング22を突出させて取付け、パド
ル軸17に打設が嵌合する際、このベアリングがパドル
15の側面を外向き(第3図の矢印方向)に押圧する。
Figure 3 shows a state in which both protrusions are separated, and the paddle 15
Separation between the two is achieved by pushing in the direction of the arrow. A bearing 22 is installed to protrude inward at the tip of the driving part of the width on the inner belt 16b side of the caterpillar, and when the driving part is fitted to the paddle shaft 17, this bearing turns the side surface of the paddle 15 outward (the third 3) in the direction of the arrow in Figure 3).

従って、パドル15はその軸が1!!18に嵌合してい
るとぎのみ、該軸との係合が外され、任意な角度に傾斜
することができる。このとき、打設の矢先がパドルの側
面を擦りながら摺動するので、摺動向の摩擦や消耗を防
ぐためにベアリング22が有効である。前記動輪には台
幅の中央部に突出するようにクランク軸23が放射状に
摺動可能に嵌合され、このクランク軸の先端に2つ折の
支え具24を結合せしめ、パドルの背面がこの支え具に
当たり、それ以上の回転を阻止するように構成している
Therefore, the axis of paddle 15 is 1! ! Only the pins fitted in 18 are disengaged from the shaft and can be tilted at any angle. At this time, since the pouring arrow tip slides while rubbing against the side surface of the paddle, the bearing 22 is effective in preventing friction and wear caused by the sliding movement. A crankshaft 23 is slidably fitted radially into the driving wheel so as to protrude from the center of the width of the platform, and a bifold support 24 is connected to the tip of the crankshaft, and the back surface of the paddle is attached to this support. It is configured to hit the tool and prevent further rotation.

前記クランク軸23は操縦席に設けられた左右キャタピ
ラ別のバドル角度変換把手(図示せず)に電気的又は機
械的に連結せしめし、その把手の操作により矢印方向に
移動させ、それにより支え具24の矢先との間隔を調整
でき、もってパドルの傾き角度を調整可能にしている。
The crankshaft 23 is electrically or mechanically connected to a paddle angle conversion handle (not shown) for left and right caterpillars provided in the cockpit, and is moved in the direction of the arrow by operating the handle, thereby turning the support tool. The distance from the tip of the arrow 24 can be adjusted, thereby making it possible to adjust the angle of inclination of the paddle.

パドルが迎角に回転するのは、第4図に示したように、
その水圧を受ける而(キャタピラが前進走行の際は後方
に向く面)を他の面より湾曲を大きくし、反りをもたせ
ることにより達成され、水中に突入したとき、反りによ
って勢い良くパドルが駆動輪の回転方向に回転し、支え
具24に当接する。そして、ベルト16a、16bに対
しである角度をもった傾斜が与えられる。この傾斜角度
は前記クランク軸23を押し出すことにより小さくなり
、引込めることにより大きくなる。そして、パドル15
がベルト16a、16bに対して最大90度まで調整可
能にしである。
The paddle rotates to the angle of attack as shown in Figure 4.
This is achieved by making the surface that receives the water pressure (the surface that faces backwards when the caterpillar moves forward) more curved than the other surfaces, giving it a warp. rotates in the direction of rotation, and comes into contact with the support tool 24. Then, an inclination with a certain angle is given to the belts 16a and 16b. This angle of inclination becomes smaller by pushing out the crankshaft 23, and becomes larger by retracting it. And paddle 15
is adjustable up to 90 degrees with respect to the belts 16a, 16b.

第2図において、パドルが下側に回って前の動輪11a
から後の動輪12bに向けて水平に移動する際、一定の
迎角をつけて後部に水を掻いて推進し、船体に推進力を
与える。同時にパドルは傾斜しているため、浮上のモー
メントを発生し、前進と共に船体を浮上させる作用があ
る。前記パドルのベルトに対する傾斜角度は推進力と浮
上モーメントとの関連で決定され、推進効率を最高にす
るときは迎角を90度にし、浮上のためのモーメントを
最高にするときは45度(効率50%)にすると良い。
In Fig. 2, the paddle rotates downward and the front driving wheel 11a
When moving horizontally toward the rear driving wheels 12b, the boat is propelled by scraping water at its rear at a constant angle of attack, giving propulsion to the hull. At the same time, since the paddle is tilted, it generates a levitation moment, which has the effect of lifting the hull as it moves forward. The angle of inclination of the paddle with respect to the belt is determined in relation to the propulsive force and levitation moment; to maximize the propulsion efficiency, the angle of attack should be 90 degrees, and to maximize the moment for levitation, the angle of attack should be 45 degrees (efficiency). 50%).

そこで、発進時は船体の浮上を必要とするので、パドル
迎角を45度にし、キャタピラの速度が上昇し、船底が
水面から離れた場合には速度を更に上げるため90度に
調整するようにすると良い。尚、船体自信は前述のよう
に流線形に作られ、−室以上の速度になると揚力を有す
るので、速度が早くなった状態ではパドルによる浮力は
必要なくなる。
Therefore, since the hull needs to float when starting, the paddle angle of attack is set to 45 degrees, and when the speed of the caterpillar increases and the bottom of the boat leaves the water surface, it is adjusted to 90 degrees to further increase the speed. That's good. Incidentally, the hull itself is made streamlined as described above, and has a lifting force when the speed reaches the -chamber or higher, so the buoyancy provided by the paddles is no longer necessary when the speed is high.

一方、後方の動輪12aは第5図に示すように、前方動
輪11aと同様な構造をしており、多数の二股状輻25
を有している。内側ベルト16bの方の各輪の打設の先
端には内側にベアリング26を突出せしめ、このベアリ
ングでパドルを外側に向けて押し、それにより、パドル
とバドル軸との結合を解除するようにしている。27は
各輪25の中央部に突出したクランク軸で、動輪12a
内に摺動自在に嵌入されており、スプリング28の力に
より、常に外向きに押圧されている。クランク軸の先端
には、2つ折の押え具29が結合され、この押え具によ
りパドル15の背面を押圧する。
On the other hand, the rear driving wheels 12a have a similar structure to the front driving wheels 11a, as shown in FIG.
have. A bearing 26 is made to protrude inward from the driving tip of each ring on the inner belt 16b, and this bearing pushes the paddle outward, thereby releasing the connection between the paddle and the paddle shaft. There is. 27 is a crankshaft protruding from the center of each wheel 25;
It is slidably fitted into the inside, and is constantly pressed outward by the force of the spring 28. A bifold presser 29 is coupled to the tip of the crankshaft, and this presser presses the back surface of the paddle 15.

即ち、パドル15が後方動輪12aを経て水中から空気
中に扱は出すときには、打設のベアリング26により、
パドル軸17の迎角の抑止を解き、パドル軸に取付けた
復元バネ21の力及び前記クランク軸27のスプリング
28の力により、パドルには内外ベルト16a、16b
に渡された支え棒30に当るまで回転し、ベルトと平行
になって上方に回転する。従って、パドルは空中を走行
するときは、第1図、第2図及び第5図から分るように
水平になり、空気抵抗が小さい状態で移動する。
That is, when the paddle 15 is ejected from water into the air via the rear driving wheel 12a, the cast bearing 26 causes
The angle of attack of the paddle shaft 17 is released, and by the force of the restoring spring 21 attached to the paddle shaft and the force of the spring 28 of the crankshaft 27, the paddle is fixed to the inner and outer belts 16a, 16b.
The belt rotates until it hits the support rod 30 passed over the belt, and rotates upward parallel to the belt. Therefore, when the paddle travels in the air, it becomes horizontal as seen in FIGS. 1, 2, and 5, and moves with low air resistance.

以上説明したような構造の船舶において、船体を発進さ
せる場合には、先ず操縦室において前方動輪から各輻1
8内に突出したクランク’N123の位置を調整し、パ
ドル15が下側に来たときベルト16a、16bに対し
45度の迎角をもつようにする。そして、エンジンを始
動させて前方動輪(後方動輪でも可)11a、11bに
回転力を与えると、これら動輪に取付けた多数の輻18
に案内されてキャタピラ13.14が移動し、これに伴
い移動するパドル15が水を掻き、船体が航行を開始す
る。前記パドルは前方動輪11a、11bにより45度
の角度に傾斜させられるが、後方動輪12a、12bに
おいてはスプリングに押された押え具29及びパドル軸
17に巻回したバネ21の力によりキャタピラのベルト
16a、16bと平行になるように戻される。従って、
パドル15が水中を移動するときは45度の傾きをもっ
て水を掻くが、空中に出るとき略水平に戻され、空気抵
抗を受けないようにされる。船体の発進時、つまり低速
航行時にはパドル15が45度の迎角であるため、推進
力と同時にパドルに浮力が与えられ、船体が水上に持上
げられる。従って、船体の水に対する抵抗が非常に少な
くなる。船体が一定の速度以上になると、船体自信の揚
力により水面から離れて空中に浮ぶようになるので、こ
のときはパドルの浮力は必要なくなる。そこで、船体が
一定速度以上になると、前記クランク軸を操作して支え
具の位置を変え、パドルがベルト16a。
In a ship with the structure explained above, when starting the ship, first, in the cockpit, each wheel is
Adjust the position of the crank 'N123 that protrudes into the frame 8 so that when the paddle 15 comes to the lower side, it has an angle of attack of 45 degrees with respect to the belts 16a and 16b. Then, when the engine is started and rotational force is applied to the front driving wheels (rear driving wheels may also be used) 11a and 11b, a large number of rods 18 attached to these driving wheels are activated.
The caterpillars 13 and 14 move as guided by the water, and the paddle 15 moves along with the water, and the ship starts sailing. The paddles are tilted at an angle of 45 degrees by the front driving wheels 11a and 11b, but in the rear driving wheels 12a and 12b, the caterpillar belt is tilted by the force of the presser 29 pressed by the spring and the spring 21 wound around the paddle shaft 17. It is returned to be parallel to 16a and 16b. Therefore,
When the paddle 15 moves underwater, it paddles the water with an inclination of 45 degrees, but when it goes into the air, it is returned to a substantially horizontal position so that it is not subject to air resistance. Since the paddle 15 is at an angle of attack of 45 degrees when the boat starts, that is, when sailing at low speed, buoyancy is applied to the paddle at the same time as propulsive force, and the boat is lifted above the water. Therefore, the resistance of the hull to water becomes very low. When the boat reaches a certain speed, the boat's own lifting force lifts it off the water and floats in the air, so the buoyancy of the paddles is no longer needed. Therefore, when the hull reaches a certain speed or higher, the crankshaft is operated to change the position of the support, and the paddle is moved to the belt 16a.

16bに対し90度になるように調整しなおす。Readjust it so that it is 90 degrees to 16b.

これにより、パドルの推進力は最大になり航行速度は一
段と向上する。
This maximizes the propulsive force of the paddles and further improves sailing speed.

船体の舵取りは操縦室内に設けたレバー又はハンドルで
行なわれ、左右のキャタピラの走行速度を変えることに
より達成する。そして、極端な場合にはいずれかのキャ
タピラを停止したり逆転させるようにし、急旋回が可能
なように構成しである。又、補助的には垂直尾翼を操舵
するようにしても良い。
Steering of the ship is carried out using a lever or handle installed in the cockpit, and is achieved by changing the running speed of the left and right caterpillars. In extreme cases, one of the caterpillars is stopped or reversed to enable sharp turns. Further, the vertical tail may be auxiliarily steered.

さて、本発明の船舶を水上から陸に乗り上げる場合には
、前方動輪内のクランク軸を操作してパドル15の迎角
を零にして走行すれば、丁度ブルドーザのキャタピラの
ようになり、陸上走行に何等の支障もなくなる。
Now, when the ship of the present invention runs aground from water to land, if the crankshaft in the front drive wheel is operated and the angle of attack of the paddles 15 is set to zero, the ship will run just like the caterpillar of a bulldozer, and it will run on land. There will be no hindrance to this.

第6図は本発明の他の実施例であり、第1図と相違する
点は失速速度を低く押え、最大揚力を上げるために船体
1の前縁に小翼31を張出させ、前縁との間に間隙を置
く、いわゆる前縁フラップを構成したもので、第1図の
実施例に対し、遥かに大きな揚力を得ることができる。
FIG. 6 shows another embodiment of the present invention, and the difference from FIG. 1 is that a small wing 31 is extended from the leading edge of the hull 1 in order to keep the stall speed low and increase the maximum lift. This configuration has a so-called leading edge flap that leaves a gap between the front and rear ends, and can obtain a much larger lift than the embodiment shown in FIG.

但し、この場合6a、6bの乗降口は後部、又は他の位
置に移動する。
However, in this case, the entrances and exits 6a and 6b are moved to the rear or other positions.

第7図は更に他の実施例であり、前方動輪11a、11
bを回転してパドル15が入水する際、垂直に且つ急速
に降下し、水の抵抗を受けて前方動輪を押し上げる力が
強くなるのを防止するためのものであり、動輪11a、
11bより小さい補助動輪32a、32bを船体1の前
方上部に取付け、キャタピラ13.14をこの補助動輪
を介して動輪11a、11b、12a、12bに掛ける
ようにし、補助動輪32a、32b、!:肋輪11a。
FIG. 7 shows still another embodiment, in which the front driving wheels 11a, 11
When the paddle 15 enters the water by rotating b, it descends vertically and rapidly, and prevents the force pushing up the front driving wheels from increasing due to water resistance.
Auxiliary driving wheels 32a, 32b smaller than 11b are attached to the front upper part of the hull 1, and the caterpillars 13.14 are hung on the driving wheels 11a, 11b, 12a, 12b via these auxiliary driving wheels, and the auxiliary driving wheels 32a, 32b, ! : Rib ring 11a.

11bとの間でパドルが入水するようにしである。11b so that the paddle enters the water.

これにより、パドルの水面への入射角度が小さくなり垂
直モーメントの応力を削減できる。後方動輪にも同様な
補助動輪を付加し、パドルの突出角度を鈍角にして船尾
を下げる垂直モーメントを削減するようにすることもで
きる。
This reduces the angle of incidence of the paddle on the water surface, reducing the stress of the vertical moment. It is also possible to add a similar auxiliary driving wheel to the rear driving wheel and make the protruding angle of the paddle obtuse to reduce the vertical moment that lowers the stern.

第8図はパドル15の他の例を示し、後背部に抵抗板3
3を取付け、キャタピラを後進させたとき、パドル15
が水平になっていてもこの抵抗板により水を掻き推進力
を得るこができるようにしたものである。
FIG. 8 shows another example of the paddle 15, with a resistance plate 3 on the back.
3 is attached and the caterpillar is moved backwards, the paddle 15
Even when the plane is horizontal, this resistance plate can scrape water and provide propulsion.

[効果] 以上詳説したように、本発明ではキャタピラを高速回転
されると同時に水中にあるパドルを傾斜させ、水の粘性
に伴う抵抗を利用し゛て水を強く掻き、その反動で船を
前進させ、更にパドルの傾斜面が受ける水圧の分力によ
りキャタピラ下側を上部に持上げ、船体を浮上させるよ
うにしているので、船体を飛行機と同様に空中に浮上さ
せて航行できる。又、船体は飛行機のN形の流線形にし
てあり、一定の対気速度で揚力を発生するので、キャタ
ピラのパドルを垂直に立てて推進力を増大することが可
能となる。その結果、低速からプロペラ飛行機並の高速
航(i (100ノット以上)が可能となった。更に、
パドルは零から90度まで任意角度に傾斜可能であり、
陸地ではパドルを水平にして走行できるので、水陸両用
として利用できる。
[Effect] As explained in detail above, in the present invention, the caterpillar is rotated at high speed, and at the same time the paddle in the water is tilted, and the resistance caused by the viscosity of the water is used to forcefully scrape the water, and the reaction is used to move the boat forward. Furthermore, the lower part of the caterpillar is lifted upwards by the force of the water pressure applied to the inclined surface of the paddle, causing the hull to levitate, allowing the hull to float in the air in the same way as an airplane. In addition, the hull is streamlined in the N-shape of an airplane and generates lift at a constant airspeed, making it possible to increase propulsive force by standing the caterpillar paddle vertically. As a result, it became possible to fly from low speeds to high speeds comparable to propeller airplanes (100 knots or more).Furthermore,
The paddle can be tilted to any angle from zero to 90 degrees,
On land, the paddle can be held horizontally, so it can be used as an amphibious vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図乃至第
5図はその部分的な図、第6図乃至第8図は本発明の他
の実施例を示す図である。 1:船体       2:操縦席 3:フロントガラス  4.5:窓ガラス6a、6b:
乗降口  7a、7b:垂直尾W8:水平尾筒    
9a、9b:前軸10a、10b:後軸 11a、11b:前方動輪 12a、12b:後方動輪 13.14:キャタピラ 15:パドル 16a、16b:ベルト 17:パドル軸    18a、18b:鍔19a、1
9b、19c:突起物 20a、20b、20c:突起物 21ニスプリング   22:ベアリング23:クラン
ク軸   24:支え具 25:二股状輻    26:ベアリング27:クラン
ク軸   28ニスプリング29:押え具     3
0:支え棒 特許出願人 株式会社フエイバー B 七づ図
FIG. 1 is a perspective view showing one embodiment of the present invention, FIGS. 2 through 5 are partial views thereof, and FIGS. 6 through 8 are views showing other embodiments of the present invention. 1: Hull 2: Cockpit 3: Windshield 4.5: Window glass 6a, 6b:
Entrance/exit 7a, 7b: Vertical tail W8: Horizontal tail piece
9a, 9b: Front axle 10a, 10b: Rear axle 11a, 11b: Front driving wheel 12a, 12b: Rear driving wheel 13.14: Caterpillar 15: Paddle 16a, 16b: Belt 17: Paddle shaft 18a, 18b: Tsuba 19a, 1
9b, 19c: Protrusions 20a, 20b, 20c: Protrusions 21 Spring 22: Bearing 23: Crankshaft 24: Support 25: Bifurcated conduit 26: Bearing 27: Crankshaft 28 Spring 29: Holder 3
0: Support rod patent applicant Favor B Co., Ltd. Nanatsuzu

Claims (1)

【特許請求の範囲】 1)船体の両舷外側前後に動輪を取付け、前後の動輪を
対にして両側にキャタピラを輪掛けし、各キャタピラに
一定間隔で多数のパドルを取付け、下側にきたキャタピ
ラは水中に没するような構造となし、前記動輪の一部又
は全部に回転力を与えるエンジンを搭載し、該エンジン
の回転力を前記キャタピラの移動に変換し、そのキャタ
ピラに設置した多数のパドルにより水を掻くことで船体
を走行させるように構成したことを特徴とするキャタピ
ラ推進式高速船舶。 2)前記パドルは水圧方向に対して任意な迎角に調整し
て所望の推進力や浮力を与えるようにした特許請求の範
囲第1項記載のキャタピラ推進式高速船舶。 3)前記船体の両側に設けられたキャタピラは相互に独
立して駆動し得る構造の特許請求の範囲第1項または第
2項記載のキャタピラ推進式高速船舶。 4)前記船体は流線形に作られ、高速走行において揚力
を発生する構造の特許請求の範囲第1項乃至第3項記載
のキャタピラ推進式高速船舶。
[Scope of Claims] 1) Driving wheels are attached to the front and rear of the outside of both sides of the hull, the front and rear driving wheels are paired, and caterpillars are hung on both sides, and a large number of paddles are attached to each caterpillar at regular intervals, and the paddles are attached to the bottom side. The caterpillar has a structure that is submerged in water, and is equipped with an engine that provides rotational force to some or all of the driving wheels.The rotational force of the engine is converted into movement of the caterpillar, and a large number of A caterpillar-propelled high-speed ship characterized by a structure in which the hull is moved by scraping water with paddles. 2) The caterpillar propelled high-speed boat according to claim 1, wherein the paddle is adjusted to an arbitrary angle of attack with respect to the water pressure direction to provide desired propulsive force and buoyancy. 3) The caterpillar-propelled high-speed boat according to claim 1 or 2, wherein the caterpillars provided on both sides of the hull can be driven independently of each other. 4) The caterpillar propelled high-speed boat according to claims 1 to 3, wherein the hull is made in a streamlined shape and has a structure that generates lift during high-speed running.
JP14104787A 1987-06-05 1987-06-05 Caterpillar propulsion type high speed ship Pending JPS63305013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14104787A JPS63305013A (en) 1987-06-05 1987-06-05 Caterpillar propulsion type high speed ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14104787A JPS63305013A (en) 1987-06-05 1987-06-05 Caterpillar propulsion type high speed ship

Publications (1)

Publication Number Publication Date
JPS63305013A true JPS63305013A (en) 1988-12-13

Family

ID=15283015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14104787A Pending JPS63305013A (en) 1987-06-05 1987-06-05 Caterpillar propulsion type high speed ship

Country Status (1)

Country Link
JP (1) JPS63305013A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526604A (en) * 2005-01-14 2008-07-24 ヴェンコ アーゲー ブルクドルフ Tracked all-terrain vehicle
CN103481736A (en) * 2013-10-15 2014-01-01 上海海洋大学 Novel amphibious travelling mechanism
CN110758033A (en) * 2019-09-09 2020-02-07 中国地质大学(武汉) Self-energy-collection power generation type amphibious wheel and foot paddle integrated robot
CN118004392A (en) * 2024-04-09 2024-05-10 崂山国家实验室 Buoyancy adjusting device suitable for submersible and implementation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526604A (en) * 2005-01-14 2008-07-24 ヴェンコ アーゲー ブルクドルフ Tracked all-terrain vehicle
CN103481736A (en) * 2013-10-15 2014-01-01 上海海洋大学 Novel amphibious travelling mechanism
CN110758033A (en) * 2019-09-09 2020-02-07 中国地质大学(武汉) Self-energy-collection power generation type amphibious wheel and foot paddle integrated robot
CN118004392A (en) * 2024-04-09 2024-05-10 崂山国家实验室 Buoyancy adjusting device suitable for submersible and implementation method

Similar Documents

Publication Publication Date Title
US3800724A (en) Winged sailing craft
US3964417A (en) Water vehicles
EP0506887B1 (en) Hydroplaning hydrofoil/airfoil structures and amphibious and aquatic craft
US9809211B2 (en) Three stage watercraft
EP0545878B1 (en) Multi-hull vessel
JPH02502002A (en) planing catamaran
US9688356B2 (en) Three stage watercraft
RU2124451C1 (en) Sea-going vessel
JPS58218499A (en) Air cushion vehicle
CA1225288A (en) Linear propeller
US6581536B1 (en) Surface effect watercraft having airfoil-augmented lift
IE46762B1 (en) Boat
US3227123A (en) Hydrofoil speed and pleasure craft
EP0453529B1 (en) Asymmetric hydrofoil propulsion method and apparatus
US3791329A (en) Lift structure
JPS63305013A (en) Caterpillar propulsion type high speed ship
US3403654A (en) Watercraft propulsion
WO2006007054A9 (en) Transportation vehicle and method operable with improved drag and lift
JPH09500071A (en) Partially submerged propeller
US7311057B2 (en) Surface effect craft
JPH02262461A (en) Water surface air plane
RU2204499C1 (en) Wing-in-ground effect craft-amphibia on air cushion
RU2178757C2 (en) Aerodynamic craft
JP2003285790A (en) Hull structure for reducing propulsion resistance
RU2260530C1 (en) Transport facility dynamically supported by air cushion