JPH0490496A - Condensing device of steam turbine plant - Google Patents

Condensing device of steam turbine plant

Info

Publication number
JPH0490496A
JPH0490496A JP20636890A JP20636890A JPH0490496A JP H0490496 A JPH0490496 A JP H0490496A JP 20636890 A JP20636890 A JP 20636890A JP 20636890 A JP20636890 A JP 20636890A JP H0490496 A JPH0490496 A JP H0490496A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
steam turbine
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20636890A
Other languages
Japanese (ja)
Inventor
Kikuo Hirohara
広原 喜久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20636890A priority Critical patent/JPH0490496A/en
Publication of JPH0490496A publication Critical patent/JPH0490496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To eliminate a heat loss and improve a thermal efficiency of a plant by a method wherein a refrigerant cooling system is applied, a cooling cycle is provided and a heat removed from a steam turbine exhaust gas with a refrigerant evaporator is recovered into condensed water by a refrigerant-condensed water heat exchanger. CONSTITUTION:Refrigerant gas evaporated in a refrigerant evaporator 21 is compressed by a refrigerant gas compressor 24 driven by an electric motor 25 become to refrigerant gas of high pressure. The refrigerant gas is cooled by recovered water in a refrigerant- condensed water heat exchanger 23 and liquified and finally stored in a refrigerant liquid storing tank 26. Refrigerant liquid within the storing tank 26 passes through a refrigerant liquid transporting pump 27, adjusted by an expansion valve 28 and expanded to become a gas-liquid and two-phase fluid. The refrigerant liquid flows again into the refrigerant evaporator 21. The gas-liquid two-phase fluid is heated and gasified by an exhaust gas of a steam turbine and is returned back to the refrigerant gas compressor 24 so as to perform a cooling cycle. Accordingly, there is no heating calorie to be discharged out of a system and a required external power is only a driving power of the electric motor 25 for driving the refrigerant gas compressor 24, resulting in that a thermal efficiency is substantially improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービンプラントに適用される復水装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a condensing device applied to a steam turbine plant.

従来の技術 第2図は、従来の火力発電用蒸気タービンプラントの熱
流線図である。
BACKGROUND ART FIG. 2 is a heat flow diagram of a conventional steam turbine plant for thermal power generation.

第2図において、ボイラ1の過熱器2で発生した高温高
圧蒸気は、主蒸気止め弁3及び蒸気加減弁4を経て高圧
タービン5に流入し、この高圧タービン5で膨張した後
、再熱器6で再熱され、それから再熱蒸気止め弁7及び
インターセプト弁8を経て中圧タービン9へ流入して膨
張する。更に、この中圧タービン9の排気は、低圧ター
ビン10へ流入して膨張した後、復水器11へ流入して
冷却水(海水、淡水が使用される)によって冷却されて
復水になる。
In FIG. 2, high-temperature, high-pressure steam generated in a superheater 2 of a boiler 1 flows into a high-pressure turbine 5 via a main steam stop valve 3 and a steam control valve 4, expands in this high-pressure turbine 5, and then enters a reheater. 6, and then flows through a reheat steam stop valve 7 and an intercept valve 8 to an intermediate pressure turbine 9, where it is expanded. Further, the exhaust gas from the intermediate pressure turbine 9 flows into the low pressure turbine 10 and expands, and then flows into the condenser 11 where it is cooled by cooling water (seawater or fresh water is used) and becomes condensed water.

前述した高圧、中圧及び低圧の各タービン59及び10
は、発電機12にタンデムに結合されており、各タービ
ン5.9.10か発電機12を回転させることによって
発電が行われる。
The aforementioned high pressure, intermediate pressure and low pressure turbines 59 and 10
are connected in tandem to a generator 12, and electricity is generated by rotating each turbine 5, 9, 10 or the generator 12.

一方、復水器11で生じた復水は復水ポンプ13で昇圧
されて、複数段の低圧給水加熱器14で低圧タービン1
0の抽気によって加熱され、それから脱気器15で給水
中の溶解ガスが加熱除去される。その後、給水は給水ポ
ンプ16で昇圧され、複数段の高圧給水加熱器17で高
、中圧タービン5.9の抽気によって加熱されて、ボイ
ラ1へ給水される。
On the other hand, the condensate generated in the condenser 11 is boosted in pressure by the condensate pump 13, and then transferred to the low pressure turbine 1 by the multi-stage low pressure feed water heater 14.
The water is heated by bleed air of 0, and then dissolved gases in the feed water are removed by heating in a deaerator 15. Thereafter, the feed water is pressurized by the feed water pump 16, heated by the multi-stage high pressure feed water heater 17 by the extraction air from the high and intermediate pressure turbines 5.9, and then supplied to the boiler 1.

なお、点線は給水加熱器のドレン系統を示す。Note that the dotted line indicates the drain system of the feed water heater.

発明が解決しようとする課題 超臨界圧蒸気を使用する新鋭火力発電プラントでも、そ
の送電端熱効率は40%程度であり、復水器損失は約4
5%にも達する。すなわち、燃料の燃焼熱の約45%が
タービンの排気を冷却復水させた冷却水によって系外へ
放出されている。
Problems to be Solved by the Invention Even in a cutting-edge thermal power plant that uses supercritical pressure steam, the thermal efficiency at the transmission end is about 40%, and the condenser loss is about 4%.
It reaches as much as 5%. That is, approximately 45% of the combustion heat of the fuel is released to the outside of the system by cooling water obtained by cooling and condensing the exhaust gas of the turbine.

また、わが国の火力、原子力発電所のほとんどは臨界立
地のため、上記の冷却水は海洋から取水(海水を使用)
し、冷却に使用後放水されている。
Additionally, since most of Japan's thermal and nuclear power plants are located in critical locations, the above cooling water is taken from the ocean (seawater is used).
Water is then released for cooling after use.

その水量は火力発電所では100万KW当り、おおむね
毎時15万トン、原子力発電所では同毎時25万トンに
も達する。このような大流量の取排水設備には多額の建
設費と保守費が必要となり、また温排水は海洋環境の破
壊につながるため、その対策に巨額の投資が必要となっ
ている。
The amount of water is approximately 150,000 tons per hour per million kW at thermal power plants, and 250,000 tons per hour at nuclear power plants. Large amounts of construction and maintenance costs are required for such large-flow intake and drainage facilities, and since heated wastewater leads to the destruction of the marine environment, a huge amount of investment is required for countermeasures.

さらに、冷却水として河川から取水(淡水を使用)した
り、空冷式復水器を使用する場合もあるが、いずれも冷
却水として海水を使用する場合と同様に復水器損失が大
であり、多額の建設費、保守費が必要となる。
Furthermore, water may be taken from a river (using fresh water) or an air-cooled condenser may be used as cooling water, but in both cases the condenser loss is large, similar to when seawater is used as cooling water. , large construction and maintenance costs are required.

本発明は、このような従来技術の課題を解決するために
なされたもので、冷却水によって持ち去られる熱損失が
なくなってプラント熱効率が向上し、また冷却水の取排
水設備や温排水への環境汚染対策が不要となって建設費
、保守費を低減することができる蒸気タービンプラント
の復水装置を提供することを目的とする。
The present invention has been made to solve the problems of the conventional technology, and improves plant thermal efficiency by eliminating heat loss carried away by cooling water. An object of the present invention is to provide a condensing device for a steam turbine plant that eliminates the need for pollution countermeasures and reduces construction and maintenance costs.

課題を解決するための手段 上記の課題を解決するために、本発明は、蒸気タービン
プラントの復水装置を、蒸気タービン排気の熱を奪って
復水させる冷媒蒸発器と、この蒸発器で蒸発した冷媒ガ
スを圧縮する冷媒ガス圧縮機と、前記冷媒蒸発器からの
復水が流入し前記冷媒ガス圧縮機からの冷媒ガスの熱を
奪って凝縮させる冷媒−復水熱交換器と、この熱交換器
で凝縮した冷媒液を溜める冷媒液貯槽と、この貯槽内の
冷媒液を前記冷媒蒸発器に向かって移送する冷媒液移送
ポンプと、この冷媒液を絞り膨張させて気液二相流体と
する膨張弁とを連設することによって、冷媒冷却式に構
成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a condensing device for a steam turbine plant including a refrigerant evaporator that removes heat from the steam turbine exhaust and condenses it, and a refrigerant evaporator that uses the evaporator to evaporate the water. a refrigerant gas compressor that compresses the refrigerant gas; a refrigerant-condensate heat exchanger into which condensate from the refrigerant evaporator flows and condenses the refrigerant gas from the refrigerant gas compressor; A refrigerant liquid storage tank that stores the refrigerant liquid condensed in the exchanger, a refrigerant liquid transfer pump that transfers the refrigerant liquid in the storage tank toward the refrigerant evaporator, and a refrigerant liquid that is throttled and expanded to become a gas-liquid two-phase fluid. It is configured as a refrigerant cooling type by connecting an expansion valve.

作用 上記の手段によれば、冷媒蒸発器に流入した蒸気タービ
ンの排気は冷媒液の蒸気潜熱によって熱を奪われ、冷却
されて復水する。この復水は復水ポンプで昇圧され、冷
媒−復水熱交換器で冷媒液の熱を奪って温度が上昇し、
タービン給水系へ供給される。
According to the above-described means, the exhaust gas of the steam turbine flowing into the refrigerant evaporator is deprived of heat by the vapor latent heat of the refrigerant liquid, and is cooled and condensed. This condensate is pressurized by a condensate pump, and the temperature increases by removing heat from the refrigerant liquid in a refrigerant-condensate heat exchanger.
Supplied to the turbine water supply system.

一方、冷媒側では、冷媒蒸発器で蒸発した後冷媒ガス圧
縮機で圧縮され、冷媒−復水熱交換器で復水により、冷
却されて液化し、冷媒液貯槽に溜まる。その後、冷媒液
移送ポンプを経て膨張弁にて絞り膨張され、低圧低温の
気液二相状態となって冷媒蒸発器へ流入する。
On the other hand, on the refrigerant side, the refrigerant is evaporated in a refrigerant evaporator, then compressed in a refrigerant gas compressor, cooled and liquefied by condensation in a refrigerant-condensate heat exchanger, and stored in a refrigerant liquid storage tank. Thereafter, the refrigerant passes through a refrigerant liquid transfer pump, is throttled and expanded by an expansion valve, becomes a low-pressure, low-temperature gas-liquid two-phase state, and flows into the refrigerant evaporator.

実施例 以下第1図を参照して本発明の一実施例について詳述す
る。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to FIG.

第1図において、21は蒸気タービン例えば第2図に示
した低圧タービン10が流入する冷媒蒸発器であり、こ
の冷媒蒸発器21へ流入した低圧タービン10の排気は
、管内を流れる冷媒液の蒸発潜熱で冷却されて復水し、
復水だめ22に溜まる。この復水は、復水ポンプ13で
昇圧され、冷媒−復水熱交換器23の管巣で後述する冷
媒ガス圧縮機24からの冷媒ガスにより暖められ、低圧
給水加熱器14を経てボイラ1(第2図参照)側へ給水
される。
In FIG. 1, 21 is a refrigerant evaporator into which a steam turbine, for example, the low-pressure turbine 10 shown in FIG. It is cooled by latent heat and condenses,
It collects in the condensate reservoir 22. This condensate is pressurized by the condensate pump 13, warmed in the tube nest of the refrigerant-condensate heat exchanger 23 by refrigerant gas from the refrigerant gas compressor 24, which will be described later, and passes through the low-pressure feed water heater 14 to the boiler 1 ( (see Figure 2).

一方、冷媒蒸発器21で蒸発した冷媒ガスは電動機25
で駆動される冷媒ガス圧縮機24で圧縮されて高圧の冷
媒ガスとなり、前述した冷媒−復水熱交換器23で復水
により冷却されて液化し、冷媒液貯槽26に溜まる。こ
の貯槽26内の冷媒液は、その後、冷媒液移送ポンプ2
7を経て膨張弁28で絞り膨張されて、気液二相流体と
なり、再び冷媒蒸発器21へ流入する。
On the other hand, the refrigerant gas evaporated in the refrigerant evaporator 21 is transferred to the electric motor 25.
The refrigerant gas is compressed into a high-pressure refrigerant gas by the refrigerant gas compressor 24 driven by the refrigerant gas compressor 24 , which is cooled by condensate in the refrigerant-condensate heat exchanger 23 and liquefied, and stored in the refrigerant liquid storage tank 26 . The refrigerant liquid in this storage tank 26 is then transferred to the refrigerant liquid transfer pump 2
7, the liquid is throttled and expanded by an expansion valve 28, becomes a gas-liquid two-phase fluid, and flows into the refrigerant evaporator 21 again.

そして、この気液二相流体は、前述した如く、蒸気ター
ビンの排気で加熱されて気化し、冷媒ガス圧縮機24へ
還流して冷却サイクルを営む。すなわち、低温熱源の蒸
気タービン排気部から高温熱源の給水入口部へ熱を運ぶ
ヒートポンプとして働く。
As described above, this gas-liquid two-phase fluid is heated and vaporized by the exhaust gas of the steam turbine, and is returned to the refrigerant gas compressor 24 to perform a cooling cycle. That is, it functions as a heat pump that transports heat from the steam turbine exhaust section of the low-temperature heat source to the water supply inlet section of the high-temperature heat source.

この場合、従来の復水器のように系外へ放出される熱量
がなくなり、必要な外部動力は冷媒ガス圧縮機24を駆
動する電動機25の動力のみとなり、蒸気タービンプラ
ントの熱効率は大幅に向上する。
In this case, unlike conventional condensers, there is no heat released outside the system, and the only external power required is that of the electric motor 25 that drives the refrigerant gas compressor 24, greatly improving the thermal efficiency of the steam turbine plant. do.

なお、冷媒ガス圧縮機24ならびに冷媒液移送ポンプ2
7には、可変速のものが、また膨張弁28についても開
度可変のものが使用され、蒸気タービンの部分負荷に対
応して、効率良く運用される。
Note that the refrigerant gas compressor 24 and the refrigerant liquid transfer pump 2
7 is of a variable speed type, and the expansion valve 28 is also of a variable opening type, and is operated efficiently in accordance with the partial load of the steam turbine.

また、冷媒には蒸発圧力と温度、凝縮圧力と温度及び冷
却能力が蒸気タービンの復水条件に適したアンモニア、
メチルクロライド、プロパン等か使われる。
In addition, the refrigerant includes ammonia, whose evaporation pressure and temperature, condensation pressure and temperature, and cooling capacity are suitable for the condensation conditions of the steam turbine.
Methyl chloride, propane, etc. are used.

発明の効果 以上述べたように、本発明によれば、火力、原子力発電
プラントにおける蒸気タービンの復水装置を冷媒冷却式
とし、冷却サイクルを設けて、冷媒蒸発器によって蒸気
タービン排気より奪った熱を冷媒〜復水熱交換器によっ
て復水に回収するようにしているので、冷却水によって
持ち去られる熱損失がなくなり、プラント熱効率が大幅
に向上する。
Effects of the Invention As described above, according to the present invention, the condensing device of a steam turbine in a thermal or nuclear power plant is a refrigerant-cooled type, and a cooling cycle is provided to reduce the heat taken from the steam turbine exhaust by the refrigerant evaporator. is recovered as condensate through the refrigerant-condensate heat exchanger, eliminating heat loss carried away by cooling water and greatly improving plant thermal efficiency.

また、冷却水の取排水設備や温排水への環境汚染対策が
不要となり、建設費、保守費が低減される。
Additionally, there is no need for cooling water intake/drainage equipment or measures to prevent environmental pollution from hot water, reducing construction and maintenance costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸気タービンプラントの復水装置
の一例を示す系統図、第2図は従来の火力発電用蒸気タ
ービンプラントの一例を示す熱流線図である。 13・・復水ポンプ、14・・低圧給水加熱器、21・
・冷媒蒸発器、22・・復水だめ、23・・冷媒−復水
熱交換器、24・・冷媒ガス圧縮機、25・・電動機、
26・・冷媒液貯槽、27・・冷媒液移送ポンプ、28
・・膨張弁。
FIG. 1 is a system diagram showing an example of a condensing device for a steam turbine plant according to the present invention, and FIG. 2 is a heat flow diagram showing an example of a conventional steam turbine plant for thermal power generation. 13. Condensate pump, 14. Low pressure feed water heater, 21.
- Refrigerant evaporator, 22... Condensate reservoir, 23... Refrigerant-condensate heat exchanger, 24... Refrigerant gas compressor, 25... Electric motor,
26... Refrigerant liquid storage tank, 27... Refrigerant liquid transfer pump, 28
...Expansion valve.

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービン排気の熱を奪って復水させる冷媒蒸発器と
、この蒸発器で蒸発した冷媒ガスを圧縮する冷媒ガス圧
縮機と、前記冷媒蒸発器からの復水が流入し前記冷媒ガ
ス圧縮機からの冷媒ガスの熱を奪って凝縮させる冷媒−
復水熱交換器と、この熱交換器で凝縮した冷媒液を溜め
る冷媒液貯槽と、この貯槽内の冷媒液を前記冷媒蒸発器
に向かって移送する冷媒液移送ポンプと、この冷媒液を
絞り膨張させて気液二相流体とする膨張弁とを連設する
ことによって、冷媒冷却式に構成されたことを特徴とす
る蒸気タービンプラントの復水装置。
a refrigerant evaporator that removes heat from steam turbine exhaust and condenses it; a refrigerant gas compressor that compresses the refrigerant gas evaporated by the evaporator; A refrigerant that removes heat from refrigerant gas and condenses it.
a condensing heat exchanger, a refrigerant liquid storage tank that stores refrigerant liquid condensed in the heat exchanger, a refrigerant liquid transfer pump that transfers the refrigerant liquid in the storage tank toward the refrigerant evaporator, and a refrigerant liquid transfer pump that throttles the refrigerant liquid. 1. A condensing device for a steam turbine plant, characterized in that the condensing device for a steam turbine plant is configured in a refrigerant cooling type by being connected with an expansion valve that expands the fluid into a gas-liquid two-phase fluid.
JP20636890A 1990-08-03 1990-08-03 Condensing device of steam turbine plant Pending JPH0490496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20636890A JPH0490496A (en) 1990-08-03 1990-08-03 Condensing device of steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20636890A JPH0490496A (en) 1990-08-03 1990-08-03 Condensing device of steam turbine plant

Publications (1)

Publication Number Publication Date
JPH0490496A true JPH0490496A (en) 1992-03-24

Family

ID=16522171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20636890A Pending JPH0490496A (en) 1990-08-03 1990-08-03 Condensing device of steam turbine plant

Country Status (1)

Country Link
JP (1) JPH0490496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083013A (en) * 2010-10-08 2012-04-26 Toshihisa Shirakawa Active condenser
JP2012167918A (en) * 2011-02-17 2012-09-06 Babcock Hitachi Kk Coal-fired boiler system including carbon dioxide recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083013A (en) * 2010-10-08 2012-04-26 Toshihisa Shirakawa Active condenser
JP2012167918A (en) * 2011-02-17 2012-09-06 Babcock Hitachi Kk Coal-fired boiler system including carbon dioxide recovery system

Similar Documents

Publication Publication Date Title
FI102405B (en) Method for improving the total useful energy production of a thermal power plant i and a power plant with a liquid-cooled thermal power plant
RU2015353C1 (en) Method of operation of steam-gas-turbine power plant
US7458217B2 (en) System and method for utilization of waste heat from internal combustion engines
US5497624A (en) Method of and apparatus for producing power using steam
US6367258B1 (en) Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant
US5412937A (en) Steam cycle for combined cycle with steam cooled gas turbine
UA61957C2 (en) Method for obtaining energy from the exhaust gas of gas turbine, method and system of regeneration of energy of the exhaust gas heat
US4961311A (en) Deaerator heat exchanger for combined cycle power plant
JP4698590B2 (en) Heat tempering system
US4292809A (en) Procedure for converting low-grade thermal energy into mechanical energy in a turbine for further utilization and plant for implementing the procedure
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
US6052997A (en) Reheat cycle for a sub-ambient turbine system
US20190170025A1 (en) Renewable Energy Process and Method Using a Carbon Dioxide Cycle to Produce Work
RU2152521C1 (en) Condensate degassing method and device
KR101499810B1 (en) Hybrid type condenser system
JP3905967B2 (en) Power generation / hot water system
US6397596B1 (en) Self contained generation system using waste heat as an energy source
EP0605159A1 (en) Method for utilizing liquified natural gas as a heat sink for a gas turbine inlet chiller
JPH04318207A (en) Steam turbine exhaust heat power generation equipment
JPH0490496A (en) Condensing device of steam turbine plant
JP2004301344A (en) Ammonia absorption heat pump
JP7465650B2 (en) Steam generators and waste heat recovery plants
RU2144994C1 (en) Combined-cycle plant
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JPS5922043B2 (en) Cold energy power generation plant