JPS63299982A - Optical recording medium and recording method using the same - Google Patents

Optical recording medium and recording method using the same

Info

Publication number
JPS63299982A
JPS63299982A JP62135553A JP13555387A JPS63299982A JP S63299982 A JPS63299982 A JP S63299982A JP 62135553 A JP62135553 A JP 62135553A JP 13555387 A JP13555387 A JP 13555387A JP S63299982 A JPS63299982 A JP S63299982A
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
thermal conductivity
medium according
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62135553A
Other languages
Japanese (ja)
Inventor
Minoru Ikeda
稔 池田
Koichi Saito
晃一 斉藤
Hideki Kobayashi
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62135553A priority Critical patent/JPS63299982A/en
Publication of JPS63299982A publication Critical patent/JPS63299982A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2535Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polyesters, e.g. PET, PETG or PEN

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To contrive a higher recording sensitivity and a simpler construction, by causing a metallic thin film provided on a transparent resin substrate to comprise a platinum group element and other metallic or semimetallic element and to have a specified thermal conductivity. CONSTITUTION:A metallic thin film provided on a transparent resin substrate consists of a composition comprising platinum group element as an essential constituent and other metallic or semimetallic element as an auxiliary element, and has a thermal conductivity of not more than 80% of the thermal conductivity of the platinum group element alone. With the thermal conductivity of the material constituting the metallic thin film thus lowered, the energy of recording laser light is localized, and recording sensitivity is markedly increased. The metallic or semimetallic element may be one which causes a marked lowering in the thermal conductivity of the platinum group element, and may be, for example, bismuth, titanium, aluminum, selenium, silicon, germanium or tin. A transparent resin used for the substrate may be one which sufficiently transmits laser light, for example, a polyester resin, a polyolefin resin or a polyamide resin.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はレーザ光によって情報の記録及び再生を行なう
光記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical recording medium on which information is recorded and reproduced using laser light.

〈従来の技術〉 レーザ光によって情報の記録、可成を行なう光記録媒体
は、半導体レーザ、記録材料、成膜技術などの基本技術
の向上と、大容虫記録が可能であるという特徴により、
最近急速に実用化の道が開かれてきた。レーザ光によっ
て記録を行うためには、レーザ光を照射した部分に何ら
かの状態変化が必要であり、これによって光学的変化を
もたらすことが必要である。すでにバブル(空隙)形成
方式、ピット形成(孔または凹部形成)方式、非結晶−
結晶質転移方式等が機業されている。
<Prior art> Optical recording media, which record and create information using laser light, have improved due to improvements in basic technologies such as semiconductor lasers, recording materials, and film-forming technology, as well as the ability to record large-sized insects.
Recently, the path to practical application has been rapidly opened. In order to perform recording with laser light, it is necessary to cause some kind of state change in the area irradiated with the laser light, and it is necessary to bring about an optical change as a result of this. Bubble (void) formation method, pit formation (hole or recess formation) method, amorphous
Crystalline transition methods are being used.

例えば、空隙形成方式の記録媒体は、特開昭56−65
340号公報、特開昭56−127937号公報におい
てその技術が公開されている。
For example, recording media using the void formation method are
The technology is disclosed in Japanese Patent Application Laid-open No. 340 and Japanese Patent Application Laid-open No. 127937/1983.

一方、孔または凹部形成方式(以下単に穴あけ方式とい
うことがある)の記録媒体の場合、Te5Se、Sなど
のカルコゲナイド系の元素を主成分とするものが中心で
あり、例えば、特開昭58−71193号公報、特開昭
52−110634号公報、特開昭57−146691
号公報などに技術が公開されている。
On the other hand, in the case of recording media using the hole or recess forming method (hereinafter sometimes simply referred to as the "perforating method"), the main component is a chalcogenide-based element such as Te5Se or S. No. 71193, JP-A-52-110634, JP-A-57-146691
The technology has been disclosed in publications such as publications.

しかしながら、カルコゲナイド系の元素は化学的に不安
定なものが多く、耐久性に不安があり、種々の添加剤を
加えたり、保護膜を設ける等の改良が試みられている。
However, many chalcogenide elements are chemically unstable and there are concerns about their durability, and attempts have been made to improve them by adding various additives or providing protective films.

さらに、レーザ光への負担転減、あるいは多機能ドライ
ブ、レーザカード等の開発に伴って、より高感度な光記
録媒体への要求が強まってきた。
Furthermore, with the reduction of the burden on laser light and the development of multifunctional drives, laser cards, etc., the demand for more sensitive optical recording media has increased.

〈発明が解決しようとする問題点〉 本発明の目的は、上述した従来の孔または凹部形成方式
の光記録媒体の問題点を解決することを技術的課題とし
て、孔または四部形成型記録媒体において、光吸収層と
して二成分以上の金属あるいは半金属から成る組成物薄
膜を用いることによって、従来の技術と比較して充分高
い記録感度を持ち、かつ単純な構成から成る光記録媒体
を提供せんとするものである。
<Problems to be Solved by the Invention> An object of the present invention is to solve the above-mentioned problems of the conventional hole or recess forming type optical recording medium, and to solve the problems in the hole or four part forming type recording medium. By using a composition thin film consisting of two or more metals or semimetals as a light absorption layer, we aim to provide an optical recording medium that has sufficiently high recording sensitivity compared to conventional techniques and has a simple structure. It is something to do.

〈問題点を解決するための手段〉 本発明は表面に透明樹脂基板の上に金属薄膜を積層して
なり、所定の波長領域のレーザ光を強(吸収して該レー
ザ光により孔または凹部を形成することによってデータ
が書き込まれることのできる光記録媒体において、上記
金属薄膜が白金族元素及び他の金属または半金属元素を
含み、熱伝導率が必須成分たる白金族元素単金属の熱伝
導率の80%以下であることを特徴とする光記録媒体で
ある。
<Means for Solving the Problems> The present invention consists of a thin metal film laminated on the surface of a transparent resin substrate, which strongly absorbs laser light in a predetermined wavelength range and uses the laser light to form holes or recesses. In an optical recording medium on which data can be written by forming an optical recording medium, the metal thin film contains a platinum group element and another metal or metalloid element, and the thermal conductivity is the thermal conductivity of the platinum group element single metal as an essential component. 80% or less of the optical recording medium.

本発明の記録媒体の基本構造は、透明樹脂基板上に、金
属薄膜を設けた構造である。該基本構造は、例えば特開
昭56−127937号明細書に開示される方法により
得られる。
The basic structure of the recording medium of the present invention is a structure in which a thin metal film is provided on a transparent resin substrate. This basic structure can be obtained, for example, by the method disclosed in JP-A-56-127937.

用いられる透明樹脂としては、レーザ光を透過するに充
分透明であれば何でも使用できる。それらは、例えばポ
リエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂
、ポリカーボネート樹脂又はポリメタクリル樹脂等の透
明性に優れた透明樹脂材料を例示することができる。用
いるレーザは特に限定するものではないが、ドライブ装
置をコンパクトにするためには半導体レーザが好ましく
、波長が750〜850nm領域のものが使われる。こ
の場合記録用パワーとしては一般に1〜lOmW程度の
範囲で用いられる。
Any transparent resin can be used as long as it is transparent enough to transmit laser light. Examples of these materials include transparent resin materials with excellent transparency such as polyester resin, polyolefin resin, polyamide resin, polycarbonate resin, and polymethacrylic resin. The laser used is not particularly limited, but in order to make the drive device compact, a semiconductor laser is preferred, and one with a wavelength in the 750 to 850 nm range is used. In this case, the recording power is generally in the range of about 1 to 10 mW.

透明樹脂基板としては、例えばカレンダリング法、射出
成形法、射出圧縮成形法、圧縮成形法、ホトポリマー法
(2P法)等の任意の成形方法により成形されたものが
使用できる。
As the transparent resin substrate, one molded by any molding method such as a calendaring method, an injection molding method, an injection compression molding method, a compression molding method, a photopolymer method (2P method), etc. can be used.

本発明において用いられる金属薄膜としては、白金族元
素を必須成分とし、他の金属又は半金属元素を副成分と
する組成物(合金を含む)であり、熱伝導率が必須成分
たる白金族元素単金属の熱伝導率の80%以下のものが
採用される。
The metal thin film used in the present invention is a composition (including alloys) containing a platinum group element as an essential component and another metal or metalloid element as a subcomponent, and the platinum group element has thermal conductivity as an essential component. A material with a thermal conductivity of 80% or less of that of a single metal is used.

白金族元素としては、白金、ルテニウム、ロジウム、パ
ラジウム、オスミウムまたはイリジウムが例示されるが
、その中でも特に好ましいのは白金である。白金を必須
成分とする金属薄膜は、化学的安定性が高く記録媒体の
初期性能を長期に渡って保持することができるという特
長を有する。
Examples of platinum group elements include platinum, ruthenium, rhodium, palladium, osmium, and iridium, among which platinum is particularly preferred. A metal thin film containing platinum as an essential component has a feature of high chemical stability and the ability to maintain the initial performance of a recording medium over a long period of time.

さらに、本発明で用いられる金属薄膜層(光吸収層)は
必須成分たる白金族元素に適当な他の金属あるいは半金
属を1種類以上添加し、その結果、必須成分たる白金族
元素単金属の熱伝導率の80%以下の熱伝導率を持つ組
成物の薄膜である必要がある。即ち、本発明者らの研究
によれば、本発明で規定される熱伝導率を満足するかぎ
り、該金属薄膜を用いた光記録媒体は貴金属を主体とす
るにもかかわらず、本発明の記録方式(孔または四部形
成)に適しているという意外な効果が認められた。金属
薄膜を構成する材料の低熱伝導化により、記録レーザ光
のエネルギー(熱)の局在化が生起し、記録感度の著し
い増大が見出された。また、このエネルギーの局在化は
、生成孔または凹部のエツジを明確にし、生成孔または
凹部のエツジに帰因するノイズを低減するという効果も
有することが見出された。
Furthermore, the metal thin film layer (light absorption layer) used in the present invention is made by adding one or more suitable other metals or semimetals to the platinum group element, which is an essential component, and as a result, the platinum group element monometal, which is an essential component, is It must be a thin film of a composition having a thermal conductivity of 80% or less. That is, according to the research of the present inventors, as long as the thermal conductivity specified by the present invention is satisfied, the recording medium of the present invention can be used even though the optical recording medium using the metal thin film is mainly made of noble metal. An unexpected effect was observed in that it was suitable for various methods (hole or four-part formation). It has been found that by reducing the thermal conductivity of the material constituting the metal thin film, the energy (heat) of the recording laser beam is localized, resulting in a significant increase in recording sensitivity. It has also been found that this localization of energy also has the effect of clarifying the edges of the generated holes or recesses and reducing noise attributable to the edges of the generated holes or recesses.

」二足の効果は熱伝導率が低ければ低い程顕著となるこ
とも認められた。本発明における金属薄膜のより好まし
い熱伝導率は白金族元素単金属の熱伝導率の60%以下
である。
It was also observed that the lower the thermal conductivity, the more pronounced the two-legged effect was. A more preferable thermal conductivity of the metal thin film in the present invention is 60% or less of the thermal conductivity of a platinum group element single metal.

上記副成分として添加される金属又は半金属元素として
は、配合することにより白金族元素の熱伝導率を著しく
低下させる能力を有するものなら何でも使用可能である
が、例えばビスマス(Bi)、チタン(Ti)、アルミ
ニュウム(AC)、セレン(Se)、テルル(Te)、
珪素(Si)、ゲルマニウム(Ge)、鋼(Sn)等を
例示することができる。
As the metal or metalloid element added as the above-mentioned subcomponent, any element can be used as long as it has the ability to significantly reduce the thermal conductivity of the platinum group element when mixed. For example, bismuth (Bi), titanium ( Ti), aluminum (AC), selenium (Se), tellurium (Te),
Examples include silicon (Si), germanium (Ge), and steel (Sn).

本発明者らの研究によれば上記他の金属または半金属元
素の励点χ(℃)および光記録媒体を構成する金属薄膜
の熱伝導率 に (cal/cm・sec・deg)が
、(1)式、より好ましくは(2)式を満足したときに
特に優れた孔または凹部形成方式による記録か行えるこ
とも認められた。
According to the research conducted by the present inventors, the excitation point χ (℃) of the other metal or metalloid element and the thermal conductivity (cal/cm・sec・deg) of the metal thin film constituting the optical recording medium are ( It has also been found that when formula 1), more preferably formula (2), is satisfied, particularly excellent recording can be performed using the hole or recess forming method.

ln(1.2κ−0,036)≦−8.7X 10 ’
x −3.4(1,)ln(1.2κ−0,036)≦
−7.8X 1.Q ’z −4.1(2)上記式を満
足する好ましい副成分としてはビスマス、セレン、テル
ルが例示される。ここで副成分たる元素の配合割合は適
宜決定されるが、全体の10%以上であることが好まし
く、一般には20〜80重量%の範囲内が好ましく使わ
れる。
ln(1.2κ-0,036)≦-8.7X 10'
x −3.4(1,)ln(1.2κ−0,036)≦
-7.8X 1. Q'z -4.1 (2) Preferred subcomponents satisfying the above formula include bismuth, selenium, and tellurium. The blending ratio of the elements serving as subcomponents is determined as appropriate, but it is preferably 10% or more of the total, and generally within the range of 20 to 80% by weight.

金属として白金を選択した場合の上記の副成分の組成を
例示すると、上述のいずれの金属も原子数%で約5%添
加すると熱伝導率は白金のそれに対し80%に減少する
。Si、 Ge、 5nSTe、 Seにおいては約1
0%添加すると熱伝導率が60%程度になる。旧、T1
、AQの場合は約20%添加することにより熱伝導率が
60%に低下する。
To illustrate the composition of the above-mentioned subcomponents when platinum is selected as the metal, if approximately 5% by number of atoms of any of the above-mentioned metals is added, the thermal conductivity decreases to 80% of that of platinum. Approximately 1 for Si, Ge, 5nSTe, and Se
When added at 0%, the thermal conductivity becomes approximately 60%. Old, T1
, AQ, the thermal conductivity decreases to 60% by adding about 20%.

金属薄膜の膜厚は、特には限定されないが、基板側から
レーザ光を入射した時の記録前の反射率が5〜60%の
範囲である様設定されるのがよい。
The thickness of the metal thin film is not particularly limited, but it is preferably set so that the reflectance before recording when laser light is incident from the substrate side is in the range of 5 to 60%.

この範囲を超え、低すぎると記録、再生時にトラッキン
グが十分行えず、安定した記録、再生が困難となる。又
、高すぎると記録用レーザ光を十分に吸収することかで
きず、全く記録できないか、記録に高パワーを要するの
で好ましくない。該金属薄膜層が、この様な反射率を有
するためには、配合元素によって差はあるが一般には5
〜200nmの膜厚である。
If it exceeds this range or is too low, tracking will not be sufficient during recording or reproduction, making stable recording or reproduction difficult. On the other hand, if it is too high, the recording laser beam cannot be absorbed sufficiently, and either no recording is possible or high power is required for recording, which is undesirable. In order for the metal thin film layer to have such a reflectance, there are differences depending on the blended elements, but generally 5.
The film thickness is ~200 nm.

この様な膜厚を有する薄膜の熱伝導率測定は一般には非
常に困難である。金属の熱伝導率は伝導電子によるもの
であるから、電気伝導度に1次的に比例し、薄膜の電気
伝導度σを求めれば、次に示す関係によって、絶対温度
Tにおける熱伝導率にを求めることができる[金属材料
基礎学:尾崎良平他著;朝倉書店:第158頁:(19
85年)]。
Generally, it is very difficult to measure the thermal conductivity of a thin film having such a thickness. Since the thermal conductivity of metal is due to conduction electrons, it is linearly proportional to the electrical conductivity.If we find the electrical conductivity σ of a thin film, we can calculate the thermal conductivity at absolute temperature T by the following relationship. [Fundamentals of Metallic Materials: Ryohei Ozaki et al.; Asakura Shoten: p. 158: (19
1985)].

に=5.02(calΩ/sec ・deg”)σT 
x 1011+ 0.03ここで に: 熱伝導率[c
al/(cm −sec −deg)]T: 絶対温度
(0K) σ・ 電気伝導度(1/Ω・co+) 本発明における熱伝導率とは上記式により求められる値
である。なお熱伝導率は薄膜においては膜の厚みに依存
する。従って、本発明で定義される金属薄膜及び白金族
単金属の熱伝導率はそれぞれ同じ膜厚にて測定された値
を基準にする。
= 5.02 (calΩ/sec ・deg”) σT
x 1011+ 0.03 where: Thermal conductivity [c
al/(cm-sec-deg)]T: Absolute temperature (0K) σ・Electrical conductivity (1/Ω・co+) The thermal conductivity in the present invention is a value determined by the above formula. Note that the thermal conductivity of a thin film depends on the thickness of the film. Therefore, the thermal conductivities of the metal thin film and platinum group single metal defined in the present invention are based on values measured at the same film thickness.

本発明の様に多元系組成物を用いた場合、膜硬度は大き
くなり、空隙強度を保持したままで、膜厚をより薄くす
ることが可能である。
When a multi-component composition is used as in the present invention, the film hardness increases and the film thickness can be made thinner while maintaining the void strength.

以上水した様な金属薄膜層は、スパッタリング法、真空
蒸着法、イオンブレーティング法部常法により形成する
ことが可能であり、成膜方法は特に限定するものではな
い。
The water-like thin metal film layer described above can be formed by a sputtering method, a vacuum evaporation method, or an ion-blating method, and the film-forming method is not particularly limited.

以上により製造された光記録媒体は、レーザ光を照射す
ることにより、又は透明樹脂基板の局部分解によるガス
発生を生起し、金属薄膜の永久変形として認められる孔
または凹部を形成することにより、永久的記録を行うこ
とができる。
The optical recording medium manufactured as described above can be permanently produced by irradiating it with laser light or by generating gas by local decomposition of the transparent resin substrate to form holes or recesses that are recognized as permanent deformation of the metal thin film. It is possible to record information.

本発明において、透明樹脂基板と金属薄膜層との間に例
えば、ニトロセルロースなどの薄い中間層を設けること
は、記録感度をさらに向上せしめたり、形成されるピッ
トの形状を整えるために有効である。
In the present invention, providing a thin intermediate layer such as nitrocellulose between the transparent resin substrate and the metal thin film layer is effective for further improving the recording sensitivity and adjusting the shape of the pits formed. .

中間層としては、ニトロセルロースの他に、分解温度の
低い各種染料、極めて低融点を示す各種金属、セルロー
ス誘導体、低分子虫の熱可塑性樹脂等を例示することが
できる。
Examples of the intermediate layer include, in addition to nitrocellulose, various dyes with low decomposition temperatures, various metals with extremely low melting points, cellulose derivatives, and low-molecular-weight thermoplastic resins.

まノ述記録媒体の形状は円形、方形等であっても良く、
ディスク状、カード状等であってもよい。
The shape of the mano statement recording medium may be circular, square, etc.
It may be in the form of a disk, a card, or the like.

〈実施例〉 以下に実施例をもって本発明をより詳しく説明する。<Example> The present invention will be explained in more detail with reference to Examples below.

[実施例!、比較例A] 厚さ1.2mm、内径151ThI111外径1301
III11のポリカーボネート製透明樹脂円板を射出成
形により成形した。次いでこの円板上に、Ptターゲッ
ト及びSeターゲットを用い、スパッタ率を考慮して原
子比1:1になるように電圧を印加し、スパッタリング
法による厚さ12nmの薄膜を形成し、光記録媒体を得
た。ここで、本文中に記載の測定法によって、この膜の
熱伝導率を測定したところ0.031(cal/cm・
sec・deg)であった。尚、この光記録媒体におい
て、基板側からレーザ光を入射した場合の反射率は41
%−ffMllmは44%であり、k g 830nm
において、記録可成のためのフォーカシング及びトラッ
キングは充分行うことができたため、記録パワーを1〜
Ic)mWよで遂次変えながら記録を行いCN Rを測
定した。結果を第1図に示した。
[Example! , Comparative Example A] Thickness 1.2 mm, inner diameter 151ThI111 outer diameter 1301
A transparent resin disk made of polycarbonate of III11 was molded by injection molding. Next, using a Pt target and a Se target, a voltage was applied on this disk so that the atomic ratio was 1:1 considering the sputtering rate, and a thin film with a thickness of 12 nm was formed by sputtering, and an optical recording medium was formed. I got it. Here, the thermal conductivity of this film was measured using the measurement method described in the text and was found to be 0.031 (cal/cm・
sec・deg). In addition, in this optical recording medium, the reflectance when laser light is incident from the substrate side is 41
%-ffMllm is 44% and kg 830nm
In this case, the focusing and tracking for recording were able to be performed sufficiently, so the recording power was reduced to 1~1.
Ic) Recording was performed while successively changing mW to measure CNR. The results are shown in Figure 1.

比較例Aとして、前述の微細な凹凸を有するポリカーボ
ネート製透明樹脂円板にスパッタリング法によってPt
ターゲットのみを用い1.2 n mに成膜して光記録
媒体を作製した。この白金薄膜の熱伝導率は0.091
(cal/cm ・sec ・deg)であった。実施
例1と同様に記録パワーを逐次変えながら記録を行いC
NRを測定したが単にバブル状になろだ(3で測定範囲
内の記録レーザパワーではビット形成には至らなかった
As Comparative Example A, Pt was applied by sputtering to the polycarbonate transparent resin disk having the aforementioned fine irregularities.
An optical recording medium was produced by forming a film to a thickness of 1.2 nm using only a target. The thermal conductivity of this platinum thin film is 0.091
(cal/cm ・sec ・deg). Recording was performed while changing the recording power sequentially in the same manner as in Example 1.C
I measured the NR, but it just looked like a bubble (at 3, the recording laser power within the measurement range did not lead to bit formation.

即ち、本発明に基づけば、比較例のPtのみよりなる金
属薄膜を有する記録媒体に比較して低パワーで、良好な
孔あけ型の光記録媒体を得ることが可能であった。
That is, based on the present invention, it was possible to obtain a good perforated optical recording medium with lower power than the comparative example recording medium having a metal thin film made only of Pt.

〈実施例2、比較例B〉 金属薄膜層として、スパッタリング法によってPtにB
iを添加し成膜した光記録媒体について、同様の測定を
行なった。膜中のPtとBiの原子比は1:1であり、
熱伝導率は0.032(cal/cm =sec ・d
eg)であった。さらに反射率は31%、吸収率は57
%であった。測定の結果、第1図における実施例と同様
の効果が得られ、孔あけ型の光記録媒体を得ることがで
きた。
<Example 2, Comparative Example B> As a metal thin film layer, B was added to Pt by sputtering method.
Similar measurements were performed on an optical recording medium in which a film was formed by adding i. The atomic ratio of Pt and Bi in the film is 1:1,
Thermal conductivity is 0.032 (cal/cm = sec d
eg). In addition, the reflectance is 31% and the absorption rate is 57.
%Met. As a result of the measurement, effects similar to those of the example shown in FIG. 1 were obtained, and a perforated optical recording medium could be obtained.

さらに、基板と金属薄膜層との間に、0.1μmの厚さ
のニトロセルロース層をスピンコード法により設層した
ものについて、同様の測定を行ったところ、CNRが5
0dBに達する記録レーザパワーが更にImWも低減す
ることができた。
Furthermore, similar measurements were performed on a nitrocellulose layer with a thickness of 0.1 μm formed between the substrate and the metal thin film layer by the spin cord method, and the CNR was found to be 5.
The recording laser power reaching 0 dB was further reduced by ImW.

〈発明の効果〉 本発明によれば、基板上に金属薄膜層を設けてなる光記
録媒体において、金属薄膜層に、白金族を必須成分とし
、1種類以上の金属または半金属元素を添加することに
よって成り、かつ熱伝導率が白金族単金属の値より小さ
い組成物を用いることによって、化学的に安定で高感度
記録が可能な光学記録媒体を得ることができる。
<Effects of the Invention> According to the present invention, in an optical recording medium comprising a metal thin film layer provided on a substrate, the metal thin film layer contains platinum group as an essential component and one or more metals or metalloid elements are added. By using a composition which is composed of the following and whose thermal conductivity is smaller than that of a platinum group single metal, it is possible to obtain an optical recording medium that is chemically stable and capable of high-sensitivity recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1において得られた光記録媒体ついて測
定した記録パワーとCNRとの関係を示した図である。 特許出願人 株式会社 り ラ し 代 理 人 弁理士 本多 堅
FIG. 1 is a diagram showing the relationship between recording power and CNR measured for the optical recording medium obtained in Example 1. Patent applicant: Rira Co., Ltd. Agent: Ken Honda, patent attorney

Claims (1)

【特許請求の範囲】 1)透明樹脂基板の上に金属薄膜を積層してなり、所定
の波長領域のレーザ光を吸収して該レーザ光により孔ま
たは凹部を形成することによってデータが書き込まれる
ことのできる光記録媒体において、上記金属薄膜が白金
族元素及び他の金属または半金属元素を含み、熱伝導率
が必須成分たる白金族元素単金属の熱伝導率の80%以
下であることを特徴とする、光記録媒体。 2)透明樹脂基板側からレーザ光を照射したときの記録
前の反射率が5〜60%の範囲にある特許請求の範囲第
1項記載の光記録媒体。 3)透明樹脂基板表面の微細な凹凸がカレンダリング法
、射出成形、射出圧縮成形、圧縮成形、ホトポリマー法
(2P法)などのプラスチック複製法による特許請求の
範囲第1項記載の光記録媒体。 4)白金族元素が白金、ルテニウム、ロジウム、パラジ
ウム、オスミウム、またはイリジウムである特許請求の
範囲第1項記載の光記録媒体。 5)白金族元素が白金である特許請求の範囲第5項記載
の光記録媒体。 6)他の金属または半金属元素の融点χ(℃)および光
記録媒体を構成する金属薄膜の熱伝導率κ(cal/c
m・sec・deg)が、次式を満足することを特徴と
する特許請求の範囲第5項記載の光記録媒体。 ln(1.2κ−0.036)≦−8.7×10^4χ
−3.47)他の金属または半金属元素の融点χ(℃)
および光記録媒体を構成する金属薄膜の熱伝導率κ(c
al/cm・sec・deg)が、次式を満足すること
を特徴とする特許請求の範囲第5項記載の光記録媒体。 ln(1.2κ−0.036)≦−7.8×10^4χ
−4.18)他の金属または半金属元素がビスマス、チ
タン、アルミニュウム、セレン、テルル、珪素、ゲルマ
ニウムまたは錫である特許請求の範囲第5項記載の光記
録媒体。 9)光記録媒体を構成する金属薄膜の熱伝導率が60%
以下であり、他の金属または半金属元素の融点χ(℃)
および光記録媒体を構成する金属薄膜の熱伝導率κ(c
al/cm・sec・deg)が、次式を満足すること
を特徴とする特許請求の範囲第5項記載の光記録媒体。 ln(1.2κ−0.036)≦−8.7×10^4χ
−3.410)金属薄膜の膜厚が5nm〜200nmの
範囲にある特許請求の範囲第1項〜第10項のいずれか
に記載の光記録媒体。 11)金属層と基板との間に他の中間層が存在している
特許請求の範囲第1項記載の光記録媒体。 12)他の中間層が気体発生能力を有するものである特
許請求の範囲第11項記載の光記録媒体。 13)他の中間層がニトロセルロースである特許請求の
範囲第12項記載の光記録媒体。14)透明樹脂材料が
熱可塑性樹脂である特許請求の範囲第1項記載の光記録
媒体。 15)透明樹脂材料がポリエステル樹脂、ポリオレフィ
ン樹脂、ポリアミド樹脂、ポリカーボネート樹脂又はポ
リメタクリル樹脂である特許請求の範囲第1項記載の光
記録媒体。16)上記光記録媒体を用い、レーザ光を照
射することにより透明樹脂基板又は中間層の局部的分解
によるガス発生を生起し、孔または凹部を形成すること
により、永久的記録を行う記録方法。 17)上記光記録媒体を用い、レーザ光を照射すること
により金属薄膜に孔または凹部を形成することにより記
録された光記録媒体。
[Claims] 1) A thin metal film is laminated on a transparent resin substrate, and data is written by absorbing laser light in a predetermined wavelength range and forming holes or recesses with the laser light. An optical recording medium that can be used, characterized in that the metal thin film contains a platinum group element and another metal or metalloid element, and has a thermal conductivity of 80% or less of the thermal conductivity of a single metal of a platinum group element as an essential component. An optical recording medium. 2) The optical recording medium according to claim 1, wherein the reflectance before recording when irradiated with laser light from the transparent resin substrate side is in the range of 5 to 60%. 3) The optical recording medium according to claim 1, wherein the fine irregularities on the surface of the transparent resin substrate are formed by a plastic duplication method such as a calendering method, injection molding, injection compression molding, compression molding, or a photopolymer method (2P method). 4) The optical recording medium according to claim 1, wherein the platinum group element is platinum, ruthenium, rhodium, palladium, osmium, or iridium. 5) The optical recording medium according to claim 5, wherein the platinum group element is platinum. 6) The melting point χ (°C) of other metals or metalloid elements and the thermal conductivity κ (cal/c) of the metal thin film constituting the optical recording medium
6. The optical recording medium according to claim 5, wherein m·sec·deg) satisfies the following formula. ln(1.2κ-0.036)≦-8.7×10^4χ
-3.47) Melting point χ (℃) of other metal or metalloid elements
and the thermal conductivity κ(c
6. The optical recording medium according to claim 5, wherein al/cm·sec·deg) satisfies the following formula. ln(1.2κ-0.036)≦-7.8×10^4χ
-4.18) The optical recording medium according to claim 5, wherein the other metal or metalloid element is bismuth, titanium, aluminum, selenium, tellurium, silicon, germanium or tin. 9) The thermal conductivity of the metal thin film that makes up the optical recording medium is 60%.
and the melting point of the other metal or metalloid element χ (℃)
and the thermal conductivity κ(c
6. The optical recording medium according to claim 5, wherein al/cm·sec·deg) satisfies the following formula. ln(1.2κ-0.036)≦-8.7×10^4χ
-3.410) The optical recording medium according to any one of claims 1 to 10, wherein the metal thin film has a thickness in the range of 5 nm to 200 nm. 11) The optical recording medium according to claim 1, wherein another intermediate layer is present between the metal layer and the substrate. 12) The optical recording medium according to claim 11, wherein the other intermediate layer has a gas generating ability. 13) The optical recording medium according to claim 12, wherein the other intermediate layer is nitrocellulose. 14) The optical recording medium according to claim 1, wherein the transparent resin material is a thermoplastic resin. 15) The optical recording medium according to claim 1, wherein the transparent resin material is polyester resin, polyolefin resin, polyamide resin, polycarbonate resin, or polymethacrylic resin. 16) A recording method that uses the above optical recording medium and performs permanent recording by irradiating the transparent resin substrate or intermediate layer with a laser beam to generate gas through local decomposition to form holes or recesses. 17) An optical recording medium recorded by using the optical recording medium described above and forming holes or recesses in a metal thin film by irradiating laser light.
JP62135553A 1987-05-30 1987-05-30 Optical recording medium and recording method using the same Pending JPS63299982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135553A JPS63299982A (en) 1987-05-30 1987-05-30 Optical recording medium and recording method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135553A JPS63299982A (en) 1987-05-30 1987-05-30 Optical recording medium and recording method using the same

Publications (1)

Publication Number Publication Date
JPS63299982A true JPS63299982A (en) 1988-12-07

Family

ID=15154487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135553A Pending JPS63299982A (en) 1987-05-30 1987-05-30 Optical recording medium and recording method using the same

Country Status (1)

Country Link
JP (1) JPS63299982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412539A2 (en) * 1989-08-11 1991-02-13 Hitachi Maxell Ltd. Thermal recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412539A2 (en) * 1989-08-11 1991-02-13 Hitachi Maxell Ltd. Thermal recording medium

Similar Documents

Publication Publication Date Title
US5252370A (en) Optical recording medium and method for making
JPH0415112B2 (en)
JPH0415115B2 (en)
JP2506374B2 (en) Optical recording medium and recording method using the same
JPH0725200B2 (en) Information recording medium
EP0068801A2 (en) Optical storage medium
JP4221450B2 (en) Super-resolution near-field high-density recording medium using a refractory metal oxide or silicon oxide mask layer
JPS63299982A (en) Optical recording medium and recording method using the same
JP3313246B2 (en) Optical information recording medium
JP2573998B2 (en) Optical recording medium
JP2629746B2 (en) Optical recording medium
JP2635328B2 (en) Optical recording medium
JP3801612B2 (en) Information recording medium
JPS6339387A (en) Optical recording medium
JPS63299980A (en) Optical recording medium and recording method using the same
JPS63299986A (en) Optical recording medium and recording method using the same
JPH0327975B2 (en)
JP3653254B2 (en) Optical information recording medium
JP4060574B2 (en) Write-once optical recording medium
JPS63167440A (en) Method for recording or recording and erasing information
JPH0250874B2 (en)
JP2867407B2 (en) Information recording medium
JPH0251391B2 (en)
JPS59131493A (en) Manufacture of optical recording medium
JPS63299981A (en) Optical recording medium and recording method using the same