JPS6329598B2 - - Google Patents

Info

Publication number
JPS6329598B2
JPS6329598B2 JP58024463A JP2446383A JPS6329598B2 JP S6329598 B2 JPS6329598 B2 JP S6329598B2 JP 58024463 A JP58024463 A JP 58024463A JP 2446383 A JP2446383 A JP 2446383A JP S6329598 B2 JPS6329598 B2 JP S6329598B2
Authority
JP
Japan
Prior art keywords
water
flash
heat exchange
hydrogen sulfide
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58024463A
Other languages
Japanese (ja)
Other versions
JPS59150587A (en
Inventor
Masaharu Kodera
Kiichi Nagaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP58024463A priority Critical patent/JPS59150587A/en
Publication of JPS59150587A publication Critical patent/JPS59150587A/en
Publication of JPS6329598B2 publication Critical patent/JPS6329598B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】 本発明は多段フラツシユ熱交換器における凝縮
水の回収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering condensed water in a multi-stage flash heat exchanger.

従来、多段フラツシユ式間接熱交換器を採用し
たときに、地熱水に含まれる硫化水素の濃度が低
い場合には、フラツシユ蒸発後凝縮した凝縮水を
そのまま農業用水、中水道水、ボイラ給水等とし
て利用したり、あるいは河川水に加えて熱交換媒
体として利用したりしているが、硫化水素濃度が
高い場合には、フラツシユ蒸発の際に硫化水素の
大部分がフラツシユ蒸気とともに蒸発し、凝縮水
に高濃度で溶解することになるため、この凝縮水
は有効利用できず、環元井に戻している。
Conventionally, when a multi-stage flash type indirect heat exchanger is used, if the concentration of hydrogen sulfide contained in geothermal water is low, the condensed water that condenses after evaporation from the flash can be directly used for agricultural purposes, gray water tap water, boiler supply water, etc. However, when the concentration of hydrogen sulfide is high, most of the hydrogen sulfide evaporates together with the flash vapor during flash evaporation, causing condensation. Because it dissolves in water at a high concentration, this condensed water cannot be used effectively and is returned to the Kangen well.

そこで本発明は、地熱水に含まれる硫化水素の
濃度が高い場合であつても凝縮水の有効利用を図
ることを目的とするものである。
Therefore, an object of the present invention is to effectively utilize condensed water even when the concentration of hydrogen sulfide contained in geothermal water is high.

すなわち、本発明は、上記のようにフラツシユ
蒸発の際に硫化水素の大部分がフラツシユ蒸気と
ともに蒸発する点に着目し、地熱水をフラツシユ
蒸発させてそのフラツシユ蒸気により河川水など
の清浄水を加熱する多段フラツシユ熱交換器にお
いて、熱交換部の出口側の適当数段を間接加熱段
とするとともに残りを直接加熱段とするか、また
は熱交換部の全部を間接加熱段とし、間接加熱段
において地熱水に含まれる硫化水素分をこの地熱
水のフラツシユ蒸気とともに蒸発させて凝縮水中
に溶解させ、この凝縮水をドレンタンクに導き、
このドレンタンク内で前記凝縮水を再フラツシユ
させてこの凝縮水中に含まれる硫化水素分をこの
凝縮水のフラツシユ蒸気とともに蒸発させ、残り
の硫化水素濃度が低くなつたドレン水を熱交換用
水として回収するものである。
That is, the present invention focuses on the fact that most of the hydrogen sulfide evaporates together with the flash vapor during flash evaporation as described above, and uses the flash vapor to evaporate geothermal water and use the flash vapor to produce clean water such as river water. In a multi-stage flash heat exchanger that heats, an appropriate number of stages on the outlet side of the heat exchange section are used as indirect heating stages, and the rest are used as direct heating stages, or all of the heat exchange parts are used as indirect heating stages, and the remaining stages are used as indirect heating stages. The hydrogen sulfide contained in the geothermal water is evaporated together with the flash vapor of this geothermal water and dissolved in the condensed water, and this condensed water is led to a drain tank.
The condensed water is re-flashed in this drain tank, the hydrogen sulfide contained in this condensed water is evaporated together with the flash steam of this condensed water, and the remaining drain water with a low concentration of hydrogen sulfide is recovered as water for heat exchange. It is something to do.

したがつて、地熱水に含まれる硫化水素分は間
接加熱段においてフラツシユ蒸気とともにその大
部分が蒸発して熱交換室に送られ、そこで凝縮し
たあとドレンタンクに送られ、このドレンタンク
において再びフラツシユ蒸気とともにその大部分
が蒸発するため、ドレンタンクに残つたドレン水
は硫化水素濃度が大幅に低下されたものとなり、
熱交換用水として回収することが可能となつて、
その保有熱量の有効利用を図ることができるのみ
ならず、清浄水の使用量の低減化を図ることがで
きるものである。
Therefore, most of the hydrogen sulfide contained in geothermal water is evaporated together with flash vapor in the indirect heating stage and sent to the heat exchange chamber, where it is condensed and then sent to the drain tank, where it is recycled again. Most of it evaporates along with the flash vapor, so the drain water remaining in the drain tank has a significantly reduced hydrogen sulfide concentration.
It has become possible to recover water for heat exchange,
This not only makes it possible to effectively utilize the retained heat, but also reduces the amount of clean water used.

以下、本発明の実施例を図面にもとづいて説明
する。第1図において、1は多段フラツシユ熱交
換器であり、相隣る多段のフラツシユ室2A〜2
Eを有するフラツシユ部3と、各フラツシユ室2
A〜2Eに連通した熱交換室4A〜4Eを有する
熱交換部5とで構成されている。6はフラツシユ
部3への高温地熱水の供給管路であり、フラツシ
ユ室2Aに接続されており、その途中には地熱水
貯湯槽7が設けられている。一方8はフラツシユ
部3から図外の環元井への低温地熱水の排出管路
であり、フラツシユ室2Eに接続されている。
Embodiments of the present invention will be described below based on the drawings. In FIG. 1, 1 is a multi-stage flash heat exchanger, and adjacent multi-stage flash chambers 2A to 2
A flash section 3 having E and each flash chamber 2
The heat exchange section 5 has heat exchange chambers 4A to 4E communicating with A to 2E. Reference numeral 6 denotes a high-temperature geothermal water supply pipe to the flash section 3, which is connected to the flash chamber 2A, and a geothermal water storage tank 7 is provided along the way. On the other hand, 8 is a low-temperature geothermal water discharge pipe from the flash section 3 to a ring well (not shown), and is connected to the flash chamber 2E.

熱交換部5において、出口側最終段の熱交換室
4Aは間接加熱段とされ、その内部には熱交換用
チユーブ9Aが設けられている。また最終段以外
の熱交換室4B〜4Eは直接加熱段とされ、その
内部には噴射ノズル10B〜10Eが設けられて
いる。熱交換室4Eの噴射ノズル10Eには、河
川11等に併設された取水槽12からの清浄水
(河川水)13の供給管路14が、コンデンサ1
5を介して接続されている。また熱交換室4B〜
4Dの噴射ノズル10B〜10Dには、それぞれ
前段の熱交換室4C〜4Eからの加熱水16C〜
16Eの移送管路17a〜17cが接続されてい
る。
In the heat exchange section 5, the heat exchange chamber 4A at the last stage on the exit side is an indirect heating stage, and a heat exchange tube 9A is provided inside the heat exchange chamber 4A. Moreover, the heat exchange chambers 4B to 4E other than the final stage are used as direct heating stages, and injection nozzles 10B to 10E are provided therein. A supply pipe line 14 of clean water (river water) 13 from a water intake tank 12 attached to a river 11 etc. is connected to the injection nozzle 10E of the heat exchange chamber 4E.
5. Also, heat exchange room 4B~
The injection nozzles 10B to 10D of 4D are heated water 16C to 16C from the heat exchange chambers 4C to 4E in the previous stage, respectively.
Transfer pipes 17a to 17c of 16E are connected.

18は脱気器であり、最終段の前段の熱交換室
4Bからの移送管路19と、最終段の熱交換室4
Aの熱交換チユーブ9Aへの管路20が接続され
ている。21は脱気器18からの排気管である。
熱交換チユーブ9Aの出口側には、造成熱水貯湯
槽22が接続され、さらに造成熱水貯湯槽22に
は、脱気器18へ造成熱水の一部を供給する供給
管路23と、造成熱水の残部を取り出して利用す
るための取出管路24とが接続されている。
18 is a deaerator, which connects the transfer pipe 19 from the heat exchange chamber 4B in the previous stage of the final stage and the heat exchange chamber 4 in the final stage.
A pipe line 20 to the heat exchange tube 9A of A is connected. 21 is an exhaust pipe from the deaerator 18.
A created hot water storage tank 22 is connected to the exit side of the heat exchange tube 9A, and the created hot water storage tank 22 is further provided with a supply pipe 23 that supplies a portion of the created hot water to the deaerator 18. A take-out pipe line 24 for taking out and utilizing the remainder of the created hot water is connected.

間接加熱段とされた熱交換室4Aには、この熱
交換室4Aにおける凝縮水25Aの排出管路26
Aが接続され、この排出管路26Aはドレンタン
ク27に達している。ドレンタンク27は、その
内部で前記凝縮水25Aがフラツシユ蒸発するよ
うに構成されており、フラツシユ蒸気を前記コン
デンサ15経由で最終段のフラツシユ室2Eへ送
る蒸気移送管路28と、ドレン水29を取水槽1
2へ送るドレン水移送管路30とが接続されてい
る。
The heat exchange chamber 4A serving as an indirect heating stage has a discharge pipe 26 for condensed water 25A in the heat exchange chamber 4A.
A is connected, and this discharge pipe 26A reaches the drain tank 27. The drain tank 27 is configured so that the condensed water 25A is flash-evaporated therein, and is connected to a steam transfer pipe 28 that sends the flash vapor to the final stage flash chamber 2E via the condenser 15, and a drain water 29. Water intake tank 1
A drain water transfer pipe line 30 to be sent to No. 2 is connected thereto.

なお、第1図において、31は弁、32はポン
プである。
In addition, in FIG. 1, 31 is a valve and 32 is a pump.

上記構成において、高温の地熱水は地熱水貯湯
槽7に一時貯湯された後フラツシユ部3に送ら
れ、フラツシユ室2Aからフラツシユ室2Eに向
かうにつれて徐々に低温、低圧となりながらフラ
ツシユ蒸発し、これによるフラツシユ蒸気は各熱
交換室4A〜4Eへ送られる。また、蒸発せずに
残つた低温地熱水は、排出管路8により環元井に
戻される。いま地熱水が硫化水素分を含んでいる
とすると、この硫化水素分はその大部分が初段の
フラツシユ室2Aにおいてフラツシユ蒸気ととも
に蒸発して熱交換室4Aに送られ、したがつて第
2段以降のフラツシユ室2B〜2Eにおけるフラ
ツシユ蒸気には硫化水素分が殆んど含まれなくな
り、これらは熱交換室4B〜4Eに送られること
になる。
In the above configuration, high-temperature geothermal water is temporarily stored in the geothermal water storage tank 7 and then sent to the flash section 3, where it evaporates while gradually becoming lower in temperature and pressure as it goes from the flash chamber 2A to the flash chamber 2E. The resulting flash steam is sent to each heat exchange chamber 4A to 4E. In addition, the low-temperature geothermal water that remains without being evaporated is returned to the ring source well through the discharge pipe 8. Assuming that the geothermal water contains hydrogen sulfide, most of this hydrogen sulfide evaporates together with the flash steam in the first stage flash chamber 2A and is sent to the heat exchange chamber 4A, and is therefore sent to the second stage flash chamber 2A. Subsequent flash steam in the flash chambers 2B to 2E contains almost no hydrogen sulfide, and is sent to the heat exchange chambers 4B to 4E.

取水槽12からの清浄水13は、コンデンサ1
5を通つて加熱された後、噴射ノズル10Eから
第1段の熱交換室4E内に噴射され、この熱交換
室4E内においてフラツシユ室2Eからのフラツ
シユ蒸気と混合加熱される。この結果、フラツシ
ユ蒸気の凝縮水と清浄水13とにより、加熱水1
6Eが生成されることになる。この加熱水16E
は移送管路17cを経て噴射ノズル10Dから熱
交換室4D内に噴射され、以下、上記と同様にし
て加熱水16D〜16Bが生成される。前述のよ
うに、フラツシユ室2B〜2Eからのフラツシユ
蒸気には硫化水素分が殆んど含まれておらず、よ
つて、加熱水16B〜16Eは清浄な状態で生成
されることになる。
Clean water 13 from the water intake tank 12 is supplied to the condenser 1
After being heated through the flash chamber 5, it is injected from the injection nozzle 10E into the first stage heat exchange chamber 4E, where it is mixed and heated with flash steam from the flash chamber 2E. As a result, the heated water 1 is heated by the condensed water of the flash steam and the clean water 13.
6E will be generated. This heated water 16E
is injected into the heat exchange chamber 4D from the injection nozzle 10D via the transfer pipe 17c, and thereafter heated water 16D to 16B is generated in the same manner as above. As mentioned above, the flash steam from the flash chambers 2B to 2E contains almost no hydrogen sulfide, and therefore the heated water 16B to 16E is generated in a clean state.

加熱水16Bは移送管路19から脱気器18へ
送られ、一方脱気器18内では造成熱水貯湯槽2
2からの造成熱水がフラツシユ蒸発し、その蒸気
を加熱源として加熱水16Bの脱気が行なわれ、
河川11において清浄水13中に溶存していた酸
素が加熱水16Bから抜かれて排気管21により
大気へ放散される。これにより、造成熱水を利用
する際における輸送管路での酸素による腐食が防
止できる。脱気後の加熱水16Bと前記造成熱水
との混合水33は管路20により熱交換チユーブ
9Aに送られ、フラツシユ室2Aからのフラツシ
ユ蒸気により加熱されて造成熱水となり、造成熱
水貯湯槽22へ送られる。造成熱水貯湯槽22に
おける造成熱水の一部は前述のように脱気器18
に送られ、残部は利用のため取出管路24から取
り出される。
The heated water 16B is sent from the transfer pipe 19 to the deaerator 18, and inside the deaerator 18, the heated water 16B is sent to the created hot water storage tank 2.
The generated hot water from 2 flashes and evaporates, and the heated water 16B is degassed using the steam as a heating source.
Oxygen dissolved in the clean water 13 in the river 11 is extracted from the heated water 16B and released into the atmosphere through the exhaust pipe 21. This makes it possible to prevent corrosion caused by oxygen in the transport pipeline when using the created hot water. The mixed water 33 of the heated water 16B after deaeration and the created hot water is sent to the heat exchange tube 9A through the pipe 20, heated by flash steam from the flash chamber 2A, becomes created hot water, and is stored as created hot water. It is sent to tank 22. A portion of the created hot water in the created hot water storage tank 22 is transferred to the deaerator 18 as described above.
, and the remainder is removed from the removal line 24 for use.

フラツシユ室2Aから熱交換室4Aへ送られた
フラツシユ蒸気は、熱交換チユーブ9Aを介して
混合水33を加熱することにより凝縮し、凝縮水
25Aが生成される。前述のように地熱水が硫化
水素分を含んでいる場合には、この硫化水素分は
フラツシユ蒸気とともに熱交換室4Aへ至り、凝
縮水25A中に溶解される。この硫化水素分が溶
解された凝縮水25Aは排出管路26Aからドレ
ンタンク27に送られ、このドレンタンク27内
でフラツシユ蒸発される。このとき、前記溶解さ
れていた硫化水素分はその大部分がフラツシユ蒸
気とともに蒸発し、蒸気移送管路28によりコン
デンサ15に送られ、コンデンサ15にて凝縮さ
れるフラツシユ蒸気に高濃度で溶解されてフラツ
シユ室2Eに送られ、その後排出管路8から図外
の環元井に戻される。以上により、ドレンタンク
27内に残つたドレン水29は硫化水素濃度が大
幅に低下されたものとなり、ドレン水移送管路3
0により取水槽12に送られ、清浄水13の加熱
および河川11等からの取水量の低減のため利用
される。
The flash steam sent from the flash chamber 2A to the heat exchange chamber 4A is condensed by heating the mixed water 33 via the heat exchange tube 9A, and condensed water 25A is generated. As mentioned above, when the geothermal water contains hydrogen sulfide, this hydrogen sulfide reaches the heat exchange chamber 4A together with flash steam and is dissolved in the condensed water 25A. The condensed water 25A in which the hydrogen sulfide content is dissolved is sent to the drain tank 27 from the discharge pipe 26A, and is flash-evaporated in the drain tank 27. At this time, most of the dissolved hydrogen sulfide evaporates together with the flash vapor, is sent to the condenser 15 via the vapor transfer line 28, and is dissolved in a high concentration in the flash vapor condensed in the condenser 15. It is sent to the flash chamber 2E, and then returned to the ring source well (not shown) through the discharge pipe 8. As a result of the above, the drain water 29 remaining in the drain tank 27 has a significantly reduced hydrogen sulfide concentration, and the drain water transfer pipe 3
0 is sent to the water intake tank 12 and used for heating the clean water 13 and reducing the amount of water taken from the river 11 and the like.

すなわち、ドレンタンク27からコンデンサ1
5に送られる蒸気量は各フラツシユ室2A〜2E
において発生するフラツシユ蒸気の総量に比べて
ごく僅かであり、しかもこの僅かな蒸気中に地熱
水からの硫化水素分の殆んどが含まれることにな
るため、前記各フラツシユ室2A〜2Eにて発生
したフラツシユ蒸気は、熱交換室2B〜2Eまた
はドレンタンク27を経てその大部分が清浄な状
態で回収され、有効利用が図られることになる。
That is, from the drain tank 27 to the capacitor 1
5 is the amount of steam sent to each flash chamber 2A to 2E.
This amount is very small compared to the total amount of flash steam generated in the flash chambers 2A to 2E, and most of the hydrogen sulfide from the geothermal water is contained in this small amount of steam. Most of the flash steam generated is recovered in a clean state through the heat exchange chambers 2B to 2E or the drain tank 27, and is effectively utilized.

上記実施例では、熱交換部5の出口側最終段の
熱交換室4Aのみを間接加熱段とし、他の熱交換
室4B〜4Eを直接加熱段としているが、間接加
熱段の段数は、地熱水に含まれる硫化水素分の濃
度に応じて適宜増減できる。第2図はすべての熱
交換室4A〜4Eを間接加熱段としたものを例示
しており、熱交換室4A〜4Eにそれぞれ設けら
れた熱交換用チユーブ9A〜9Eは互いに直列に
接続され、取水槽12からの清浄水13を段階的
に加熱するように構成されている。最終段の前段
の熱交換室4Bからの加熱水を脱気器18に送
り、造成熱水の一部を加熱源として脱気させる点
は、第1図に示すものと同様である。
In the above embodiment, only the heat exchange chamber 4A at the final stage on the outlet side of the heat exchange section 5 is used as an indirect heating stage, and the other heat exchange chambers 4B to 4E are used as direct heating stages. It can be increased or decreased as appropriate depending on the concentration of hydrogen sulfide contained in hot water. FIG. 2 shows an example in which all the heat exchange chambers 4A to 4E are indirect heating stages, and the heat exchange tubes 9A to 9E provided in the heat exchange chambers 4A to 4E, respectively, are connected in series with each other. The clean water 13 from the water intake tank 12 is heated in stages. It is similar to that shown in FIG. 1 in that the heated water from the heat exchange chamber 4B in the previous stage of the final stage is sent to the deaerator 18, and a part of the created hot water is used as a heat source to degas it.

各熱交換室4A〜4Eには、ドレンタンク27
への凝縮水25A〜25Eの排出管路26A〜2
6Eが接続されている。すなわち、地熱水に含ま
れる硫化水素分の濃度が高く、熱交換室4Eにお
ける凝縮水25Eであつても多量の硫化水素分を
溶解している場合には、凝縮水25A〜25Eを
すべてドレンタンク27に集め、このドレンタン
ク27内で硫化水素分を蒸発、除去させるもので
ある。したがつて、第1図に示すものと比べ多量
のドレン水29が生成されることになるが、この
ドレン水29はすべて取水槽12へ送られ、再び
供給管路14から熱交換部5へ供給されるため、
その保有熱量が有効利用されることになるととも
に、河川11等からの取水量が低減されることに
なる点は、第1図に示すものと同様である。
A drain tank 27 is provided in each heat exchange chamber 4A to 4E.
Discharge pipes 26A-2 for condensed water 25A-25E to
6E is connected. That is, if the concentration of hydrogen sulfide contained in the geothermal water is high and even the condensed water 25E in the heat exchange chamber 4E has a large amount of dissolved hydrogen sulfide, all of the condensed water 25A to 25E should be drained. The hydrogen sulfide is collected in a tank 27, and hydrogen sulfide is evaporated and removed within this drain tank 27. Therefore, a large amount of drain water 29 is generated compared to that shown in FIG. Because it is supplied,
Similar to what is shown in FIG. 1, the retained heat amount is effectively utilized and the amount of water taken from the river 11 etc. is reduced.

以上述べたように本発明によると、地熱水に含
まれる硫化水素分は間接加熱段においてフラツシ
ユ蒸気とともにその大部分が蒸発して熱交換室に
送られ、そこで凝縮したあとドレンタンクに送ら
れ、このドレンタンクにおいて再びフラツシユ蒸
気とともにその大部分が蒸発するため、ドレンタ
ンクに残つたドレン水は硫化水素濃度が大幅に低
下されたものとなり、熱交換用水として回収する
ことが可能となつて、その保有熱量の有効利用を
図ることができるのみならず、清浄水の使用量の
低減化を図ることができる。
As described above, according to the present invention, most of the hydrogen sulfide contained in geothermal water is evaporated together with flash steam in the indirect heating stage and sent to the heat exchange chamber, where it is condensed and then sent to the drain tank. In this drain tank, most of it evaporates together with the flash steam again, so the drain water remaining in the drain tank has a significantly reduced hydrogen sulfide concentration, and can be recovered as water for heat exchange. Not only can the retained heat be used effectively, but also the amount of clean water used can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を説明する図、
第2図は他の実施例を説明する図である。 1…多段フラツシユ熱交換器、3…フラツシユ
部、5…熱交換部、9A〜9E…熱交換用チユー
ブ、13…清浄水、25A〜25E…凝縮水、2
7…ドレンタンク、29…ドレン水。
FIG. 1 is a diagram illustrating an embodiment of the method of the present invention;
FIG. 2 is a diagram illustrating another embodiment. 1...Multi-stage flash heat exchanger, 3...Flush section, 5...Heat exchange section, 9A to 9E...Heat exchange tube, 13...Clean water, 25A to 25E...Condensed water, 2
7...Drain tank, 29...Drain water.

Claims (1)

【特許請求の範囲】[Claims] 1 地熱水をフラツシユ蒸発させてそのフラツシ
ユ蒸気により河川水などの清浄水を加熱する多段
フラツシユ熱交換器において、熱交換部の出口側
の適当数段を間接加熱段とするとともに残りを直
接加熱段とするか、または熱交換部の全部を間接
加熱段とし、間接加熱段において地熱水に含まれ
る硫化水素分をこの地熱水のフラツシユ蒸気とと
もに蒸発させて凝縮水中に溶解させ、この凝縮水
をドレンタンクに導き、このドレンタンク内で前
記凝縮水を再フラツシユさせてこの凝縮水中に含
まれる硫化水素分をこの凝縮水のフラツシユ蒸気
とともに蒸発させ、残りの硫化水素濃度が低くな
つたドレン水を熱交換用水として回収することを
特徴とする多段フラツシユ熱交換器における凝縮
水の回収方法。
1. In a multi-stage flash heat exchanger that flash-evaporates geothermal water and uses the flash steam to heat clean water such as river water, an appropriate number of stages on the exit side of the heat exchange section are used as indirect heating stages, and the rest are directly heated. or the entire heat exchange section is an indirect heating stage, and in the indirect heating stage, the hydrogen sulfide contained in the geothermal water is evaporated together with the flash steam of this geothermal water and dissolved in the condensed water. The water is led to a drain tank, and the condensed water is re-flushed in this drain tank, and the hydrogen sulfide contained in this condensed water is evaporated together with the flash vapor of this condensed water, and the remaining hydrogen sulfide concentration is reduced. A method for recovering condensed water in a multi-stage flash heat exchanger, characterized in that water is recovered as water for heat exchange.
JP58024463A 1983-02-15 1983-02-15 Recovery of condensed water in multi-stage flash heat exchanger Granted JPS59150587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024463A JPS59150587A (en) 1983-02-15 1983-02-15 Recovery of condensed water in multi-stage flash heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024463A JPS59150587A (en) 1983-02-15 1983-02-15 Recovery of condensed water in multi-stage flash heat exchanger

Publications (2)

Publication Number Publication Date
JPS59150587A JPS59150587A (en) 1984-08-28
JPS6329598B2 true JPS6329598B2 (en) 1988-06-14

Family

ID=12138858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024463A Granted JPS59150587A (en) 1983-02-15 1983-02-15 Recovery of condensed water in multi-stage flash heat exchanger

Country Status (1)

Country Link
JP (1) JPS59150587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029927U (en) * 1996-04-09 1996-10-18 有限会社エスビーエス Projection toys

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639201Y2 (en) * 1986-06-20 1994-10-12 住友重機械工業株式会社 Multi-stage hot water flasher with heater for ships
CN107435973B (en) * 2016-05-27 2020-12-22 哈尔滨工大金涛科技股份有限公司 Direct-connected large-temperature-difference heat exchange device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029927U (en) * 1996-04-09 1996-10-18 有限会社エスビーエス Projection toys

Also Published As

Publication number Publication date
JPS59150587A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
US5346592A (en) Combined water purification and power of generating plant
JP2005321190A (en) Exhaust heat recovery device of heat generation furnace
US5165237A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
US3438202A (en) Condensing power plant system
RU2152521C1 (en) Condensate degassing method and device
JPH0952082A (en) Apparatus for desalinating seawater
JPS6329598B2 (en)
US5904039A (en) Method and configuration for deaerating a condensate
JPH11257791A (en) Heat pump type exhaust heat recovery water heater
JPS6359066B2 (en)
JPH10169907A (en) Boiler plant
JP2007017035A (en) System for effectively using energy
JP5105796B2 (en) Multi-stage flash water generator
JP2000325948A (en) Apparatus for salt-to-fresh water distillation
SU1638360A1 (en) Power plant for geothermal power station
JPS5820679B2 (en) watermelon watermelon
JPH10132207A (en) Boiler facility
JPS589740Y2 (en) Circulating water cooling system
JPS5895501A (en) Method and device for deaeration of treating liquid in multiple effect evaporating device
JP2005334747A (en) Steam recompression type concentration equipment
KR20020068001A (en) Heat recovery method of additional drain water of feed water heater discharged to condenser in power plant
JPH05263610A (en) Power generating facility
JPH0921503A (en) Plant for heating and deaerating supply water
JPH0490496A (en) Condensing device of steam turbine plant
JPH0743090B2 (en) Condensate reheat deaerator