JPS6330291B2 - - Google Patents

Info

Publication number
JPS6330291B2
JPS6330291B2 JP60153533A JP15353385A JPS6330291B2 JP S6330291 B2 JPS6330291 B2 JP S6330291B2 JP 60153533 A JP60153533 A JP 60153533A JP 15353385 A JP15353385 A JP 15353385A JP S6330291 B2 JPS6330291 B2 JP S6330291B2
Authority
JP
Japan
Prior art keywords
reaction
present
haloketones
halogen
rxalh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60153533A
Other languages
Japanese (ja)
Other versions
JPS6216435A (en
Inventor
Nobuki Kokuni
Shuichi Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP60153533A priority Critical patent/JPS6216435A/en
Publication of JPS6216435A publication Critical patent/JPS6216435A/en
Publication of JPS6330291B2 publication Critical patent/JPS6330291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、α―ハロケトン類を50℃以下で
RxAlH3―x(但しRはアルキル基、xは3又は
2)とAlX3(但しXはハロゲン)を組合せ作用さ
せることを特徴とする立体選択的に転位と還元を
同時に行わせる方法に関する。 〔従来の技術〕 従来ケトン類に対し立体選択的に転位と還元を
同時に行わせる方法として下式に示す反応[土橋
ら(1984)]が知られているに過ぎない。 (但しR、R1、R2は夫々アルキル基もしくはア
リール基を、又i―Buはイソブチル基を、Etは
エチル基を示す) しかもこの反応は−78℃のような低温で行う必
要があつた。 〔発明が解決しようとする問題点〕 そこで本発明者らは、α―ハロケトン類の立体
選択的転位還元反応を0℃以上でも立体選択性を
失うことなく反応を進行させる方法を種々研究の
結果、発見した。0℃以上の反応温度で反応を行
うことができ、しかも立体選択性が100%ないし
それに近い選択率であることは工業的に大変価値
のある反応であることは言うまでもない。 〔問題点を解決するための手段〕 本発明は、下記一般式[]で表わされるα―
ハロケトン類(但しR′、R″、Rはアルキル、
アリール、アリル基でXはハロゲンを示す)を50
℃以下の温度でRxAlH3―x(但しRはアルキル
基、xは3又は2)とAlX3(但しXはハロゲン)
を組合せ作用せしめて、α―ハロケトン類に立体
選択的に転位と還元を同時に行わせて下記一般式
[]で表わされるアルコール類(但しR′、R″、
R、Xは前記に同じ)とすることを要旨として
いる。 本発明の基本化学反応式は下記に示す通りで カルボニル基に結合したR′基の転位及びカル
ボニル基の還元が同時に起る反応である。 〔作 用〕 本発明では出発物質としてα―ハロケトン類
[]を使用するが、その代表例としてのα―ク
ロルケトンは次式に示すように、α―ヒドロキシ
ケトンにチオニルクロリド又は塩化水素―金属ハ
ロゲン化物を作用させて高収率で容易に得られ
る。 この反応の原料であるα―ヒドロキシケトンは
アルデヒドの2量化反応により高収率で得られる
ことも既知である。* *オルガニツクシンセシス(Organic
Syntheses)62、170〜178(1984) α―ハロケトンの合成法は他にも多数あり省略
するが有機化学的に容易に得られる化合物であ
る。 次に本発明の転位・還元法は溶媒にトルエン、
ベンゼン、ヘキサン、エーテル、メチレンクロリ
ド等の溶媒を使用して、α―ハロケトン類の約15
%〜20%溶液を好ましくは、0℃〜50℃の温度で
代表例としてi―Bu2AlHとAlCl3の等モル混合
物を加えて1〜2時間程反応させた後、希塩酸で
加水分解し、溶媒を溜出して生成物を得る。 出発原料が光学活性化合物である例を下記に示
す。例えば天然産の乳酸を原料として下記の反応
式で容易にα―クロルケトンを合成できる。 (Rはメチル以外のアルキル基、アリール基又は
アリル基) この反応で得たα―クロルケトンは出発原料の
乳酸とは反対の不斉炭素を有するが、本発明によ
る転位還元反応が立体的に100%反転の反応であ
るので 再び元の乳酸と同一絶対配置の化合物が得られ
る。 以上の例ではα―クロルケトンを使用し還元剤
としてi―Bu2AlH―AlCl3系試薬を用いて説明
したが他のハロゲン化物例えばAlBr3でも同様な
反応が起る。 実施例 以下に実施例を例示して更に本発明を説明する
が本発明はこれによつて何等制限を受けるもので
はない。 実施例 1 デシルクロリド
[Industrial Application Field] The present invention is directed to the treatment of α-haloketones at 50°C or lower.
The present invention relates to a method for simultaneous stereoselective rearrangement and reduction, characterized by the combination of RxAlH 3 --x (wherein R is an alkyl group and x is 3 or 2) and AlX 3 (where X is a halogen). [Prior Art] Conventionally, the only known method for stereoselectively rearranging and reducing ketones at the same time is the reaction shown in the following formula [Tsuchibashi et al. (1984)]. (However, R, R 1 and R 2 each represent an alkyl group or an aryl group, i-Bu represents an isobutyl group, and Et represents an ethyl group.) Moreover, this reaction needs to be carried out at a low temperature such as -78°C. Ta. [Problems to be Solved by the Invention] Therefore, the present inventors have conducted various studies on a method for proceeding the stereoselective rearrangement reduction reaction of α-haloketones without losing stereoselectivity even at temperatures above 0°C. ,discovered. Needless to say, this reaction is industrially very valuable because it can be carried out at a reaction temperature of 0° C. or higher and the stereoselectivity is 100% or close to it. [Means for solving the problems] The present invention provides α-
Haloketones (where R′, R″, R are alkyl,
Aryl, allyl group where X represents halogen) 50
At a temperature below ℃, RxAlH 3 -x (where R is an alkyl group, x is 3 or 2) and AlX 3 (however, X is a halogen)
are reacted in combination to stereoselectively rearrange and reduce α-haloketones at the same time.
R and X are the same as above). The basic chemical reaction formula of the present invention is as shown below. This is a reaction in which rearrangement of the R' group bonded to the carbonyl group and reduction of the carbonyl group occur simultaneously. [Function] In the present invention, α-haloketones [] are used as starting materials, and α-chloroketone as a representative example is a mixture of α-hydroxyketone with thionyl chloride or hydrogen chloride-metal halogen, as shown in the following formula. It can be easily obtained in high yield by reacting with compounds. It is also known that α-hydroxyketone, which is a raw material for this reaction, can be obtained in high yield by a dimerization reaction of aldehydes. * *Organic synthesis
Syntheses) 62 , 170-178 (1984) There are many other methods for synthesizing α-haloketones, and although they are omitted here, they are compounds that can be easily obtained using organic chemistry. Next, the rearrangement/reduction method of the present invention uses toluene as a solvent,
Approximately 15% of α-haloketones can be prepared using solvents such as benzene, hexane, ether, and methylene chloride.
% to 20% solution is preferably reacted at a temperature of 0°C to 50°C with an equimolar mixture of i-Bu 2 AlH and AlCl 3 for about 1 to 2 hours, and then hydrolyzed with dilute hydrochloric acid. , the solvent is distilled off to obtain the product. Examples in which the starting material is an optically active compound are shown below. For example, α-chloroketone can be easily synthesized using the following reaction formula using naturally produced lactic acid as a raw material. (R is an alkyl group other than methyl, an aryl group, or an allyl group) The α-chloroketone obtained by this reaction has an asymmetric carbon opposite to that of the starting material lactic acid, but the rearrangement reduction reaction according to the present invention Since it is a % reversal reaction, A compound having the same absolute configuration as the original lactic acid is obtained again. In the above example, α-chloroketone was used and an i-Bu 2 AlH-AlCl 3 reagent was used as the reducing agent, but a similar reaction occurs with other halides such as AlBr 3 . EXAMPLES The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto in any way. Example 1 Decyl chloride

【式】4.1g(1.78 ×10-2mol)をトルエン60mlに溶解し、窒素気流
下i―Bu2AlH2.5g(1.78×10-2mol)と
AlCl32.4g(1.78×10-2mol)の混合物を加えて
30℃で2時間撹拌し希塩酸20mlで加水分解後トル
エン層を分離し、減圧下トルエンを留去すると
2,2―ジフエニルエタノール3.6g(収率100
%)が得られた。mp.55〜56℃ 実施例 2 実施例1のi―Bu2AlHにかえて、i―Bu3Al
を使用し、あとは実施例1と同様な反応を行つ
た。その結果、2,2―ジフエニルエタノールを
収率95%で得られた。 実施例 3 光学活性(S)―乳酸より有機合成反応により
得た光学活性(R)―2―クロルプロピオフエノ
[Formula] 4.1g (1.78 × 10 -2 mol) was dissolved in 60ml of toluene, and 2.5g (1.78 × 10 -2 mol) of i-Bu 2 AlH was dissolved under a nitrogen stream.
Add a mixture of 2.4 g (1.78 x 10 -2 mol) of AlCl 3
Stir at 30°C for 2 hours, hydrolyze with 20ml of diluted hydrochloric acid, separate the toluene layer, and distill off the toluene under reduced pressure to obtain 3.6g of 2,2-diphenylethanol (yield 100%).
%)was gotten. mp.55-56℃ Example 2 Instead of i-Bu 2 AlH in Example 1, i-Bu 3 Al
The rest of the reaction was carried out in the same manner as in Example 1. As a result, 2,2-diphenylethanol was obtained with a yield of 95%. Example 3 Optically active (R)-2-chloropropiophenone obtained from optically active (S)-lactic acid by organic synthesis reaction

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば反応温度を0℃以上とする
ことができ、しかも出発原料であるα―ハロケト
ン類に光学活性な化合物を用いると他の合成法で
は大変合成が困難なアルコールが光学純度100%
で生成することを特徴にしている。また本発明方
法により合成できるアルコール誘導体は医薬品、
農薬その他の所謂フアインケミストリー分野に於
いて有用な有機化合物である。
According to the method of the present invention, the reaction temperature can be set to 0°C or higher, and when an optically active compound is used as the starting material α-haloketone, an alcohol that is very difficult to synthesize using other synthesis methods can be produced with an optical purity of 100°C. %
It is characterized by being generated by. In addition, the alcohol derivatives that can be synthesized by the method of the present invention are pharmaceuticals,
It is an organic compound useful in agricultural chemicals and other so-called fine chemistry fields.

Claims (1)

【特許請求の範囲】 1 下記一般式[] (但しR′、R″、Rはアルキル、アリール、
アリル基で、夫々同一でも異つてもよい。Xは
ハロゲンを示す) で表わされるα―ハロケトン類を50℃以下で
RxAlH3―x(但しRはアルキル基、xは3又は
2)とAlX3(但しXはハロゲン)を組合せ作用さ
せることにより下記一般式[] (但しR′、R″、Rは前記に同じ) で表わされるアルコール類を製することを特徴と
する立体選択的に転位と還元を同時に行わせる方
法。 2 α―ハロケトン類が光学活性化合物である特
許請求の範囲第1項記載の方法。 3 RxAlH3―xがi―Bu3Al又はi―Bu2AlH
である特許請求の範囲第1項又は第2項記載の方
法。 4 AlX3がAlCl3又はAlBr3である特許請求の範
囲第1項から第3項までのいずれか1項記載の方
法。
[Claims] 1. The following general formula [] (However, R′, R″, R are alkyl, aryl,
Allyl groups may be the same or different. (X indicates halogen) α-haloketones represented by
By combining RxAlH 3 -x (where R is an alkyl group and x is 3 or 2) and AlX 3 (where X is a halogen), the following general formula [] (However, R′, R″, and R are the same as above.) A stereoselective method of simultaneously performing rearrangement and reduction, characterized by producing an alcohol represented by A method according to claim 1. 3 RxAlH 3 -x is i-Bu 3 Al or i-Bu 2 AlH
The method according to claim 1 or 2, wherein: 4. The method according to any one of claims 1 to 3, wherein AlX 3 is AlCl 3 or AlBr 3 .
JP60153533A 1985-07-12 1985-07-12 Steroselective rearrangement and reduction of alpha-haloketone Granted JPS6216435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153533A JPS6216435A (en) 1985-07-12 1985-07-12 Steroselective rearrangement and reduction of alpha-haloketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153533A JPS6216435A (en) 1985-07-12 1985-07-12 Steroselective rearrangement and reduction of alpha-haloketone

Publications (2)

Publication Number Publication Date
JPS6216435A JPS6216435A (en) 1987-01-24
JPS6330291B2 true JPS6330291B2 (en) 1988-06-17

Family

ID=15564598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153533A Granted JPS6216435A (en) 1985-07-12 1985-07-12 Steroselective rearrangement and reduction of alpha-haloketone

Country Status (1)

Country Link
JP (1) JPS6216435A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576984A (en) * 1982-02-04 1986-03-18 Morton Thiokol, Inc. Stabilizer compositions for PVC resins
JP4774802B2 (en) * 2005-05-16 2011-09-14 セントラル硝子株式会社 Reduction method using lithium aluminum hydride
WO2009042864A2 (en) 2007-09-27 2009-04-02 Graphic Packaging International, Inc. Carton feeder having friction reducing support shaft

Also Published As

Publication number Publication date
JPS6216435A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
JPS6136827B2 (en)
JPS6330291B2 (en)
US6162946A (en) Processing for producing allyl 2-hydroxyisobutyrate
JPS6216436A (en) Stereoselective rearrangement and reduction of alpha-haloketone
JP3547590B2 (en) Asymmetric zirconium catalyst
JP4380325B2 (en) Process for producing optically active carboxylic acid
JPS6335613B2 (en)
JP3691235B2 (en) Process for producing optically active piperidines
JPH09124569A (en) Production of benzamide derivative
KR101881918B1 (en) New process for the synthesis of acylsulfonamides derivatives
JP4851668B2 (en) Method for producing dialdehyde monoethylene acetal aminonitrile
KR950013253B1 (en) Process for the preparation of pyrazole sulfonglcarbamate derivative
JP2831776B2 (en) Isomer separation method
JP3592747B2 (en) N-tert-butyl-2,3-pyrazinedicarboxamide and method for producing the same
JPH03261743A (en) Optical resolution of jasmonic acid and dihydrojasmonic acid
JP3079263B1 (en) Method for producing oxo compound
JPS5993037A (en) Production of n-(alpha,alpha-dialkylbenzyl)phenyl-acetamide derivative
KR900001081B1 (en) A preparation process for 4-acyl-5-pyrazolyl 4-toluene sulfonate derivatives
JPH06145140A (en) Production of n-vinylpyrrolidone
JPS625942A (en) Production of l-or d-n2-benzyloxycarbonyllysine
JPH0616614A (en) Production of nitrile
JPH03255050A (en) Preparation of cis, cis-muconic acid chloride
JPS60184050A (en) Preparation of alpha-keto ester
JPH11180900A (en) Production of homoallylamines
JPH09110775A (en) Production of 1-naphthaldehyde