JPS6329608B2 - - Google Patents

Info

Publication number
JPS6329608B2
JPS6329608B2 JP54132846A JP13284679A JPS6329608B2 JP S6329608 B2 JPS6329608 B2 JP S6329608B2 JP 54132846 A JP54132846 A JP 54132846A JP 13284679 A JP13284679 A JP 13284679A JP S6329608 B2 JPS6329608 B2 JP S6329608B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
roll
plate thickness
calculation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54132846A
Other languages
Japanese (ja)
Other versions
JPS5656714A (en
Inventor
Yoshiro Seki
Hisashi Ezure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13284679A priority Critical patent/JPS5656714A/en
Publication of JPS5656714A publication Critical patent/JPS5656714A/en
Publication of JPS6329608B2 publication Critical patent/JPS6329608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は金属等を加工する熱間圧延機、例えば
ホツトストリツプミルの仕上圧延機で温度変動の
ある被圧延材を圧延する場合にその温度変動によ
り生じる板厚偏差を圧延機の圧下位置を操作して
除去する圧延機の自動板厚制御(AGC)装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot rolling machine for processing metals, etc., such as a hot strip mill, in which a material to be rolled is rolled with temperature fluctuations. This invention relates to an automatic plate thickness control (AGC) device for a rolling mill that removes deviations by operating the rolling position of the rolling mill.

ホツトストリツプミルにおいて熱延鋼板には板
の長手方向に温度の不均一があるため、何ら制御
が行われないと圧延後の板厚に変動が生じる。
In a hot strip mill, hot-rolled steel sheets have non-uniform temperatures in the longitudinal direction of the sheet, so if no control is carried out, the thickness of the sheet after rolling will vary.

このため従来から圧延中の荷重を測定して被圧
延材の圧延後の板厚を計算し、これを一定に保つ
ように圧延機の圧下開度を操作するゲージメータ
方式の自動板厚制御が行われていた。
For this reason, automatic plate thickness control using a gauge meter has conventionally been used to measure the load during rolling, calculate the thickness of the rolled material after rolling, and then control the rolling opening of the rolling mill to keep it constant. It was done.

この制御は、圧延荷重の変化△Pと圧下開度の
変化△SOを検出し、常に △SO+△P/M=0 ……(1) 但しM:スタンドミル定数 となる様に圧下位置を操作して圧延後の板厚を一
定に制御している。しかし、電動圧下装置を用い
た圧延機ではゲージメータ方式AGCの応答の面
から、速い周期の外乱、例えばスキツドマークに
よる板厚変動を充分取去る事はできなかつた。
This control detects the change in rolling load △P and the change in rolling opening △S O , and always reduces the rolling so that △S O + △P / M = 0 ... (1) where M: stand mill constant. By manipulating the position, the thickness of the plate after rolling is controlled to be constant. However, due to the response of the gauge meter type AGC in a rolling mill using an electric rolling device, it has not been possible to sufficiently eliminate fast-cycle disturbances, such as plate thickness fluctuations caused by skid marks.

この解決策として、フイードフオワード
(Feed―forward)制御を採用する事が考えられ
た。これは連続圧延機の第iスタンド(iはスタ
ンド番号を示す)の圧延情報から第i+1スタン
ドの出側板厚変動量を予測し、第i+1スタンド
の圧下位置を操作しようとするものである。この
制御に於ては第i+1スタンドのAGCの応答遅
れを補償するため実際のスタンド間材料搬送時よ
りも早く入厚変動を第i+1スタンドAGC装置
に送る必要がある(この時間のことを以下先取時
間と言う)。ところが高速化されたホツトストリ
ツプミルの下流側スタンドに於てはスタンド間材
料搬送時間が先取時間より短かくなりフイードフ
オワード制御が使えなくなる欠点を持つていた。
As a solution to this problem, it was considered to adopt feed-forward control. This is intended to predict the amount of variation in the thickness of the exit side of the i+1st stand from the rolling information of the ith stand (i indicates the stand number) of a continuous rolling mill, and to manipulate the rolling position of the i+1th stand. In this control, in order to compensate for the response delay of the AGC of the i+1st stand, it is necessary to send the input thickness variation to the i+1st stand AGC device earlier than when the material is actually transferred between the stands (this time will be referred to as a preemption in the following). time). However, in the downstream stands of high-speed hot strip mills, the material transfer time between stands is shorter than the preemption time, which has the disadvantage that feedforward control cannot be used.

一方、入厚変動に対する出厚偏動の影響は第2
式で与えられる。
On the other hand, the influence of the output thickness deviation on the input thickness fluctuation is the second
It is given by Eq.

∂h/∂H=m/M+m ……(2) 但し M:スタンドミル定数 m:被圧延材の
塑性係数 第2式より一般のタンデム7スタンド圧延機に
おける第1スタンド入厚変動に対する第7スタン
ド出厚変動は第3式で表わされる。
∂h/∂H=m/M+m...(2) where M: stand mill constant m: plasticity coefficient of rolled material From the second equation, the 7th stand for the variation in the thickness of the 1st stand in a general tandem 7-stand rolling mill. The variation in thickness is expressed by the third equation.

∂h7/∂H1=m1/M1+m1・m2/M2+m2・……・ m6/M6+m6・m7/M7+m7 ……(3) ただしH1:第1スタンド入厚、h7:第7スタ
ンド出厚、Mi:第iスタンドミル定数、mi:第
iスタンドの被圧延材の塑性係数である。一般の
タンデム7スタンド圧延機では、この出側板厚変
動は第1スタンド入厚変動の5%程度に減少す
る。
∂h 7 /∂H 1 =m 1 /M 1 +m 1・m 2 /M 2 +m 2・……・ m 6 /M 6 +m 6・m 7 /M 7 +m 7 …(3) However, H 1 : 1st stand entry thickness, h 7 : 7th stand exit thickness, Mi: i-th stand mill constant, mi: plasticity coefficient of the rolled material of the i-th stand. In a general tandem seven-stand rolling mill, this variation in thickness at the exit side is reduced to about 5% of the variation in thickness at the entrance to the first stand.

しかし、温度変動に関しては被圧延材の塑性係
数が変化するため、入厚が全く均一であつても出
側板厚が変動することは周知の事実である。材温
と出側板厚変動の1例を第1図に示す。この図か
ら明らかなように被圧延材の材料温度と出側板厚
変動のパターンは全く一致しており、被圧延材の
温度から出側板厚を予測する事が可能である。し
かも最近の制御装置の進歩及び、計算機の導入に
より各スタンド毎の材料温度をきわめて精度良く
計算する事が可能となつて来た。
However, it is a well-known fact that temperature fluctuations change the plasticity coefficient of the material to be rolled, so even if the input thickness is completely uniform, the exit plate thickness will vary. Figure 1 shows an example of variations in material temperature and outlet thickness. As is clear from this figure, the material temperature of the material to be rolled and the pattern of variation in the thickness on the exit side are completely consistent, and it is possible to predict the thickness on the exit side from the temperature of the material to be rolled. Moreover, with the recent advances in control devices and the introduction of computers, it has become possible to calculate the material temperature for each stand with extremely high accuracy.

本発明は以上の事情に基きなされたもので、圧
延機の上流側に設置した温度計で被圧延材の温度
を測定し、圧延機に達した時の材温を予測し、そ
の温度から圧延後の板厚偏差を算出し、それを許
容誤差以内にする様に圧下位置を修正する事によ
り仕上板厚を所望の精度で得る圧延機の自動板厚
制御装置を提供する事を目的とする。
The present invention was made based on the above circumstances, and it measures the temperature of the material to be rolled with a thermometer installed upstream of the rolling mill, predicts the temperature of the material when it reaches the rolling mill, and uses that temperature to predict the temperature of the material to be rolled. The purpose of the present invention is to provide an automatic plate thickness control device for a rolling mill that calculates the subsequent plate thickness deviation and corrects the rolling position so as to bring it within the tolerance, thereby obtaining the finished plate thickness with desired accuracy. .

以下、本発明の一実施例を図面を参照しながら
説明する。すなわち本発明は、第2図に示す様に
圧延機の上流側に設けられた温度計1、被圧延材
の温度を抽出するサンプリング回路2、サンプリ
ングした材料温度を所定の時間だけ遅延させる遅
延回路3、圧延機に達した時の被圧延材の温度を
計算する材温演算装置4、設定計算の材温と材温
演算装置4で計算された材温とを加算する加算器
5、加算器5の出力である温度偏差を演算して圧
延機の圧下位置を得る第1の演算装置6、圧下開
度修正量と圧下開度設定値を加算する加算器7、
圧延後の板厚を測定する板厚検出器8、圧延後の
板厚と板厚設定値の差(板厚偏差)を求める加算
器9、板厚偏差を演算し圧下位置修正量を得る第
2の演算装置10、加算器7の出力と第2の演算
回路10の出力を加算する加算器11、加算器1
1の出力である圧下位置基準と圧下位置検出器1
2によつて測定された圧下位置帰還信号とを加算
する加算器13、この加算器13の出力によりロ
ール15の位置を操作する圧下位置制御装置14
とから成る自動板厚制御装置により、圧下位置を
操作し圧延後の板厚を均一に制御する。
An embodiment of the present invention will be described below with reference to the drawings. That is, as shown in FIG. 2, the present invention includes a thermometer 1 provided on the upstream side of a rolling mill, a sampling circuit 2 that extracts the temperature of the material to be rolled, and a delay circuit that delays the sampled material temperature by a predetermined time. 3. A material temperature calculation device 4 that calculates the temperature of the material to be rolled when it reaches the rolling mill; an adder 5 that adds the material temperature of the set calculation and the material temperature calculated by the material temperature calculation device 4; 5, an adder 7 that adds the rolling opening correction amount and the rolling opening set value;
A plate thickness detector 8 that measures the plate thickness after rolling, an adder 9 that calculates the difference between the plate thickness after rolling and the plate thickness setting value (plate thickness deviation), and an adder 9 that calculates the plate thickness deviation and obtains the rolling position correction amount. 2 arithmetic device 10, adder 11 that adds the output of adder 7 and the output of second arithmetic circuit 10, adder 1
1 output, the roll-down position reference and roll-down position detector 1.
an adder 13 for adding the feedback signal of the roll position measured by 2; and a roll position control device 14 for controlling the position of the roll 15 based on the output of the adder 13;
An automatic sheet thickness control device consisting of the following controls the rolling position to control the sheet thickness uniformly after rolling.

この装置の原理を第3図を用いて説明する。第
3図は被圧延材の入厚、出厚と圧延荷重、及び圧
下位置、圧延荷重と被圧延材の出厚の関係を示す
模式図である。第3図において曲線は圧延機の
剛性曲線、曲線は被圧延材の塑性曲線を表わし
ている。第3図に於て被圧延材を入厚H0から出
厚h0まで圧延するのに要する圧延荷重はP0であ
り、圧延機の圧下位置はSOである。いま温度が曲
線の場合より低くなつたとすると、被圧延材の
塑性曲線は第3図の1点鎖線で表わした様に変
化し、そのため圧延荷重がPになり、出厚がhと
なる。
The principle of this device will be explained using FIG. FIG. 3 is a schematic diagram showing the relationship between the input thickness and exit thickness of the material to be rolled, the rolling load, the rolling position, the rolling load, and the exit thickness of the material to be rolled. In FIG. 3, the curve represents the rigidity curve of the rolling mill, and the curve represents the plasticity curve of the material to be rolled. In FIG. 3, the rolling load required to roll the material to be rolled from the entry thickness H 0 to the exit thickness H 0 is P 0 and the rolling position of the rolling mill is S O. If the temperature is now lower than that of the curve, the plasticity curve of the rolled material changes as shown by the dashed line in FIG. 3, so the rolling load becomes P and the thickness becomes h.

第3図において温度変化による出厚の変化△h
は第4式で表わされる。
In Figure 3, the change in thickness due to temperature change △h
is expressed by the fourth equation.

△h=(∂h/∂P)・(∂P/∂K)・(∂K/∂θ)
・△θ……(4) ただしK:被圧延材の変形抵抗、P:圧延荷
重、h:出厚、θ:材温である。第3式において
∂k/∂θは材温による変形抵抗の変化、∂P/∂kは
変形抵抗による圧延荷重の変化、∂h/∂Pは圧延
荷重による出厚の変化を表わしている。また第3
式の出厚偏差を除くための圧下位置修正量は第5
式で表わされる。
△h=(∂h/∂P)・(∂P/∂K)・(∂K/∂θ)
・Δθ...(4) where K: deformation resistance of the rolled material, P: rolling load, h: thickness, and θ: material temperature. In the third equation, ∂k/∂θ represents a change in deformation resistance due to material temperature, ∂P/∂k represents a change in rolling load due to deformation resistance, and ∂h/∂P represents a change in protrusion thickness due to rolling load. Also the third
The reduction position correction amount to eliminate the deviation in the thickness of the formula is the fifth
It is expressed by the formula.

△SO=M+m/M・△h ……(5) ただし、M:ミル定数、m:被圧延材の塑性係
数である。
△S O =M+m/M・△h (5) where M: Mill constant, m: plasticity coefficient of the rolled material.

第4式、第5式により被圧延材の材料温度が求
まれば、それによつて起因する出厚偏差は容易に
算出する事が可能である。第3式,第4式の係数
は圧延スケジユール、及び理論式から得ることが
できる。従つて第4式で得られた修正量を圧下位
置制御装置に入力し、圧下位置を修正する事によ
つて出側板厚を所望の精度で得る事が可能であ
る。
If the material temperature of the material to be rolled is determined using the fourth and fifth equations, the thickness deviation caused by this can be easily calculated. The coefficients of the third and fourth equations can be obtained from the rolling schedule and theoretical equations. Therefore, by inputting the correction amount obtained by the fourth equation into the rolling position control device and correcting the rolling position, it is possible to obtain the exit side plate thickness with desired accuracy.

次に第2図を用いて本発明の装置の動作を説明
する。温度計1で測定されサンプリングされた被
圧延材の温度は遅延回路3に入る。この遅延回路
3では主機電動機の回転数を用いて遅延時間を
時々刻々計算し、先取時間だけ遅延時間を短縮し
てサンプリングした温度を遅延し、遅延後の温度
を材温演算装置4に出力する。
Next, the operation of the apparatus of the present invention will be explained using FIG. The temperature of the rolled material measured and sampled by the thermometer 1 is input to the delay circuit 3. This delay circuit 3 calculates the delay time every moment using the rotation speed of the main motor, shortens the delay time by the preemption time, delays the sampled temperature, and outputs the delayed temperature to the material temperature calculation device 4. .

材温演算装置4では圧延機での材料温度を計算
する。計算のモデルは種々提案されているが、例
えば第6式を用いれば良い。
The material temperature calculating device 4 calculates the material temperature in the rolling mill. Although various calculation models have been proposed, for example, Equation 6 may be used.

θ=(θFET−θa)exp (−2α/Cρh・t)+θa ……(6) ただし、θFET:温度計1によつて測定された温
度、θa:周囲温度、C:被圧延材の比熱、ρ:
被圧延材の密度、h:板厚、t:温度計から圧延
機までの遅延時間、α:等価熱伝達係数である。
θ=(θ FET −θa) exp (−2α/Cρh・t)+θa ……(6) However, θ FET : Temperature measured by thermometer 1, θa: Ambient temperature, C: Temperature of the material to be rolled. Specific heat, ρ:
density of the material to be rolled, h: plate thickness, t: delay time from thermometer to rolling mill, α: equivalent heat transfer coefficient.

第6式の温度θと設定温度θsとの偏差△θを計
算し、その偏差△θから第4式を用いて出厚偏差
△hを計算する。さらに出厚偏差△hから第5式
を用いて圧下位置修正量△SOを計算する。このと
き第4式と第5式の係数は上位計算機等で設定し
ておく。従つて圧下位置修正量△SOは圧下位置
(開度)設定値SO,Sと加算器7で加算され位置基準
SO,Rとなる。そして位置基準SO,Rは板厚偏差から
作られた圧下位置修正量SO,XRAYと加算器11で加
算されて新らしい圧下位置基準SO,Rになる。圧下
位置制御装置14は圧下位置基準SO,Rと圧下位置
帰還信号SOとの偏差を用いて圧下位置操作量を演
算し、圧下装置を駆動する。圧下位置修正量
SO,XRAYは出側板厚と出側板厚設定値hsとの偏差を
第2の演算装置10で計算して得たものである。
これは出厚のオフセツトを取り除くためのもので
ある。以上の動作により温度変動を伴つた被圧延
材は圧延機によつて所望の精度の出厚になる様に
制御される。
The deviation Δθ between the temperature θ of the sixth equation and the set temperature θ s is calculated, and the thickness deviation Δh is calculated from the deviation Δθ using the fourth equation. Furthermore, the reduction position correction amount ΔS O is calculated from the projection thickness deviation Δh using the fifth equation. At this time, the coefficients of the fourth and fifth equations are set in a host computer or the like. Therefore, the reduction position correction amount △S O is added to the reduction position (opening degree) set value S O,S by the adder 7 and becomes the position reference.
S O,R . Then, the position reference S O,R is added with the roll-down position correction amount S O,XRAY made from the plate thickness deviation in an adder 11 to become a new roll-down position reference S O,R . The roll-down position control device 14 calculates a roll-down position operation amount using the deviation between the roll-down position reference S O,R and the roll-down position feedback signal S O , and drives the roll-down device. Pressure position correction amount
S O,XRAY is obtained by calculating the deviation between the outlet side plate thickness and the outlet side plate thickness set value h s using the second arithmetic unit 10 .
This is to remove the offset of the protrusion thickness. Through the above operations, the material to be rolled, which is subject to temperature fluctuations, is controlled by the rolling mill so that it has a desired thickness.

さて第2図はシングルスタンド圧延機について
の一実施例を示したものだが、第4図は連続圧延
機に本発明を適用した例を示す。第4図において
還延回路3は各スタンドの主機電動機速度を読込
み、各々の圧延スタンドにおける出側材料速度を
演算し、それをもとに温度計1によつて測定され
た被圧延材の材温を各圧延機に達するまで遅延す
る。ただし先取時間を考慮した遅延時間とするこ
とは第2図の説明で述べたとおりである。遅延回
路3より各圧延機に達した被圧延材の温度が出力
され材温演算装置4に入力される。材温演算装置
4では各圧延機での温度が計算される。計算のモ
デルとして第6式を使用すれば、第iスタンド入
口温度θiは第7式で与えられる。
Now, FIG. 2 shows an embodiment of a single-stand rolling mill, while FIG. 4 shows an example in which the present invention is applied to a continuous rolling mill. In FIG. 4, the rolling circuit 3 reads the main motor motor speed of each stand, calculates the exit side material speed of each rolling stand, and based on this calculates the material speed of the material to be rolled measured by the thermometer 1. The temperature is delayed until reaching each mill. However, as described in the explanation of FIG. 2, the delay time is set in consideration of the preemption time. The temperature of the rolled material that has reached each rolling mill is output from the delay circuit 3 and input to the material temperature calculation device 4. The material temperature calculating device 4 calculates the temperature at each rolling mill. If Equation 6 is used as a calculation model, the i-th stand inlet temperature θi is given by Equation 7.

θi=(θFET−θa)・exp{−1/Cρ・ij=1 (αj・tj/hj)}+ θa ……(7) ただし、hj:第jスタンド入厚、tj:第j−1
スタンド〜jスタンド間通過時間(jが1の時は
温度計1から第1スタンドまでの通過時間を表わ
す)である。
θi=(θ FET −θa)・exp{−1/Cρ・ij=1j・t j /h j )}+ θa ……(7) However, h j : thickness of the j-th stand, t j : j-1st
This is the transit time between stand and j stand (when j is 1, it represents the transit time from thermometer 1 to the first stand).

第7式の温度θiと設定温度θi,sとの偏差△θiを計
算し、その偏差△θiから第3式を用いて各スタン
ド出厚偏差△hiを計算する。さらに出厚偏差△hi
から第4式を用いて圧下位置修正量△SO,iを計算
する。このとき演算装置6iのゲインは上位計算
機等で設定しておく。各スタンドの圧下位置基準
SR,iは第8式で表わせる。
The deviation Δθ i between the temperature θ i and the set temperature θ i ,s in the seventh equation is calculated, and the protrusion thickness deviation Δh i of each stand is calculated from the deviation Δθ i using the third equation. Furthermore, the thickness deviation △h i
Using the fourth equation, calculate the reduction position correction amount ΔS O,i . At this time, the gain of the arithmetic unit 6 i is set by a host computer or the like. Reduction position standard for each stand
S R,i can be expressed by the 8th equation.

SR,i=SOi,s+△SO,i+SOi,XRAY ……(8) ただし、SOi,s:圧下位置設定値、△SOi,XRAY:板
厚偏差により作られた圧下位置修正量、但し添字
iはスタンドNo.である。各スタンド毎の圧下位置
制御装置14は圧下位置基準SR,iと圧下位置帰還
信号SO,iとの偏差を演算して各スタンド毎の圧下
位置修正量を得て圧下装置を駆動する。板厚偏差
により作られた圧下位置修正量SO,XRAYは出側板厚
と板厚基準hsとの偏差を演算装置14で計算して
求めたものであり、板厚のオフセツトを除去する
ためのものである。以上の動作により温度変動を
伴つた被圧延は所望の精度の仕上板厚になる様に
制御される。
S R,i = S Oi,s +△S O,i +S Oi,XRAY ……(8) However, S Oi,s : Rolling position setting value, △S Oi,XRAY : Rolling created by plate thickness deviation The amount of position correction, where the subscript i is the stand number. The roll-down position control device 14 for each stand calculates the deviation between the roll-down position reference S R,i and the roll-down position feedback signal S O,i, obtains the roll-down position correction amount for each stand, and drives the roll-down device. The reduction position correction amount S O,XRAY created by the plate thickness deviation is obtained by calculating the deviation between the exit side plate thickness and the plate thickness standard hs by the calculation device 14, and is used to remove the plate thickness offset. belongs to. Through the above-described operations, the rolling process accompanied by temperature fluctuations is controlled so that the finished plate thickness has the desired accuracy.

従つて、上記のことから本発明によれば下記の
様な効果が得られる。
Therefore, from the above, according to the present invention, the following effects can be obtained.

(1) スキツドマーク等比較的速い周期の温度変動
による仕上板厚の変動を減少させることができ
る。
(1) Fluctuations in finished plate thickness due to temperature fluctuations with relatively fast cycles, such as skid marks, can be reduced.

(2) 連続圧延機の下流側スタンドにおいて材料速
度が速く、スタンド間搬送時間が先取時間より
短くなつても仕上板厚を均一に制御することが
できる。
(2) The material speed is fast in the downstream stand of the continuous rolling mill, and even if the inter-stand conveyance time is shorter than the advance time, the finished plate thickness can be controlled uniformly.

故に、本発明においては材料の温度変動による
圧延荷重の変化を予測し、出側板厚が均一となる
様に圧下位置を操作するため、従来のゲージメー
タ方式AGCに比較して速い周期の外乱も除去で
きる事に特徴がある。
Therefore, in the present invention, changes in rolling load due to temperature fluctuations in the material are predicted and the rolling position is controlled so that the thickness of the exit side plate is uniform. Therefore, compared to the conventional gauge meter type AGC, disturbances with a faster period can be avoided. The feature is that it can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被圧延材の材温変動と出厚偏差の関係
を模式的に示した図、第2図は本発明の一実施例
を示すブロツク図、第3図は圧延機の圧下開度、
入厚,出厚と圧延荷重の関係を説明するための模
式図、第4図は本発明を多段圧延機に適用した他
の実施例を示すブロツク図である。 1……温度計、2……サンプリング回路、3…
…遅延回路、4……材温演算装置、6……第1の
演算装置、8……板厚検出器、10……第2の演
算装置、12……圧下位置検出器、14……圧下
位置制御装置、15……圧延機ロール、16……
被圧延材、5,7,9,11,13……加算器。
Fig. 1 is a diagram schematically showing the relationship between material temperature fluctuation and thickness deviation of the rolled material, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is the rolling opening of the rolling mill. ,
FIG. 4 is a schematic diagram for explaining the relationship between input thickness, output thickness, and rolling load, and FIG. 4 is a block diagram showing another embodiment in which the present invention is applied to a multi-high rolling mill. 1...Thermometer, 2...Sampling circuit, 3...
... Delay circuit, 4 ... Material temperature calculation device, 6 ... First calculation device, 8 ... Plate thickness detector, 10 ... Second calculation device, 12 ... Rolling down position detector, 14 ... Rolling down Position control device, 15...Rolling mill roll, 16...
Rolled material, 5, 7, 9, 11, 13... Adder.

Claims (1)

【特許請求の範囲】 1 圧延機の上流側に設けられた温度計により被
圧延材の温度を測定する温度測定装置と、測定さ
れた被圧延材の温度を被圧延材が温度計位置から
圧延機位置まで進行するに必要な遅延時間から先
取時間だけ短縮した時間だけ遅延させる遅延回路
と、遅延された温度から圧延機位置での温度を予
測計算する材温演算装置と、この材温演算装置の
出力である予測温度と設定温度との偏差△θを用
いて出厚の変化△hを次式にて算出し △h=(∂h/∂P)・(∂P/∂K)・(∂K/∂θ)
・△θ 但し、Kは被圧延材の変形抵抗 Pは圧延荷重 hは出厚 θは材温 更に、この値を使つて材温変動に伴なう出厚偏
差を除くための圧下位置修正量△S0を次式にて算
出する第1の演算装置と、 △SO=M+m/M・△h 但し、Mはミル定数 mは被圧延材の遡性係数 圧延機の下流側に設置された板厚検出器によつ
て検出された板厚偏差を演算して第2の圧下位置
修正量を算出する第2の演算装置と、前記第1の
圧下位置修正量と前記第2の圧下位置修正量及び
圧下位置設定値とを加算して圧下位置基準を得る
加算器と、前記圧下位置基準と圧下位置帰還信号
との偏差を用いて圧下位置を操作する圧下位置制
御装置とを具備し、被圧延材の温度変度に伴なう
板厚変動を除去し均一な板厚となるようにしたこ
とを特徴とする圧延機の自動板厚制御装置。 2 前記材温演算装置の出力は複数のスタンドの
第1の演算装置に入力されて第1の圧下位置修正
量を送出し、前記第2の演算装置の出力は複数の
スタンドの各々の第2の圧下位置修正量として入
力されて圧下位置設定値と共に圧下位置制御装置
を制御することを特徴とする特許請求の範囲第1
項記載の圧延機の自動板厚制御装置。
[Scope of Claims] 1. A temperature measuring device that measures the temperature of the rolled material using a thermometer provided on the upstream side of the rolling mill, and a temperature measuring device that measures the temperature of the rolled material using a thermometer provided on the upstream side of the rolling mill, and a temperature measuring device that measures the temperature of the rolled material from the thermometer position. A delay circuit that delays the delay time required to advance to the rolling machine position by the preemption time, a material temperature calculation device that predicts and calculates the temperature at the rolling mill position from the delayed temperature, and this material temperature calculation device. Using the deviation △θ between the predicted temperature and the set temperature, which is the output of ∂K/∂θ)
・△θ However, K is the deformation resistance of the rolled material, P is the rolling load, h is the thickness θ is the material temperature.Furthermore, using this value, the amount of correction of the rolling position to eliminate deviations in thickness due to fluctuations in material temperature. A first calculation device that calculates △S 0 using the following formula, △S O = M + m / M · △h, where M is the mill constant m is the retroactivity coefficient of the rolled material. a second calculation device that calculates a second reduction position correction amount by calculating a plate thickness deviation detected by the plate thickness detector; and a second calculation device that calculates a second reduction position correction amount; an adder for obtaining a roll-down position reference by adding the correction amount and a roll-down position set value; and a roll-down position control device that operates the roll-down position using a deviation between the roll-down position reference and a roll-down position feedback signal, An automatic plate thickness control device for a rolling mill, characterized in that the plate thickness variation caused by the temperature variation of the rolled material is removed to ensure a uniform plate thickness. 2. The output of the material temperature calculation device is input to the first calculation device of the plurality of stands to send out the first reduction position correction amount, and the output of the second calculation device is input to the second calculation device of each of the plurality of stands. Claim 1 is characterized in that it is inputted as a rolling position correction amount and controls a rolling position control device together with a rolling position setting value.
An automatic plate thickness control device for a rolling mill as described in 1.
JP13284679A 1979-10-17 1979-10-17 Automatic sheet gauge controller for rolling mill Granted JPS5656714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13284679A JPS5656714A (en) 1979-10-17 1979-10-17 Automatic sheet gauge controller for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13284679A JPS5656714A (en) 1979-10-17 1979-10-17 Automatic sheet gauge controller for rolling mill

Publications (2)

Publication Number Publication Date
JPS5656714A JPS5656714A (en) 1981-05-18
JPS6329608B2 true JPS6329608B2 (en) 1988-06-14

Family

ID=15090877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13284679A Granted JPS5656714A (en) 1979-10-17 1979-10-17 Automatic sheet gauge controller for rolling mill

Country Status (1)

Country Link
JP (1) JPS5656714A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821561U (en) * 1981-08-06 1983-02-09 小島プレス工業株式会社 container display equipment
KR20010028400A (en) * 1999-09-21 2001-04-06 이구택 Apparatus for automatically setting gap of hold down roll in hot leveller
CN106984651B (en) * 2017-05-26 2019-03-01 江苏省沙钢钢铁研究院有限公司 Online control system for improving thickness control precision of rolled piece

Also Published As

Publication number Publication date
JPS5656714A (en) 1981-05-18

Similar Documents

Publication Publication Date Title
JPS6121729B2 (en)
JPH0311847B2 (en)
JPS6329608B2 (en)
JP2002018506A (en) Method and device for controlling thickness, method for calculating pass schedule in continuous rolling mill
JPS6113883B2 (en)
JPS6124082B2 (en)
JPH0232041B2 (en)
JP3767832B2 (en) Thickness control method in hot rolling
JP3224052B2 (en) Thickness control method for continuous rolling mill
US4068511A (en) Method and apparatus for bar temperature determination in a hot strip mill
JPH0636929B2 (en) Method for controlling strip width of rolled material
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JP3040044B2 (en) Method of controlling width of hot rolled steel sheet
JPH08300024A (en) Method for controlling plate width in hot rolling
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
JPH04100620A (en) Method for controlling width of metal plate in hot continuous rolling
JPH09174129A (en) Method for controlling rolling in hot strip finishing mill
JP3467559B2 (en) Strip width control method in hot continuous rolling
JPH11285718A (en) Method for controlling width in hot rolling
JP2023061225A (en) Method and device for controlling steel sheet tension and looper angle during hot rolling
JPH0422505A (en) Automatic thickness controller for shapes
JPS62197211A (en) Plate thickness control method utilizing mill rigidity detection value
JPS6376709A (en) Width control method for tandem rolling mill
JP3541596B2 (en) Thickness control method of sheet material in continuous tandem rolling mill
JPS5994513A (en) Method and equipment for controlling automatically sheet width