JPS63304592A - Thick film resistance composition and planar heater manufactured by this composition - Google Patents

Thick film resistance composition and planar heater manufactured by this composition

Info

Publication number
JPS63304592A
JPS63304592A JP62069082A JP6908287A JPS63304592A JP S63304592 A JPS63304592 A JP S63304592A JP 62069082 A JP62069082 A JP 62069082A JP 6908287 A JP6908287 A JP 6908287A JP S63304592 A JPS63304592 A JP S63304592A
Authority
JP
Japan
Prior art keywords
composition
thick film
weight
nickel
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62069082A
Other languages
Japanese (ja)
Inventor
Tetsuo Maruo
丸尾 哲郎
Hitoshi Shimomukai
下向 仁
Harutaka Okamura
岡村 治孝
Yoshinori Fujita
藤田 良範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANUEEBU KOGYO KK
Sun Wave Corp
Original Assignee
SANUEEBU KOGYO KK
Sun Wave Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANUEEBU KOGYO KK, Sun Wave Corp filed Critical SANUEEBU KOGYO KK
Priority to JP62069082A priority Critical patent/JPS63304592A/en
Publication of JPS63304592A publication Critical patent/JPS63304592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To realize the forming of a planar heater which is good in its thermal stability and warmed to give an agreeable feeling by making mixed powder of copper and nickel, glass frit, and a solvent mixed in their specific ratios so as to form a composition and next by printing the composition to be formed into an arbitrary shape and then firing it. CONSTITUTION:Mixed powder 30-85wt.% consisting of copper 30-80wt.% and nickel 70-20wt.%, glass frit 10-65wt.% composed of barium-aluminum borate or the like, an organic solvent 5-40wt.% such as ethyl cellulose are mixed to form a composition used as paste of a thick film resistance composition. This paste is printed to be formed into an arbitrary shape on a substrate such as a glass plate and then it is fired. An upper side of the substrate is covered with a protection layer containing glass as a main element, so that a planar heater is formed. A heater of this composition is adaptably used in a middle temperature region, that is, 500 deg.C or so. This heater is provided with a small absolute value of a resistance temperature coefficient, and it is good in its thermal stability. Further wavelengths of radiant heat are within a band of a human agreeable feeling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガラス或いはセラミックスなどの基板上に
抵抗体を印刷・焼成して構成してなる面発熱体に好適な
厚膜抵抗組成物及びこの厚膜抵抗組成物により製造され
る面発熱体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a thick film resistor composition suitable for a surface heating element formed by printing and firing a resistor on a substrate such as glass or ceramics. The present invention relates to a surface heating element manufactured using this thick film resistor composition.

(従来技術) 従来から暖房器などの発熱体として、ニクロム材料を線
状又は帯状に形成したものか多用されており、また特殊
な高温又は耐久性が要求される場合には、カンタルが熱
源材料として用いられているのは周知のとおりである。
(Prior art) Nichrome materials formed into linear or strip shapes have traditionally been widely used as heating elements in space heaters, etc., and when special high temperatures or durability are required, Kanthal is used as a heat source material. As is well known, it is used as

しかしながら、上記従来のニクロム材料を熱源としたも
のにあっては、 (1)抵抗値温度変数が高いため、比較的中温度領域の
500°C程度を熱源とするものが得にくいこと、 (2)ニクロム材料を熱源とした場合、この熱源から発
せられる輻射熱の波長は、はとんどか1ミクロン以下で
あり、人間が快く暖かいと感する波長か5〜6ミクロン
程度であることから比較して、ニクロム材料の波長はか
なりの短波長であり、実際には暖かさの中に痛さを感じ
、不快感を与えてしまうこと、(3)シーl−抵抗値が
高いため、任意形状の熱源か得られないこと、 なとの問題を有していた。
However, for those using the conventional nichrome material as a heat source, (1) the resistance value temperature variable is high, so it is difficult to obtain a heat source that uses a relatively medium temperature range of about 500°C; (2) ) When a nichrome material is used as a heat source, the wavelength of the radiant heat emitted from this heat source is mostly 1 micron or less, which is the wavelength that humans feel pleasantly warm, about 5 to 6 microns. (3) Since the wavelength of nichrome material is quite short, you will actually feel pain in the warmth and feel uncomfortable. (3) Due to the high seal resistance value, it can be used as a heat source of any shape. I had the problem of not being able to get it.

このため、近年では、ガラス或いはセラミックスなどの
基板上に抵抗体を印刷・焼成して構成されてなる面発熱
体か公知である。
For this reason, in recent years, surface heating elements have been known that are constructed by printing and firing a resistor on a substrate such as glass or ceramics.

この面発熱体は、中湿度領域の熱源が容易に得られると
共に、人間が快く感じる輻射熱波長が得られ、しかも印
刷技術で任意形状の熱源を構成することかできる、とい
う優れた利点を有している。
This surface heating element has the excellent advantages of being able to easily obtain a heat source in the medium humidity range, providing a radiant heat wavelength that is pleasant to humans, and being able to construct a heat source of any shape using printing technology. ing.

(従来技術の問題点) しかしながら、上記従来の面発熱体にあっては、基板上
に抵抗体或は導体を形成するための厚膜抵抗組成物中の
導電成分を、銀、銀−白金混合体、銀−パラジウム混合
体、金、銅、酸化ルテニウムまたは酸化モリブデン等の
金属或は金属酸化物で形成しているため、抵抗体或は導
体としての抵抗温度係数の絶対値が高くて熱的に不安定
であり、しかも、比較的高価な金属を使用するためコス
ト高となるという問題を有していた。
(Problems with the prior art) However, in the conventional surface heating element described above, the conductive component in the thick film resistor composition for forming the resistor or conductor on the substrate is silver or a silver-platinum mixture. Because it is made of metals or metal oxides such as silver-palladium mixture, gold, copper, ruthenium oxide, or molybdenum oxide, it has a high absolute value of the temperature coefficient of resistance as a resistor or conductor, and has a high thermal resistance. However, since the metal is unstable and relatively expensive metal is used, the cost is high.

特に、上記従来の面発熱体にあっては、100mΩ/口
程度の非常に低い抵抗値を持つ抵抗体に、上記従来の厚
膜抵抗組成物を使用して面発熱体を形成した場合には、
金属成分の使用割合が高くなり、その抵抗温度係数の絶
対値か高くて熱的に非常に不安定となり易いという問題
を有していた。
In particular, in the case of the above-mentioned conventional surface heating element, when the above-mentioned conventional thick film resistor composition is used to form a surface heating element on a resistor having a very low resistance value of about 100 mΩ/hole. ,
The problem is that the proportion of metal components used is high, and the absolute value of the temperature coefficient of resistance is high, making it likely to become very thermally unstable.

この発明は、かかる現状に鑑み創案されたものてあって
、その目的とするところは、第1に、抵抗温度係数の絶
対値か低くて熱的安定性に優れ、かつ、低価格な厚膜抵
抗組成物を提供し、第2に、−上記厚膜抵抗組成物を基
板上に印刷して焼成することて、中湿度領域の熱源か容
易に得られると共に、人間か快く感じる輻射熱波長が得
られ、しかも、印刷技術により任意形状の熱源を構成す
ることかてきる面発熱体を廉価に提供し、第3には、以
上のようにして得られた面発熱体表面に形成される抵抗
体或は導体を、有効に絶縁し、かつ、有効に酸化するの
を防止することができる面発熱体(グレーズヒータ)を
提供しようとするものである。
The present invention was devised in view of the current situation, and the first object is to provide a thick film with a low absolute value of the temperature coefficient of resistance, excellent thermal stability, and low cost. Second, by printing the thick film resistor composition on a substrate and firing it, a heat source in a medium humidity range can be easily obtained, and a radiant heat wavelength that is pleasant to humans can be obtained. The present invention provides at low cost a surface heating element which can be formed into a heat source of any shape by printing technology, and thirdly, a resistor formed on the surface of the surface heating element obtained as described above. Another object of the present invention is to provide a surface heating element (glaze heater) that can effectively insulate a conductor and effectively prevent it from oxidizing.

〔問題点を解決するための手段及び作用〕上記目的を達
成するため、この発明に係る厚膜抵抗組成物の組成比率
を、銅とニッケルとの混合粉末からなる導電性成分を3
0〜85重量%とし、これに対し、ガラスフリットを1
0〜65重量%とすると共に、有機溶媒を5〜40重量
%となして構成したことを特徴とするものである。
[Means and effects for solving the problem] In order to achieve the above object, the composition ratio of the thick film resistor composition according to the present invention is changed to 3% of the conductive component consisting of a mixed powder of copper and nickel.
0 to 85% by weight, whereas glass frit is 1% by weight.
It is characterized by having an organic solvent content of 0 to 65% by weight and an organic solvent content of 5 to 40% by weight.

また、この発明に係る面発熱体は、上記組成比率からな
る厚膜抵抗組成物を、ガラス或いはセラミックスなどの
基板上に印刷・焼成して抵抗体または導体を構成したこ
とを特徴とするものである。
Furthermore, the surface heating element according to the present invention is characterized in that a resistor or conductor is formed by printing and firing a thick film resistor composition having the above-mentioned composition ratio on a substrate such as glass or ceramics. be.

厚膜抵抗組成物の導電性成分である銅 (Cu)とニッケル(Ni)の混合比は、重量%て銅3
0〜80%に対しニッケルが70〜20%の範囲て混合
するのが好ましい。この銅とニッケルの組成比を変える
ことにより、抵抗体の抵抗温度係数及び抵抗値を調整す
ることかてきる。
The mixing ratio of copper (Cu) and nickel (Ni), which are conductive components of the thick film resistor composition, is 3% by weight of copper.
It is preferable to mix nickel in a range of 70 to 20% with respect to 0 to 80%. By changing the composition ratio of copper and nickel, the temperature coefficient of resistance and resistance value of the resistor can be adjusted.

このようにして混合された導電性成分(微粉末)を、真
空中または不活性ガス中にて1000〜1400℃(こ
の温度は、導電性粉末を構成する組成比により多少異る
。)に加熱し合金化する。
The conductive component (fine powder) mixed in this way is heated to 1000 to 1400°C (this temperature varies depending on the composition ratio of the conductive powder) in vacuum or inert gas. and alloyed.

このようにして得られた混合物を、粉砕機又は分級機に
より微粉砕し、抵抗体ペースト用の微粉末を作成する。
The mixture thus obtained is pulverized using a pulverizer or classifier to create a fine powder for resistor paste.

抵抗体ペーストを基板上に印刷し、焼成した場合、基板
の熱膨張と異るとグレーズ層に剥離か生じるので、グレ
ーズ層と基板の各熱膨張を合わせておく必要がある。こ
の役目をするのか抵抗体ペースト中のガラスフリットで
ある。
When a resistor paste is printed on a substrate and fired, the glaze layer may peel if the thermal expansion differs from that of the substrate, so it is necessary to match the thermal expansion of the glaze layer and the substrate. The glass frit in the resistor paste plays this role.

この発明では、このガラスフリットの組成は2つの組成
からなるものが考えられる。
In the present invention, the glass frit may have two compositions.

その第1のガラスフリットは、バリウム−アルミニュウ
ム硼酸塩ガラスであり、第2のガラスフリットとしては
、バリウム−カルシウム硼珪酸ガラスである。
The first glass frit is a barium-aluminum borate glass and the second glass frit is a barium-calcium borosilicate glass.

これらの各ガラスフリットは、特に、米国特許@4,2
56,796号公報所載のボースリン被覆金属基板やア
ルミナ製の基板と適合するが、基板の材質や作成される
面発熱体の用途によって、そのどちらかが選択される。
Each of these glass frits is specifically described in US Pat.
Although it is compatible with the Bausselin-coated metal substrate and the alumina substrate described in Japanese Patent No. 56,796, one of them is selected depending on the material of the substrate and the purpose of the surface heating element to be produced.

このような組成からなるガラスフリットは、上記組成か
らなるガラスを、粉砕機又は分級機て1〜3JLmサイ
ズの粉末に粉砕する。
Glass frit having such a composition is obtained by pulverizing glass having the above composition into powder having a size of 1 to 3 JLm using a crusher or a classifier.

このようにして得られたガラス粉末を、前記導電性成分
(微粉末)と一定の割合で混合し、これに有機溶媒を加
えて所謂インク状に作成する。
The glass powder thus obtained is mixed with the conductive component (fine powder) at a constant ratio, and an organic solvent is added thereto to form a so-called ink.

この有機溶媒としては、例えば、セルローズ誘電体のエ
チルセルロース、ポリアクリル酸エステル、ポリオレフ
ィン、ポリエステルまたはメタクリレートの合成樹脂材
とエステルアルコールとを、 0.5 〜1.5  :  9.5〜8.5(重量比)
の比率て混合したもの、その他の類似する結合剤を適用
することができる。
As this organic solvent, for example, a synthetic resin material such as cellulose dielectric ethyl cellulose, polyacrylic ester, polyolefin, polyester or methacrylate and ester alcohol are used in a ratio of 0.5 to 1.5: 9.5 to 8.5 ( weight ratio)
Other similar binders can be applied.

また、必要かある場合には、上記有機溶媒に、適宜の粘
度調整剤を添加することもできる。この粘度調整剤とし
ては、パイン油、テルピネオール、ブチルカルビトール
アセテートまたはエステルアルコール系のものを適用す
ることかできる。
Furthermore, if necessary, an appropriate viscosity modifier can be added to the organic solvent. As the viscosity modifier, pine oil, terpineol, butyl carbitol acetate or ester alcohol type agents can be used.

このようにして作成されたインク状の抵抗体ペーストは
、スクリーン印刷、刷毛塗り或は吹き付は等の手段て基
板上に印刷等することで、この発明に係る面発熱体は形
成される。
The ink-like resistor paste thus prepared is printed on a substrate by means such as screen printing, brush coating, spraying, etc., thereby forming the surface heating element according to the present invention.

このように形成される面発熱体の一製造例を示すと、イ
ンク状の抵抗体ペーストを、テトロンスクリーンを用い
て基板上に印刷し、空気中において100〜125℃の
温度で10〜15分間乾燥し、この後、窒素中において
800〜950℃の温度で4〜lO分間焼成して、基板
の表面に抵抗体層を形成する。電極は、抵抗体層を形成
した後、Ag−Pt系抵抗体ペーストをスクリーン印刷
し、乾燥後、焼成して得たAg−Pt電極を用いた。
An example of manufacturing a surface heating element formed in this way is to print an ink-like resistor paste on a substrate using a Tetron screen, and then print it in air at a temperature of 100 to 125°C for 10 to 15 minutes. It is dried and then fired in nitrogen at a temperature of 800 to 950° C. for 4 to 10 minutes to form a resistor layer on the surface of the substrate. The electrode used was an Ag-Pt electrode obtained by forming a resistor layer, screen-printing an Ag-Pt-based resistor paste, drying it, and then firing it.

また、この発明にあっては、面発熱体の抵抗体の形成を
、第1図に示す工程によって製造することもできる。
Further, in the present invention, the resistor of the surface heating element can also be manufactured by the steps shown in FIG.

即ち、第1図に示す工程は、所謂r無電解メッキ1処理
工程を示しており、先ず、基板の表面をr脱脂」した後
、「表面調整」を行い、rセンシタイジング」後に「ア
クチベイチング1を行い、次にr無電解銅−ニッケルメ
ッキ1を行なった後に、これをV活性化」し、「電気銅
−ニッケルメッキ」を行った後に「レジスト塗布Jを行
い、「エツチング」処理を行った後に上記「レジストの
剥離」を行い、最後に、これを「乾燥Jして形成するこ
とがてきる。
That is, the process shown in FIG. 1 shows the so-called electroless plating process, in which the surface of the substrate is first degreased, then surface conditioning is performed, and after sensitizing, activation is performed. Baiting 1 is performed, and then electroless copper-nickel plating 1 is performed, followed by V activation, followed by electrolytic copper-nickel plating, resist application J, and etching. After the processing, the above-mentioned "resist peeling" is performed, and finally, this can be "dried" to form the resist.

以下、実施例について説明する。Examples will be described below.

(実施例) 厚膜抵抗組成物を次の表に示す配合比で構成した。(Example) Thick film resistor compositions were constructed with the blending ratios shown in the following table.

表1 尚、上記配合からなる導電性成分は、銅とニッケルの各
粉末を、重量比率が30 : 70になるように混合し
、1000・〜1400℃て加熱処理した後、これを粉
砕機て粉砕し、10ミクロン以下の粉末となして構成し
た。
Table 1 The conductive component having the above composition is prepared by mixing copper and nickel powders at a weight ratio of 30:70, heat-treating the mixture at 1000-1400°C, and then grinding it in a pulverizer. It was ground and constituted as a powder of 10 microns or less.

また、上記表1のガラスフリットは、下記表2の酸化物
を下記表2の重量比率で混合し、白金るつぼに入れて1
500℃で溶融した後、クエンチンクロールによってフ
リット化し、これを粉砕機および分級機て2〜3ミクロ
ンの粉末となして構成した。
The glass frit shown in Table 1 above can be prepared by mixing the oxides shown in Table 2 below at the weight ratio shown in Table 2 below, and placing the mixture in a platinum crucible for 1 hour.
After melting at 500° C., it was fritted using a quenching roll, and this was made into a powder of 2 to 3 microns using a crusher and a classifier.

表2 このようにして作成された前記導電性成分とガラスフリ
ットとを、次に前記各種の有機溶媒の中から選択された
有機溶媒中に入れて混合し、次いで3本のロールミルに
かけて混練し、スクリーン印刷に適するように均一に混
合された抵抗体ペーストを作成した。
Table 2 The conductive component and glass frit prepared in this way are then mixed in an organic solvent selected from the various organic solvents, and then kneaded using a three-roll mill. A uniformly mixed resistor paste suitable for screen printing was created.

この場合の有機溶媒としては、 ■エステルアルコールにエチルセルローズを6%加えた
もの、 ■エステルアルコールにキャスターオイル11%を加え
たもの、 ■エステルアルコールにチクサトロールを加えたもの、 のいずれかを用いた。
In this case, the organic solvent used was: (6% ethyl cellulose added to ester alcohol), (11% castor oil added to ester alcohol), (2) Thixatrol added to ester alcohol. .

以上のようにして得られた抵抗体ペーストを180メツ
シユのスクリーンを用いて基板上に印刷し、空気中10
0〜120°Cで10分間乾燥した後、窒素雰囲気のベ
ルトコンベア炉中において最高温度900℃で8〜11
分間焼成した。
The resistor paste obtained as described above was printed on a substrate using a 180-mesh screen, and
After drying at 0 to 120°C for 10 minutes, drying at a maximum temperature of 900°C in a belt conveyor oven under nitrogen atmosphere for 8 to 11 minutes.
Bake for a minute.

このようにして得られた面発熱体の抵抗体層は、20〜
30ミクロンであり、シート抵抗値(SR)および抵抗
値温度変数(TCR)は、夫々 No I    NO2 SR(mΩ/口)     50.10  42.7T
CR(ppm/’C)  42   100てあった。
The resistor layer of the surface heating element thus obtained has a thickness of 20 to
30 microns, and the sheet resistance (SR) and temperature variable resistance (TCR) are No I NO2 SR (mΩ/mouth) 50.10 42.7T, respectively.
CR (ppm/'C) was 42 100.

以上の面発熱体に負荷を加え、表面温度が400°Cに
なるように連続寿命テストを行った結果、抵抗変化率は
、テスト時間7200時間て3%程度であった。この時
の輻射波の波長は、第1図に示すように、4〜12ミク
ロンであった。
A continuous life test was performed on the surface heating element described above under a load so that the surface temperature reached 400°C. As a result, the rate of change in resistance was about 3% over a test time of 7200 hours. The wavelength of the radiation wave at this time was 4 to 12 microns, as shown in FIG.

第2図と第3図は、上記のようにして形成された基板l
上に形成された抵抗体2の表面に、ガラス製のグレーズ
保護膜3をグレージインクし、抵抗体の絶縁及び酸化を
防止するように構成してなる所謂クレーズヒータの一例
を示している。
FIGS. 2 and 3 show the substrate l formed as described above.
An example of a so-called craze heater is shown, in which a glass glaze protective film 3 is coated with glaze ink on the surface of a resistor 2 formed thereon to insulate the resistor and prevent oxidation.

クレーズ保護膜3は、前記適宜の組成からなるガラスフ
リットと適宜の有機溶媒とを選択し、かつ適宜の割合で
混合して形成されておす、印刷等の手段により上記抵抗
体2の表面に塗布され、乾燥後所要の温度で焼成されて
形成される。
The craze protective film 3 is formed by selecting a glass frit having an appropriate composition and an appropriate organic solvent and mixing them in an appropriate ratio, and is applied to the surface of the resistor 2 by means such as printing. After drying, it is fired at the required temperature.

〔発明の効果〕〔Effect of the invention〕

この発明に係る厚膜抵抗組成物は以上のように構成され
ているので、抵抗温度係数の絶対値が低くて熱的安定性
に優れ、かつ、低価格に提供することかでき、特に、1
00mΩ/口程度の非常に低い抵抗値を持つ抵抗体に好
適であるという効果を奏する。
Since the thick film resistor composition according to the present invention is configured as described above, it has a low absolute value of the temperature coefficient of resistance, has excellent thermal stability, and can be provided at a low price.
It has the effect of being suitable for a resistor having a very low resistance value of about 00 mΩ/hole.

また、この厚膜抵抗組成物によって製造される面発熱体
は、以上のように構成されているのて、シート抵抗値が
低いため印刷技術により任意形状のものを容易に作成す
ることがてき、また、熱源からの輻射波の波長は、第4
図に示すように、4〜12ミクロンの長波長のものか得
られるのて、痛さを感じない快い暖かさか得られると共
に、抵抗値温度変数が低いので、比較的中温度領域の温
度を安定化させることがてき、用途か拡大する他、抵抗
体の表面にグレーズ層を形成することて、抵抗体或は導
体を、有効に絶縁し、かつ、有効に酸化するのを防止す
ることがてきるので耐久性か向上する等、幾多の優れた
効果を奏する。
In addition, since the sheet heating element manufactured using this thick film resistive composition is constructed as described above, it has a low sheet resistance value, so it can be easily manufactured into any shape by printing technology. In addition, the wavelength of the radiation wave from the heat source is the fourth
As shown in the figure, since the long wavelength of 4 to 12 microns can be obtained, it provides a comfortable warmth that does not cause pain, and the resistance value temperature variable is low, so the temperature is relatively stable in the medium temperature range. In addition to expanding its applications, forming a glaze layer on the surface of a resistor can effectively insulate the resistor or conductor and prevent it from oxidizing. It has many excellent effects, such as improved durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例に係る面発熱体の製造工
程の−・例を示すフローチャート図、第2図はグレーズ
層が形成されたこの発明の一実施例に係る面発熱体の斜
視図、第3図は同面発熱体の断面図、第4図はこの発明
の一実施例に係る面発熱体の放射特性を示すグラフ図で
ある。 〔符号の説明〕 l・・・基板     2・・・抵抗体3・・・グレー
ズ保護膜 特許出願人  サンウェーブ工業株式会社第1図
FIG. 1 is a flowchart showing an example of the manufacturing process of a surface heating element according to an embodiment of the present invention, and FIG. FIG. 3 is a perspective view, FIG. 3 is a cross-sectional view of the surface heating element, and FIG. 4 is a graph diagram showing the radiation characteristics of the surface heating element according to an embodiment of the present invention. [Explanation of symbols] l...Substrate 2...Resistor 3...Glaze protective film Patent applicant Sunwave Industries Co., Ltd. Figure 1

Claims (13)

【特許請求の範囲】[Claims] (1)銅とニッケルとの混合粉末からなる導電性成分が
30〜85重量%であり、ガラスフリットが10〜65
重量%であり、有機溶媒が5〜40重量%の混合比率で
ある厚膜抵抗組成物。
(1) The conductive component consisting of a mixed powder of copper and nickel is 30 to 85% by weight, and the glass frit is 10 to 65% by weight.
% by weight, and the organic solvent is mixed at a mixing ratio of 5 to 40% by weight.
(2)前記銅とニッケルとの混合比は、銅が30〜80
重量%に対し、ニッケルが70〜20重量%であること
を特徴とする特許請求の範囲第1項記載の厚膜抵抗組成
物。
(2) The mixing ratio of copper and nickel is 30 to 80
The thick film resistor composition according to claim 1, characterized in that nickel is present in an amount of 70 to 20% by weight.
(3)前記ガラスフリットは、バリウム−アルミニュウ
ム硼酸塩ガラスで構成されていることを特徴とする特許
請求の範囲第1項記載の厚膜抵抗組成物。
(3) The thick film resistive composition according to claim 1, wherein the glass frit is made of barium-aluminum borate glass.
(4)前記ガラスフリットは、バリウム−カルシュウム
硼珪酸で構成されていることを特徴とする特許請求の範
囲第1項記載の厚膜抵抗組成物。
(4) The thick film resistor composition according to claim 1, wherein the glass frit is made of barium-calcium borosilicate.
(5)前記有機溶媒は、エチルセルローズ、ポリアクリ
ル酸エステル、メタクリレート、ポリエステルまたはポ
リオレフィン等のセルローズ誘導体で構成されているこ
とを特徴とする特許請求の範囲第1項記載の厚膜抵抗組
成物。
(5) The thick film resistor composition according to claim 1, wherein the organic solvent is composed of a cellulose derivative such as ethyl cellulose, polyacrylate, methacrylate, polyester, or polyolefin.
(6)前記有機溶媒は、エチルセルローズ、ポリアクリ
ル酸エステル、メタクリレート、ポリエステルまたはポ
リオレフィン等のセルローズ誘導体と、パイン油、テル
ピネオール、ブチルカルビトールアセテートまたはエス
テルアルコール系の粘度調整剤と、で構成されているこ
とを特徴とする特許請求の範囲第1項記載の厚膜抵抗組
成物。
(6) The organic solvent is composed of a cellulose derivative such as ethyl cellulose, polyacrylic ester, methacrylate, polyester or polyolefin, and a viscosity modifier such as pine oil, terpineol, butyl carbitol acetate or ester alcohol. The thick film resistor composition according to claim 1, characterized in that:
(7)銅とニッケルとの混合粉末からなる導電性成分が
30〜85重量%であり、ガラスフリットが10〜65
重量%であり、有機溶媒が5〜40重量%の混合比率で
ある厚膜抵抗組成物を、基板上に印刷し焼成して構成さ
れてなる面発熱体。
(7) The conductive component consisting of a mixed powder of copper and nickel is 30 to 85% by weight, and the glass frit is 10 to 65% by weight.
% by weight, and a thick film resistor composition having a mixing ratio of 5 to 40% by weight of an organic solvent is printed on a substrate and fired.
(8)前記銅とニッケルとの混合比は、銅が30〜80
重量%に対し、ニッケルが70〜20重量%であること
を特徴とする特許請求の範囲第7項記載の面発熱体。
(8) The mixing ratio of copper and nickel is 30 to 80
8. The surface heating element according to claim 7, wherein the content of nickel is 70 to 20% by weight.
(9)前記ガラスフリットは、バリウム−アルミニュウ
ム硼酸塩ガラスで構成されていることを特徴とする特許
請求の範囲第7項記載の面発熱体。
(9) The surface heating element according to claim 7, wherein the glass frit is made of barium-aluminum borate glass.
(10)前記ガラスフリットは、バリウム−カルシュウ
ム硼珪酸で構成されていることを特徴とする特許請求の
範囲第7項記載の面発熱体。
(10) The surface heating element according to claim 7, wherein the glass frit is made of barium-calcium borosilicate.
(11)前記有機溶媒は、エチルセルローズ、ポリアク
リル酸エステル、メタクリレート、ポリエステルまたは
ポリオレフィン等のセルローズ誘導体で構成されている
ことを特徴とする特許請求の範囲第7項記載の面発熱体
(11) The surface heating element according to claim 7, wherein the organic solvent is composed of a cellulose derivative such as ethyl cellulose, polyacrylic acid ester, methacrylate, polyester, or polyolefin.
(12)前記有機溶媒は、エチルセルローズ、ポリアク
リル酸エステル、メタクリレート、ポリエステルまたは
ポリオレフィン等のセルローズ誘導体と、パイン油、テ
ルピネオール、ブチルカルビトールアセテートまたはエ
ステルアルコール系の粘度調整剤と、で構成されている
ことを特徴とする特許請求の範囲第7項記載の面発熱体
(12) The organic solvent is composed of a cellulose derivative such as ethyl cellulose, polyacrylic acid ester, methacrylate, polyester or polyolefin, and a viscosity modifier such as pine oil, terpineol, butyl carbitol acetate or ester alcohol. 8. A surface heating element according to claim 7, characterized in that:
(13)前記厚膜抵抗組成物を焼成して得られた抵抗体
の表面には、ガラスを主成分とする保護膜層が形成され
ていることを特徴とする特許請求の範囲第7項、第8項
、第9項、第10項、第11項または第12項いずれか
記載の面発熱体。
(13) Claim 7, characterized in that a protective film layer containing glass as a main component is formed on the surface of the resistor obtained by firing the thick film resistor composition. The surface heating element according to any one of Item 8, Item 9, Item 10, Item 11, or Item 12.
JP62069082A 1987-01-07 1987-03-25 Thick film resistance composition and planar heater manufactured by this composition Pending JPS63304592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069082A JPS63304592A (en) 1987-01-07 1987-03-25 Thick film resistance composition and planar heater manufactured by this composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-510 1987-01-07
JP51087 1987-01-07
JP62069082A JPS63304592A (en) 1987-01-07 1987-03-25 Thick film resistance composition and planar heater manufactured by this composition

Publications (1)

Publication Number Publication Date
JPS63304592A true JPS63304592A (en) 1988-12-12

Family

ID=26333506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069082A Pending JPS63304592A (en) 1987-01-07 1987-03-25 Thick film resistance composition and planar heater manufactured by this composition

Country Status (1)

Country Link
JP (1) JPS63304592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242581A (en) * 1989-02-23 1990-09-26 Ego Elektro Geraete Blanc & Fischer Cooker
JP2012503859A (en) * 2008-09-27 2012-02-09 ホツトセツト・ハイツパトローネン・ウント・ツーベヘール・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Electric heating element for technical purposes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201739A (en) * 1981-05-14 1982-12-10 Ford Motor Co Electric heating plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201739A (en) * 1981-05-14 1982-12-10 Ford Motor Co Electric heating plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242581A (en) * 1989-02-23 1990-09-26 Ego Elektro Geraete Blanc & Fischer Cooker
JP2012503859A (en) * 2008-09-27 2012-02-09 ホツトセツト・ハイツパトローネン・ウント・ツーベヘール・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Electric heating element for technical purposes

Similar Documents

Publication Publication Date Title
JPH11195505A (en) Thick-film resistor and manufacture thereof
JPH0453081B2 (en)
US4639391A (en) Thick film resistive paint and resistors made therefrom
US4397915A (en) Electrical resistor material, resistor made therefrom and method of making the same
US4322477A (en) Electrical resistor material, resistor made therefrom and method of making the same
US4323484A (en) Glaze resistor composition
US4378409A (en) Electrical resistor material, resistor made therefrom and method of making the same
JPS63304592A (en) Thick film resistance composition and planar heater manufactured by this composition
US3962143A (en) Reactively-bonded thick-film ink
JPH04300249A (en) Resistor for aluminum nitride heater and resistance paste composition
KR880002063B1 (en) Air-fireable thick film inks
JP2002367806A (en) Resistor paste and method of manufacturing thick film resistor using the same
US4684543A (en) Starting mixture for an insulating composition comprising a lead glass, silk-screening ink comprising such a mixture, and the use of said ink for the protection of hybrid microcircuits on ceramic substrates
US4698265A (en) Base metal resistor
JPH0346705A (en) Copper paste
JPH11135303A (en) Thick-film thermistor composition
JPH09246007A (en) Resistance paste and manufacture of resistor using the same
JPS62264588A (en) Infrared heater
JPS5836481B2 (en) resistance composition
JP2644017B2 (en) Resistance paste
KR20000012663A (en) Composition of low temperature fired resistive paste for electric heater and fabricating method thereof
JPS6127866B2 (en)
JPH04298001A (en) High resistor composition
JPS5853485B2 (en) resistance composition
JPS5853481B2 (en) resistance composition