JPS63167440A - Method for recording or recording and erasing information - Google Patents

Method for recording or recording and erasing information

Info

Publication number
JPS63167440A
JPS63167440A JP61310163A JP31016386A JPS63167440A JP S63167440 A JPS63167440 A JP S63167440A JP 61310163 A JP61310163 A JP 61310163A JP 31016386 A JP31016386 A JP 31016386A JP S63167440 A JPS63167440 A JP S63167440A
Authority
JP
Japan
Prior art keywords
recording
vapor deposition
state
information
erasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310163A
Other languages
Japanese (ja)
Inventor
Tetsuo Minemura
哲郎 峯村
Isao Ikuta
生田 勲
Hisashi Ando
寿 安藤
Yoshimi Kato
加藤 義美
Toshiteru Kaneko
寿輝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61310163A priority Critical patent/JPS63167440A/en
Publication of JPS63167440A publication Critical patent/JPS63167440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a method which improves recording and erasing sensitivity and provides large reproduction output by executing either of recording or erasing in accordance with a change in crystal structure past a molten state. CONSTITUTION:A recording material is formed by using an element of group Vb as an essential component and alloying the same with Sb or Bi and one kind among other specific metals so that the m.p. thereof is adjusted to about 200-800 deg.C. The compsn. of the alloy is determined that the concn. of the shell electrons of the alloy is kept in a 3-3.5 range. An alloy film 2 is then formed on a substrate 1 for vapor deposition by using a 2-element resistance heating vapor deposition device with either of Sb or Bi as a vapor deposition source and the other element to be alloyed as a vapor deposition source. Information is recorded in such constitution by heating the crystal phase in the initial state locally to the m.p. or above to attain the molten state, then changing the crystal phase by quick cooling to vary the reflectivity. The crystal of the initial state is restored and the information is erased if this part is heated to the highest possible temp. below the m.p. and is then cooled. The large reproduction output is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は材料の構造変化により情報を記録もしくは記録
及び消去する方法に係り、特にレーザ光などを光源とし
た追記型、もしくは書き換え可能型光記録に好適な方法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of recording or recording and erasing information by changing the structure of a material, and particularly relates to a write-once type or rewritable type light source using a laser beam or the like as a light source. Concerning a suitable method for recording.

〔従来の技術〕[Conventional technology]

近年、大容量メモリとして開発が進められている光デイ
スク用記録媒体には、光磁気効果と相変態をそれぞれ利
用して情報を記録もしくは消去する主な2つのタイプが
知られている。前者は特公昭57−20691.特開昭
56−126907及び特開昭58−73746などに
記載のような希土類元素とFe、 Coの合金でレーザ
光によりキュリ一温度以上に局部加熱された部分が外部
磁場によりスピンが反転し、スピンの反転がない部分と
の反射光偏光面が異なることにより情報を記録する。一
方、後者の相変態を利用したものとしては、特公昭47
−26897に記載のヨウなりtb族(カルコゲン元素
)を主成分としたカルコゲナイド (化合物)を中心と
した材料の非晶質(アモルファス)−結晶量相変化を利
用した方法が一般的に知られている。これは、相変化に
伴なう光学的性質(屈折率、消衰係数など)を変化させ
て情報を記録、もしくは消去する記録媒体材料を用いる
ものである。
In recent years, two main types of optical disk recording media, which have been developed as large-capacity memories, are known, each of which utilizes the magneto-optical effect and phase transformation to record or erase information. The former is Special Publication No. 57-20691. In alloys of rare earth elements, Fe, and Co, as described in JP-A-56-126907 and JP-A-58-73746, the spin of a portion locally heated to a Curie temperature or higher by a laser beam is reversed by an external magnetic field. Information is recorded because the plane of polarization of the reflected light is different from the part where the spin is not reversed. On the other hand, as a method utilizing the latter phase transformation,
A method that utilizes the amorphous-crystalline phase change of a material mainly composed of chalcogenides (compounds) mainly composed of the iodine tb group (chalcogen elements) described in 26897 is generally known. There is. This uses a recording medium material that records or erases information by changing optical properties (refractive index, extinction coefficient, etc.) accompanying a phase change.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光磁気効果を利用した記録材料においては、偏光
面の変化が0.3°程度と非常に小さいため、記録した
情報の再生出力が大きくとれないという問題点がある。
Conventional recording materials that utilize the magneto-optical effect have a problem in that the change in the plane of polarization is as small as about 0.3°, making it difficult to obtain a large reproduction output of recorded information.

また、書き換え可能型光ディスクを考えた場合、重ね書
き(オーバーライド)が装置構成上能しいという課題も
ある。
Furthermore, when considering a rewritable optical disc, there is also the problem that overwriting is not possible due to the device configuration.

一方、非晶質−結晶量相変化を利用したカルボケナイト
 (化合物)材料はSe、 Teなどの取り扱いにくい
元素を含み、さらにアモルファス状態が熱的に不安定で
あることなどの媒体の記録寿命に関わる問題がある。
On the other hand, carbokenite (compound) materials that utilize an amorphous-crystalline phase change contain elements that are difficult to handle, such as Se and Te, and the amorphous state is thermally unstable, which affects the recording life of the media. There's a problem.

本発明の目的は材料の構造変化により情報を記録、もし
くは記録及び消去する方法において、記録、消去感度が
良好で再生出力が大きく得られ、記録材料にSe、 T
e等の取り扱いにくい元素を含まず、材料の安定性が良
好である方法を提供することにある。
An object of the present invention is to provide a method for recording information or for recording and erasing information by changing the structure of a material, which provides good recording and erasing sensitivity and a large reproduction output, and which includes Se, T,
It is an object of the present invention to provide a method that does not contain elements that are difficult to handle, such as e, and has good stability of the material.

〔問題を解決するための手段〕[Means to solve the problem]

上記目的は、物質の原子配列を変えることにより情報を
記録、もしくは記録及び消去する方決において、溶融状
態を経て異なった結晶状態をとりうる記録材料を用い、
記録及び消去のいずれかを、溶融状態を経る結晶構造の
変化により行うことにより、記録状態の結晶状態と、消
去及び初期状態の結晶状態とを異なったものとすること
により達成される。
The above purpose is to record information, or to record and erase information by changing the atomic arrangement of a substance, using a recording material that can take on different crystalline states through a molten state.
This is achieved by performing either recording or erasing by changing the crystal structure through a molten state, thereby making the crystalline state in the recorded state different from the crystalline state in the erased and initial states.

本発明方法において、結晶状態とは、長範囲の規則的原
子配列をもつ結晶状であり、実質的に非晶質でない状態
をいう。
In the method of the present invention, the term "crystalline state" refers to a state that is crystalline with a regular atomic arrangement over a long range and is not substantially amorphous.

本発明で用いる記録材料としては、元素周期律表Vb族
の元素を主成分とする合金が適する。実用的にはSb、
 Biが好適である。そして、Sb、 Biの組成割合
は各材料系によって異なるが、全てを共通して満足する
組成割合を書くとsb系50〜97a t%、Bi系1
5〜95%である。また、sbに対してはCu、 Ag
As the recording material used in the present invention, an alloy whose main component is an element of group Vb of the periodic table of elements is suitable. Practically, Sb,
Bi is preferred. The composition ratios of Sb and Bi differ depending on each material system, but the composition ratios that satisfy all of them in common are 50 to 97 at% for sb and 1 at% for Bi.
It is 5-95%. In addition, for sb, Cu, Ag
.

Zn+ Cd、 Ga+ Ge+ Sn、 Pb、 N
i、 Pd、 Mn、 Cr、 Feの少なくとも1種
を、また、Biに対してはAu、 Zn。
Zn+ Cd, Ga+ Ge+ Sn, Pb, N
At least one of i, Pd, Mn, Cr, and Fe, and Au and Zn for Bi.

Cd、 In、 TJ、 Sn、 pb、 Se、 T
e+ Mn、 Ce+ Mgl Li1Nt+ Sb+
 Haの少なくとも1種をそれぞれ合金化した材料が良
い。sbの融点は630℃、Biの融点は270℃であ
る。これらを合金化した場合、融点はあまり高くない方
が材料を溶融状態にしやすく、記録材料の性能が良好に
なる。この点から融点上限は800℃ぐらいが望ましい
。一方、融点があまり低いと固相状態の安定性、信頼性
を欠くため、その下限は少な(とも200℃程度が望ま
しい。
Cd, In, TJ, Sn, pb, Se, T
e+ Mn, Ce+ Mgl Li1Nt+ Sb+
It is preferable to use a material that is alloyed with at least one type of Ha. The melting point of sb is 630°C, and the melting point of Bi is 270°C. When these are alloyed, it is easier to bring the material into a molten state if the melting point is not too high, and the performance of the recording material is improved. From this point of view, the upper limit of the melting point is preferably about 800°C. On the other hand, if the melting point is too low, the solid state will lack stability and reliability, so the lower limit is small (about 200° C. is desirable).

以上の合金の中で固相平衡状態で金属間化合物を形成す
るものがある。溶融状態を経て相変化を誘起させる場合
、この化合物の融点が低いことが望ましい。その融点は
1000℃以下程度が良い。
Among the above alloys, some form intermetallic compounds in a solid phase equilibrium state. When inducing a phase change through a molten state, it is desirable that the compound has a low melting point. The melting point is preferably about 1000°C or lower.

溶融状態を経て2つの固相状態を得るためには合金組成
の外殻電子濃度が重要である。外殻電子濃度Aは以下の
ように定義する。
In order to obtain two solid phase states through a molten state, the outer shell electron concentration of the alloy composition is important. The outer shell electron concentration A is defined as follows.

A=ΣaiJ ai :i元素の外殻電子濃度 ただし、aは周期律表I族元素が1゜ ■族が2.以下■族が3. IV族が4゜■族が5.V
l族が6.■族が7.■族はOとする。
A=ΣaiJ ai : outer shell electron concentration of element i, where a is 1° for group I elements of the periodic table and 2. The following group ■ is 3. IV group is 4゜■ group is 5. V
The l family is 6. ■My family is 7. ■The family is O.

m(:合金成分中のi元素の原子%X 1/100本発
明の合金の外殻電子濃度は3〜5.5の範囲が好適であ
り、このような範囲となるように合金の組成を決めれば
よい。
m (: atomic % of element i in the alloy component All you have to do is decide.

局部的加熱にはエネルギー密度の高いレーザ光が適する
。記録、消去はこの加熱により局部的な変化がおこれば
よい。この変化は主に結晶構造の変化であり、これによ
って変わる合金の光学的性質が再生の基本となる。しか
し、局部的な結晶構造の変化により薄膜に凹凸が生じ、
見かけ上局部的な反射率が変わっても再生には支障はな
い。
Laser light with high energy density is suitable for local heating. For recording and erasing, it is sufficient that local changes occur due to this heating. This change is mainly a change in the crystal structure, and the optical properties of the alloy that change due to this change are the basis of reproduction. However, unevenness occurs in the thin film due to local changes in the crystal structure.
Even if the apparent local reflectance changes, there is no problem with reproduction.

以上の合金を記録材料として用いる場合、基板上に層状
に積層される。作製法としては一般的な真空蒸着やスパ
ッタ法などが適する。さらに合金層を保護するため保護
層を設けても良い。この保護層には、酸化物、窒化物な
どの無機物質や耐熱性のあるポリイミド系有機物質など
が適する。
When the above alloys are used as recording materials, they are laminated in layers on a substrate. As a manufacturing method, general vacuum evaporation, sputtering, etc. are suitable. Furthermore, a protective layer may be provided to protect the alloy layer. Suitable materials for this protective layer include inorganic materials such as oxides and nitrides, and heat-resistant polyimide-based organic materials.

基板としてはディスク状のガラス、ポリカーボネイトや
アクリル系の樹脂材料が良い。また、テープ状のポリイ
ミドシートも適する。
The substrate is preferably a disk-shaped glass, polycarbonate, or acrylic resin material. A tape-shaped polyimide sheet is also suitable.

本発明の適用分野としては、追記型あるいは書き換え可
能型光ディスクや光記録テープがある。
The present invention is applicable to write-once or rewritable optical discs and optical recording tapes.

また、光カードのようなコンパクトな記録媒体にも適す
る。
It is also suitable for compact recording media such as optical cards.

〔作 用〕[For production]

前述のように本発明においては、記録及び消去のいずれ
かを、溶融状態を経て結晶構造を変化させることにより
行う、溶融状態は、原子の拡散が固相状態に比べ速いた
め、相変化が速い。そして、その結果得られる結晶相は
、非晶質状態に比べ電子が安定に位置し、その状態は安
定といえる。このような過程による光記録の記録、再生
、消去原理を第1図に示す。初期状態の結晶相(Cry
 I )を局部的に融点(Tm)以上まで加熱して溶融
状態とした後急冷し、Cry Iとは結晶構造の異なる
結晶相(Cry II )にして情報を記録する。結晶
構造の違いは、光学的性質の違いとなり、反射率が異な
る結果となる。この反射率の違いにより、情報を再生す
る。さらに、この部分を融点(Tm)以下のできるだけ
高温度に加熱冷却すれば、Cry Iの結晶へ戻り、情
報を消去できる。
As mentioned above, in the present invention, either recording or erasing is performed by changing the crystal structure through a molten state. In the molten state, the phase change is rapid because atoms diffuse faster than in the solid state. . In the crystalline phase obtained as a result, electrons are more stably located than in the amorphous state, and this state can be said to be stable. The principle of recording, reproducing, and erasing optical recording through such a process is shown in FIG. Crystalline phase in initial state (Cry
I) is locally heated to a temperature above the melting point (Tm) to make it into a molten state, and then rapidly cooled to form a crystal phase (Cry II) having a crystal structure different from that of Cry I, and information is recorded. Differences in crystal structure result in differences in optical properties, resulting in different reflectances. Information is reproduced based on this difference in reflectance. Furthermore, if this part is heated and cooled to a temperature as high as possible below the melting point (Tm), it will return to the Cry I crystal and the information can be erased.

また、初期状態をCry IIとして、これを局部的に
融点以下のできるだけ高い温度に加熱し、冷却してCr
y Iとし、情報を記録することもできる。
In addition, the initial state is Cry II, which is locally heated to a temperature as high as possible below the melting point, and then cooled to form Cr.
y I, and information can also be recorded.

そしてこれを融点以上に加熱して、溶融状態とした後急
冷すればCry Uの・結晶となり情報を消去できる。
If this is heated above its melting point to form a molten state and then rapidly cooled, it becomes Cry U crystals and information can be erased.

〔実施例〕〔Example〕

以下実施例によって本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 2元抵抗加熱蒸着装置を用い、sbもしくは、Biを1
方の蒸着源とし、他方に合金化する元素を蒸着源として
蒸着膜を形成した。最初にそれぞれの蒸着源単独の蒸着
速度を測定し、これを基に2元系合金膜を同時蒸着した
。以下に作製した膜の目標組成を示す。
Example 1 Using a binary resistance heating evaporation apparatus, sb or Bi was added to 1
A vapor deposited film was formed by using one vapor deposition source as the vapor deposition source and the other vapor deposition source as an alloying element. First, the deposition rate of each deposition source alone was measured, and based on this, a binary alloy film was simultaneously deposited. The target composition of the produced film is shown below.

Sb、oALI:+o    sb : 15〜90a
t%SbsJgso    Sb : 10〜90at
%5b7oInxo    sb : 3(1〜80a
t%SbsoMnzo     Sb : 20〜90
at%5bsoZnzo     Sb :   〜 
at%SbwoCr+o     Sb :   〜 
at%5bsoPdzo     Sb : 15〜9
0at%5bsoCdso     Sb :  5〜
80at%B15olnto     Bi : 15
〜80at%Bi*oPb+o     Bi : 5
0〜95at%B17oSnzo     Bi : 
65〜95at%Bi6@Au3z     Bi :
 20〜90at%BitoZnzo     Bi 
: 65〜95at%B15oCezo     Bi
 : 60〜85at%各元素をタングステンボートに
乗せ、蒸着装置容器内を5 X 10− ’Torr以
下の真空度まで排気後、2元同時蒸着して膜厚30〜5
0nmの蒸着膜を基板上に形成した。基板としては、厚
さ1.2 vanの石英ガラス、硬質ガラス及びポリカ
ーボネイト(PC)樹脂円板を用いた。第2図に膜構成
を示す。(alは基板に合金膜を形成したもの、(bl
はさらに保護層を形成したものである。図中、矢印は反
射率や記録試験などの評価光入射方向である。保護層と
しては5iOz+  An!N+ TazOs+ Ti
N、 Cr’z03+ SiN、 SiCなどの無機物
層をスパッタ法により形成した。保護層の膜厚は合金膜
の透過光の干渉条件により100〜500nmに設定し
た。
Sb, oALI: +osb: 15-90a
t%SbsJgso Sb: 10~90at
%5b7oInxo sb: 3(1~80a
t%SbsoMnzo Sb: 20-90
at%5bsoZnzo Sb: ~
at%SbwoCr+o Sb: ~
at%5bsoPdzo Sb: 15-9
0at%5bsoCdsoSb: 5~
80at%B15olntoBi: 15
~80at%Bi*oPb+oBi: 5
0-95at% B17oSnzo Bi:
65-95at% Bi6@Au3z Bi:
20~90at%BitoZnzoBi
: 65-95at%B15oCezo Bi
: 60 to 85 at% of each element is placed on a tungsten boat, the inside of the vapor deposition equipment container is evacuated to a vacuum level of 5 x 10-' Torr or less, and two-dimensional simultaneous vapor deposition is performed to obtain a film thickness of 30 to 5.
A 0 nm deposited film was formed on the substrate. As the substrate, a quartz glass, hard glass, and polycarbonate (PC) resin disk with a thickness of 1.2 van was used. Figure 2 shows the membrane structure. (al is the alloy film formed on the substrate, (bl
Further, a protective layer was formed. In the figure, the arrow indicates the direction of incidence of evaluation light for reflectance, recording tests, etc. As a protective layer, 5iOz+ An! N+ TazOs+ Ti
An inorganic layer of N, Cr'z03+SiN, SiC, etc. was formed by sputtering. The thickness of the protective layer was set to 100 to 500 nm depending on the interference conditions of light transmitted through the alloy film.

第3〜6図は、第2図(a)の膜構成で測定した反射率
(R)及び透過率(T)の分光特性の代表例である。
3 to 6 are representative examples of spectral characteristics of reflectance (R) and transmittance (T) measured with the film configuration shown in FIG. 2(a).

先に示した蒸着膜はいずれもここに示したいずれかに類
似した分光特性を示す。反射率と透過率から光の吸収率
が分かるが、ここではいずれも半導体レーザ光波長(B
30nm)で35〜60%と大きく、レーザ光によく局
部加熱の感度が高いことが分かる。
The deposited films shown above all exhibit spectral properties similar to those shown here. The light absorption rate can be determined from the reflectance and transmittance, but here both are based on the semiconductor laser light wavelength (B
30 nm), it is as large as 35 to 60%, indicating that it is good for laser light and has high sensitivity for local heating.

実施例2 実施例1で示した蒸着膜について半導体レーザによる記
録試験をした。光源の半導体レーザは、出力30mWで
膜面に光学レンズにより約1.8μm径に絞られ照射さ
れる。照射時の実効最大出力は13mWであった。レー
ザ出力を膜面実効パワーで131と一定にし、レーザ発
振パルス幅を変えて記録すると0.1〜0.5μsで記
録に相当する変化が認められた。高速記録ができること
がわかった。
Example 2 A recording test was conducted on the deposited film shown in Example 1 using a semiconductor laser. A semiconductor laser as a light source has an output of 30 mW and is focused onto the film surface by an optical lens to a diameter of about 1.8 μm. The effective maximum output during irradiation was 13 mW. When recording was performed while keeping the laser output constant at 131 in terms of film surface effective power and changing the laser oscillation pulse width, a change corresponding to recording was observed in 0.1 to 0.5 μs. It turns out that high-speed recording is possible.

一度、記録した部分にさらに低パワーのレーザ光を照射
して消去の試験をした。その際のレーザパワーは3〜6
1であり、パルス幅は1μs〜10μsでほぼ元の状態
に戻った。以下、記録、消去を繰り返すことが可能であ
った。
Once, an erasing test was conducted by irradiating the recorded area with a lower power laser beam. The laser power at that time is 3 to 6
1, and the pulse width returned to almost the original state with a pulse width of 1 μs to 10 μs. Thereafter, it was possible to repeat recording and erasing.

実施例3 蒸着膜の相変化の温度を調べるため、膜の反射率の変化
を調べた。第7図はその一例としてSb9゜Ge、。膜
の結果である。蒸着したままの膜を20に/分で加熱す
ると120〜130℃に反射量の増加が認められ、明ら
かに相変化があることを示している。
Example 3 In order to investigate the phase change temperature of the deposited film, changes in reflectance of the film were investigated. FIG. 7 shows Sb9°Ge as an example. This is the result of the membrane. When the as-deposited film was heated at 20° C./min, an increase in reflection was observed between 120 and 130° C., clearly indicating a phase change.

実施例4 実施例1の蒸着膜を70℃で500h放置後、反射率を
測定したが、大きな変化はなく安定性の高い膜であるこ
とが分かった。
Example 4 After the vapor deposited film of Example 1 was left at 70° C. for 500 hours, the reflectance was measured, and it was found that there was no significant change and the film was highly stable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、情報を記録もしくは記録及び消去する
方法において、取り扱いにくいSe、 Teなどの元素
を含まない材料を使用でき、記録、消去感度が良好で安
定性にすぐれ、再生出力が大きいという効果がある。
According to the present invention, in the method of recording or recording and erasing information, materials that do not contain elements such as Se and Te, which are difficult to handle, can be used, the recording and erasing sensitivity is good, the stability is excellent, and the reproduction output is large. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の記録消去原理を示す図、第2図は、
実施例1で作製した合金膜の膜構成を示す断面図、第3
図〜第6図は、代表的な4種の合金膜の分光特性を示す
図、第7図は、加熱過程での反射率変化の一例としてS
b9゜Ge、、膜について示した図である。 1・・・蒸着基板、2・・・合金膜、3・・・保護膜。
FIG. 1 is a diagram showing the recording/erasing principle of the present invention, and FIG.
Cross-sectional view showing the film structure of the alloy film produced in Example 1, No. 3
Figures 6 to 6 are diagrams showing the spectral characteristics of four typical types of alloy films, and Figure 7 is an example of reflectance change during the heating process of S
b9°Ge, is a diagram showing a film. 1... Vapor deposition substrate, 2... Alloy film, 3... Protective film.

Claims (1)

【特許請求の範囲】 1、物質の原子配列を変えることにより情報を記録、も
しくは記録及び消去する方法において、溶融状態を経て
異なった結晶状態をとりうる記録材料を用い、記録及び
消去のいずれかを、溶融状態を経る結晶構造の変化によ
り行うことにより、記録状態の結晶状態と、消去及び初
期状態の結晶状態とを異なったものとすることを特徴と
する情報を記録もしくは記録及び消去する方法。 2、記録材料として主成分が元素周期律表Vb族元素の
ものを用いることを特徴とする特許請求の範囲第1項記
載の方法。 3、記録材料としてCu、Ag、Zn、Cd、Ga、G
e、Sn、Pb、Ni、Pd、Mn、Cr及びFeの中
から選ばれた少なくとも1種の元素及び不可避なる不純
物及び残部Sbから成るものを用いることを特徴とする
特許請求の範囲第2項記載の方法。 4、記録材料としてAu、Zn、Cd、In、Tl、S
n、Pb、Mn、Ce、Mg、Li、Ni、Sb及びN
aの中から選ばれた少なくとも1種の元素及び不可避な
る不純物及び残部Biからなるものを用いることを特徴
とする特許請求の範囲第2項記載の方法。 5、記録材料が外殻電子濃度3.0〜5.5の範囲とな
るような組成を有することを特徴とする特許請求の範囲
第3項又は第4項記載の方法。 6、記録材料として基板上に層状に形成されたものを用
いることを特徴とする特許請求の範囲第1項乃至第5項
のいずれかの項記載の方法。
[Claims] 1. A method of recording information, or recording and erasing information by changing the atomic arrangement of a substance, using a recording material that can change to a different crystalline state through a molten state. A method for recording or recording and erasing information, characterized in that the crystalline state in the recorded state is different from the crystalline state in the erased and initial state by changing the crystal structure through a molten state. . 2. The method according to claim 1, wherein the recording material is a recording material whose main component is an element of Group Vb of the Periodic Table of Elements. 3. Cu, Ag, Zn, Cd, Ga, G as recording materials
Claim 2, characterized in that at least one element selected from e, Sn, Pb, Ni, Pd, Mn, Cr and Fe is used, as well as unavoidable impurities and the balance Sb. Method described. 4. Au, Zn, Cd, In, Tl, S as recording materials
n, Pb, Mn, Ce, Mg, Li, Ni, Sb and N
The method according to claim 2, characterized in that the method comprises at least one element selected from a, unavoidable impurities, and the remainder Bi. 5. The method according to claim 3 or 4, wherein the recording material has a composition such that the outer shell electron density is in the range of 3.0 to 5.5. 6. The method according to any one of claims 1 to 5, characterized in that a recording material formed in layers on a substrate is used.
JP61310163A 1986-12-29 1986-12-29 Method for recording or recording and erasing information Pending JPS63167440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310163A JPS63167440A (en) 1986-12-29 1986-12-29 Method for recording or recording and erasing information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310163A JPS63167440A (en) 1986-12-29 1986-12-29 Method for recording or recording and erasing information

Publications (1)

Publication Number Publication Date
JPS63167440A true JPS63167440A (en) 1988-07-11

Family

ID=18001919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310163A Pending JPS63167440A (en) 1986-12-29 1986-12-29 Method for recording or recording and erasing information

Country Status (1)

Country Link
JP (1) JPS63167440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460832A (en) * 1987-06-05 1989-03-07 Eastman Kodak Co Recording element including one writing amorphous thin film optical recording layer and recording method
US7083894B2 (en) * 2002-06-14 2006-08-01 Tdk Corporation Optical recording medium
US7485356B2 (en) 2004-07-15 2009-02-03 Tdk Corporation Optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460832A (en) * 1987-06-05 1989-03-07 Eastman Kodak Co Recording element including one writing amorphous thin film optical recording layer and recording method
US7083894B2 (en) * 2002-06-14 2006-08-01 Tdk Corporation Optical recording medium
US7485356B2 (en) 2004-07-15 2009-02-03 Tdk Corporation Optical recording medium

Similar Documents

Publication Publication Date Title
USRE36383E (en) Optical recording medium and production process for the medium
JP3506491B2 (en) Optical information media
KR100746263B1 (en) Optical information medium having separate recording layers
JP2512087B2 (en) Optical recording medium and optical recording method
JP4145446B2 (en) How to use optical recording media
US5523140A (en) Optical recording method and medium
JP3011200B2 (en) Optical recording medium
JPS60177446A (en) Optical disk recording medium
US6660451B1 (en) Optical information recording medium
JP2834131B2 (en) Thin film for information recording
JPS6166696A (en) Laser recording medium
JPS63167440A (en) Method for recording or recording and erasing information
US6855479B2 (en) Phase-change optical recording media
JPH04232780A (en) Phase change optical recording medium
JPH07161071A (en) Optical recording medium
JP2001209970A (en) Information recording medium, method of producing the same and method of recording and reproducing the same
JP2903969B2 (en) Optical recording medium and recording / reproducing method using the same
JPH0262736A (en) Optical information recording medium
JPS6058893A (en) Optical recording medium
JPH07262607A (en) Optical recording medium
JP2867407B2 (en) Information recording medium
JPS63307234A (en) Gallium-antimony alloy for recording medium
JP2913521B2 (en) Optical recording medium, sputtering target for optical recording medium, and method of manufacturing the same
JP2798247B2 (en) Optical recording medium
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same