JPS6329573B2 - - Google Patents

Info

Publication number
JPS6329573B2
JPS6329573B2 JP54038669A JP3866979A JPS6329573B2 JP S6329573 B2 JPS6329573 B2 JP S6329573B2 JP 54038669 A JP54038669 A JP 54038669A JP 3866979 A JP3866979 A JP 3866979A JP S6329573 B2 JPS6329573 B2 JP S6329573B2
Authority
JP
Japan
Prior art keywords
overflow
ponds
value
flow rate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54038669A
Other languages
Japanese (ja)
Other versions
JPS55129119A (en
Inventor
Gi Hisayoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3866979A priority Critical patent/JPS55129119A/en
Publication of JPS55129119A publication Critical patent/JPS55129119A/en
Publication of JPS6329573B2 publication Critical patent/JPS6329573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 本発明は過池、特に急速過池を使用した浄
水場における過池の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling over ponds in water purification plants using over ponds, particularly rapid over ponds.

従来の過流量制御方式は、総過流量調節計
への設定は過処理計画量に応じてオペレータが
随時設定変更をしていた。さらに総過流量調節
計が無い場合は、各過流量調節計に個々に設定
変更を行つていた。
In the conventional overflow control method, the settings for the total overflow controller were changed by the operator at any time depending on the planned amount of overtreatment. Furthermore, if there is no total overflow controller, settings must be changed for each overflow controller individually.

このため (1) 過処理量の変化のたびにオペレータが設定
変更を必要とする。
For this reason, (1) the operator is required to change the settings every time there is a change in the overthroughput amount;

(2) 取水流量が変わつたりすると、各池の処理量
が変わり、適性速を超える場合がある。
(2) If the water intake flow rate changes, the processing amount of each pond will change and may exceed the appropriate rate.

(3) 過池数を追加する際、総過流量設定変更
値と、池のスタートのタイミングをうまく合せ
ないと、既に運転されている過池の過調節
ループに外乱となつて入り、過池での処理効
率の低下、処理水質の低下をまねく。
(3) When adding the number of overflow ponds, if the total overflow setting change value and the start timing of the overflow ponds are not well matched, the disturbance will enter the overregulation loop of the overflow ponds that are already in operation, causing overflow. This leads to a decrease in treatment efficiency and a decrease in treated water quality.

(4) 総過処理量が低下し、過池の池数を減ら
す必要がある時も、追加の時と同じような外乱
が入り調節がうまく行かない。
(4) Even when the total overtreatment capacity decreases and it is necessary to reduce the number of overflow ponds, the same disturbances that occur when adding overflow ponds occur and adjustment does not go well.

(5) 上記(3)(4)を防止する為、運転過池の中の1
池のみ処理量変化に対応させる方式をとると、
過池の運転―停止回数が多くなり、操作端が
電動弁の場合が多い為、寿命に影響し、浄水運
用効率も下り芳しくない。さらに分配演算機能
が複雑になり、制御系としても好ましくなく、
又、増設性も悪くなる。
(5) In order to prevent the above (3) and (4), one of the
If we adopt a method in which only the pond responds to changes in throughput,
The operation and stop of overflow ponds is increased, and the operating end is often an electric valve, which affects the lifespan and reduces water purification efficiency. Furthermore, the distribution calculation function becomes complicated, which is not desirable as a control system.
Furthermore, expandability is also poor.

上記のような理由により過池運転の自動化が
なかなか困難であつた。
For the reasons mentioned above, it has been difficult to automate over-watering operation.

本発明の目的は、過池の運転を処理量に応じ
て池数を自動的に増減し、かつ、総過流量設定
値を同時にタイミングに合わせて増減し、しかも
既に運転されている過池の過流量制御系に大
きな外乱として与えない方法を提供することにあ
る。
It is an object of the present invention to automatically increase or decrease the number of overflow ponds according to the throughput, and to simultaneously increase or decrease the total overflow set value in accordance with the timing, and to The object of the present invention is to provide a method that does not cause a large disturbance to an overflow control system.

総過流量設定値は、取水量と沈澱池の水位に
より自動演算された値を使用し、同にその値を運
転池数判定基準として使用する。池数判定基準の
結果、運転池数の増減が必要になつた時は、総
過流量設定器の前に入つているスロースタータを
生かし、総過流量設定値を変更し同時に増減す
べき池のスロースタータ前の切換接点を増の時は
オン、減の時はオフにする。この時複数池の変更
の時は1池ずつ増減又は同時に増減するかによつ
て、総過流量の設定変更値と、各池のスロース
タータ前の切換スイツチの動作を違える必要があ
る。
The total overflow setting value uses a value that is automatically calculated based on the amount of water intake and the water level of the settling basin, and that value is also used as a criterion for determining the number of operating basins. When it is necessary to increase or decrease the number of operating ponds based on the criteria for determining the number of ponds, use the slow starter installed in front of the total overflow setting device to change the total overflow setting value and simultaneously adjust the number of ponds to be increased or decreased. Turn on the switching contact in front of the slow starter to increase the power, and turn it off to decrease the power. At this time, when changing multiple ponds, it is necessary to change the setting change value of the total excess flow rate and the operation of the changeover switch in front of the slow starter of each pond depending on whether the change is made one by one or simultaneously.

以下、本発明の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、浄水場に取水ポンプ2で送り
込まれた河川1の流量は、着水井3に一担入り、
そこから複数の沈澱池4に分岐され、さらに複数
の過池5に送り込まれる。その後浄水池6を経
て需要先に配水ポンプ7で供給される。着水井3
の出口流量Fxは、処理流量発振器8で測定され、
処理流量変換器9を介して処理流量指示記録計1
0に入力される。また、沈澱池4の水位Lxは、
水位発信器11で測定され、水位変換器12を介
して水位指示警報計13に入力される。出口流量
Fxと水位Lxの信号は、演算器14を介して総
過流量設定値として分配器15に入力される。そ
こから分配された値が各池過流量調節計16へ
設定される。普通、第2図のように各過流量調
節計16の前には、スロースタータSが挿入され
ていて、設定値の急激な変動による過砂のまき
上げや、それによる浄水のにごりを無くす対策が
施こされている。又スロースタータ前には、切換
接点X1〜Xnが挿入されていて、各過池の運
転、停止の信号に合わせて、入切され、各過流
量調節計16への設定信号を入切している。一方、
各過池は、適性過流量Q〓が決まつていて、
更に最大過許容流量、最小過許容流量が夫々
指定されている。この為第3図に示す例で示す
と、例えば2池で運転されている時の総過流量
許容範囲は、Q〓から4Q〓の値となる。この範囲内
である時は、演算器14の出力は、演算出力その
まゝの値が分配器15へ入力される。この為、第
2図のX0の切換接点は閉となつており、スロー
スタータ機能はバイパスされていることになる。
In Figure 1, the flow rate of a river 1 sent to a water treatment plant by a water intake pump 2 enters a receiving well 3,
From there, it is branched into a plurality of sedimentation basins 4 and further fed into a plurality of sedimentation basins 5. Thereafter, the water is supplied to customers via a water purification pond 6 and a water distribution pump 7. Landing well 3
The outlet flow rate Fx is measured by the processing flow rate oscillator 8,
Processing flow rate indicator 1 via processing flow rate converter 9
It is input to 0. In addition, the water level Lx of settling tank 4 is
The water level is measured by a water level transmitter 11 and inputted to a water level indicator and alarm meter 13 via a water level converter 12. outlet flow rate
The signals of Fx and water level Lx are inputted to the distributor 15 via the calculator 14 as a total overflow setting value. The values distributed therefrom are set to each pond overflow controller 16. Normally, as shown in Fig. 2, a slow starter S is inserted in front of each overflow controller 16 as a measure to eliminate excessive sand being thrown up due to sudden changes in the set value and the resulting turbidity of purified water. is being carried out. In addition, switching contacts X 1 to X n are inserted in front of the slow starter, which are turned on and off in accordance with the operation and stop signals of each overflow reservoir, and turn on and off the setting signal to each overflow controller 16. are doing. on the other hand,
Each overflow pond has a predetermined appropriate overflow Q〓,
Further, a maximum allowable flow rate and a minimum allowable flow rate are specified. Therefore, in the example shown in FIG. 3, the total overflow allowable range when operating with two ponds, for example, is a value from Q〓 to 4Q〓. When the value is within this range, the output of the arithmetic unit 14 is inputted to the distributor 15 as the value of the arithmetic output. Therefore, the switching contact X 0 in FIG. 2 is closed, and the slow starter function is bypassed.

ここで、簡単に考えて、演算器出力値aがt0
にQx1からQx2の値に変わつた時を考えると、
Qx1の流量設定時は2池での運転であつた時は、
この時点で3池運転に変更する必要がある。この
時、第4図に示すタイムチヤートに従つて1池を
運転追加する。即ちこの時、演算器14の出力a
は、切換接点X0が開になる為、動作を開始し、
スロースタータの出力bは徐々に上昇する。これ
と同時に、追加されるべき過池も、シーケンス
により浄水弁が開かれると同時に、切換接点Xn
がオンし、過流量設定値がスロースタータによ
り徐々に上昇する。
Here, if we briefly consider the time when the arithmetic unit output value a changes from the value Qx 1 to the value Qx 2 at time t 0 , we get
When setting the flow rate of Qx 1 , when operating with 2 ponds,
At this point, it is necessary to change to three-pond operation. At this time, one additional pond is operated according to the time chart shown in FIG. That is, at this time, the output a of the arithmetic unit 14
starts operation because switching contact X 0 opens,
The output b of the slow starter gradually increases. At the same time, the water purification valve to be added is also opened by the sequence, and the switching contact
is turned on, and the overflow set value is gradually increased by the slow starter.

ここで、分配器15前のスロースタータと、各
過流量調節計16前のスロースタータとの時定
数を合わせておけば、分配器15に入る変化分の
設定値は全て、追加されるべき過池の設定値と
して吸収され、他の池への外乱として現われな
い。複数値同時に変更必要な時は、設定変更値を
第4図のように一度に変更し、切換接点Xnを複
数個同時にオンにすれば良い。又、複数個変更が
必要であつても一池ずつ静かに起動をかけたい時
は、第5図に示す如く、演算器14の出力を一池
分ずつ増加し、最終的に演算器14の出力を、目
標値まで上昇させる。過池を減らす時はこの逆
を行えば良く、更に各過流量制御系で停止時に
はスロースタータを働かせず設定値を瞬間的に零
にする場合は、演算器Yの出力も同じくスロース
タータをきかせる必要が無い為、切換接点X0
オフにする動作は不必要になる。これにより、ス
ムーズな過池の運転、停止並びに過流量の設
定変更が可能となる。
Here, if the time constants of the slow starter in front of the distributor 15 and the slow starter in front of each overflow controller 16 are matched, the set value for the change entering the distributor 15 will all be equal to the overflow that should be added. It is absorbed as the set value of the pond and does not appear as a disturbance to other ponds. If it is necessary to change multiple values at the same time, change the setting change values at once as shown in FIG. 4, and turn on multiple switching contacts Xn at the same time. In addition, even if multiple changes are required, if you want to start up each cell quietly, as shown in FIG. Increase the output to the target value. To reduce the overflow, do the opposite. Furthermore, if you want to instantaneously bring the set value to zero without operating the slow starter when each overflow control system stops, the output of the calculator Y should also activate the slow starter. Since it is not necessary, the operation of turning off the switching contact X 0 becomes unnecessary. This makes it possible to smoothly operate and stop the overflow pond and change the overflow setting.

スロースタータは一般的に、積分演算又は一次
遅れ演算により実行されており、約数分のオーダ
である。
Slow starters are generally implemented by integral operations or first-order delay operations, which are on the order of a fraction of a minute.

ここで演算器、分配器、過流量調節計、スロ
ースタータ、上記の演算判断機構は、アナログ演
算器でも、マイクロコンピユータなどのデジタル
演算器でも任意である。又スロースタータ機能を
バイパスすることは、積分機能をやめることであ
り、この時同時に積分機構がリセツトされる機能
を持ち合わせていて、入力信号がそのまゝ出力信
号として出せる機構になつているものであれば、
回路は任意である。
Here, the arithmetic unit, distributor, overflow controller, slow starter, and the above-mentioned arithmetic/judgment mechanism may be any analog arithmetic unit or a digital arithmetic unit such as a microcomputer. Also, bypassing the slow starter function means discontinuing the integral function, and at the same time the integral mechanism has the function of being reset, so that the input signal can be directly output as an output signal. if there is,
The circuit is arbitrary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は浄水場における、過流量制御系統の
一例を示す図、第2図は本発明による過流量設
定回路例を示す図、第3図は過池の運転池数に
対しての過流量の関係図、第4図は本発明によ
る過流量設定変更時のタイムチヤート例を示す
図、第5図は他のタイムチヤートを示す図であ
る。 1…河川、2…取水ポンプ、3…着水井、4…
沈澱池、5…過池、6…浄水池、7…配水ポン
プ、8…処理流量発信器、9…処理流量変換器、
10…処理流量指示記録計、11…水位発信器、
12…水位変換器、13…水位指示警報計、14
…演算器、15…分配器、16…過流量調節
計、S…スロースタータ、X0〜Xn…切換接点。
Fig. 1 is a diagram showing an example of an overflow control system in a water purification plant, Fig. 2 is a diagram showing an example of an overflow setting circuit according to the present invention, and Fig. 3 is a diagram showing an example of an overflow control system according to the present invention. FIG. 4 is a diagram showing an example of a time chart when changing the overflow setting according to the present invention, and FIG. 5 is a diagram showing another time chart. 1...River, 2...Water intake pump, 3...Water landing well, 4...
Sedimentation basin, 5... Passing pond, 6... Water purification pond, 7... Water distribution pump, 8... Processing flow rate transmitter, 9... Processing flow rate converter,
10...Treatment flow rate indicator recorder, 11...Water level transmitter,
12...Water level converter, 13...Water level indicator and alarm meter, 14
...Arithmetic unit, 15...Distributor, 16...Overflow controller, S...Slow starter, X0 to Xn ...Switching contact.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の過池を有し過を行うものにおい
て、過流量に応じて前記過池の数を変更する
ようにし、かつ前記過池の数の変更は徐々に行
うようにしたことを特徴とする過池の制御方
法。
1. In a device that has a plurality of overflow ponds and performs overflow, the number of overflow ponds is changed according to the overflow amount, and the number of overflow ponds is changed gradually. How to control overwatering.
JP3866979A 1979-03-30 1979-03-30 Controlling method for filter pond Granted JPS55129119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3866979A JPS55129119A (en) 1979-03-30 1979-03-30 Controlling method for filter pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3866979A JPS55129119A (en) 1979-03-30 1979-03-30 Controlling method for filter pond

Publications (2)

Publication Number Publication Date
JPS55129119A JPS55129119A (en) 1980-10-06
JPS6329573B2 true JPS6329573B2 (en) 1988-06-14

Family

ID=12531670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3866979A Granted JPS55129119A (en) 1979-03-30 1979-03-30 Controlling method for filter pond

Country Status (1)

Country Link
JP (1) JPS55129119A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417849A (en) * 1993-02-24 1995-05-23 Henry Filters, Inc. Machine tool coolant filtering system

Also Published As

Publication number Publication date
JPS55129119A (en) 1980-10-06

Similar Documents

Publication Publication Date Title
JPS6329573B2 (en)
JPS553006A (en) Solid-liquid mixture ratio control system
JPS6234407B2 (en)
JPS5575713A (en) Controller for filtration flow rate
JPS6416994A (en) Feed water controller for nuclear reactor
JPS54119755A (en) Water receiving well inflow control method
JP2517959B2 (en) Water treatment system
JPS56115687A (en) Optimum operating method for sewage treatment system by activated sludge process
SU789419A1 (en) Device for automatic control of waste water neutralization process
JPS5791793A (en) Optimum operation of sewage treating apparatus due to activated sludge process
JPS54105689A (en) Power controller of heavy water reactor
JPS55114312A (en) Controlling method for sludge discharging facility of sedimentation basin
JPS6125912Y2 (en)
JPS54132360A (en) Method of controlling activated sludge treating process
JPS5624611A (en) Filtering discharge control device
JPS55156204A (en) Temperature controller for cooling water drain from generating plant
JPS5554076A (en) Sewage inflow quantity distribution control
JPS5759006A (en) Water level controller
JPS5663601A (en) Process control system
JPS5624610A (en) Filtered flow rate control device
SU887713A1 (en) Automated watering system with drain water utilization
JPS5529023A (en) Controlling of pump operational number
JPS55129197A (en) Sewage treating apparatus
JPS5669484A (en) Control of pressure in conduit
JPS57206831A (en) Controller for measuring discharge