JPS63294671A - Sodium-sulfur cell - Google Patents

Sodium-sulfur cell

Info

Publication number
JPS63294671A
JPS63294671A JP62130954A JP13095487A JPS63294671A JP S63294671 A JPS63294671 A JP S63294671A JP 62130954 A JP62130954 A JP 62130954A JP 13095487 A JP13095487 A JP 13095487A JP S63294671 A JPS63294671 A JP S63294671A
Authority
JP
Japan
Prior art keywords
sodium
solid electrolyte
electrolyte tube
tube
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62130954A
Other languages
Japanese (ja)
Other versions
JP2620238B2 (en
Inventor
Sadao Mori
貞夫 森
Masao Ogino
正夫 荻野
Yusuke Arai
裕介 新居
Masamune Itou
伊藤 正念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP62130954A priority Critical patent/JP2620238B2/en
Publication of JPS63294671A publication Critical patent/JPS63294671A/en
Application granted granted Critical
Publication of JP2620238B2 publication Critical patent/JP2620238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To smoothly supply sodium to the surface of a solid electrolytic tube by setting up a cylindrical sodium support, made up of wrapping the circumference of a metallic wick and its sintered body with an outer cover having conductivity, besides a lot of holes, so as to go along an inner circumference of the solid electrolytic tube. CONSTITUTION:A sodium support 6 uses a cylindrical conductive wire gauze 7 in dimensions closely insertable along the inner circumference of a solid electrolytic tube 5 as an outer cover having conductivity and a lot of holes, and it is closely formed by a stainless wick of the specified thickness compressedly formed in the inner circumferential part. The sodium support 6 is closely inserted along the inner circumference of the solid electrolytic tube 5, while the conductive gauze 7 comes into contact with the solid electrolytic tube 5, and solidum N is impregnated in the sodium support 6 at the inside. The sodium N in the sodium support 6 is decreased by discharge, but the sodium N charged in a space between the sodium support 6 and a cathode-ray tube 9 is permeated up in the sodium support 6 even if its level comes down. With this constitution, the sodium is smoothly feedable to the surface of the solid electrolytic tube.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は蓄電池として利用されるナトリウム−硫黄電池
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a sodium-sulfur battery used as a storage battery.

(従来の技術) 従来、ナトリウム−硫黄電池としては、上部に円筒状の
陰極室(以下リザーバーという)、下部に同じく円筒状
の陽極容器を配置し、同陽極容器の内側に固体電解質管
を設けた構造のものが使用されていた。そして、固体電
解質管内及びリザーバー内にステンレス製のウィックを
97%前後の空孔率で挿入し、陰掻作用物質であるナト
リウムを充填していた。
(Prior art) Conventionally, a sodium-sulfur battery has a cylindrical cathode chamber (hereinafter referred to as a reservoir) in the upper part, a cylindrical anode container in the lower part, and a solid electrolyte tube inside the anode container. A similar structure was used. A stainless steel wick with a porosity of about 97% was inserted into the solid electrolyte tube and the reservoir, and was filled with sodium, which is a scrotchial substance.

一方、陽極容器内には陽極作用物質である硫黄が陽極用
導電材としてのカーボンマットに含浸されている。そし
て、電池の放電時にはナトリウムがナトリウムイオンと
なって固体電解質管を通過して陽極室内に入り、そこで
硫黄と反応して多硫化ナトリウムを生成し、逆に充電時
には多硫化ナトリウム中のナトリウムイオンが固体電解
質管を通過して固体電解質管内へ戻る。
On the other hand, in the anode container, a carbon mat serving as a conductive material for the anode is impregnated with sulfur, which is an anode active substance. When the battery is discharged, sodium becomes sodium ions and passes through the solid electrolyte tube into the anode chamber, where it reacts with sulfur to produce sodium polysulfide. Conversely, when the battery is charged, the sodium ions in the sodium polysulfide It passes through the solid electrolyte tube and returns to the solid electrolyte tube.

(発明が解決しようとする問題点) 上記従来技術においては、ステンレス製ウィックの存在
自体及びその不均一充填が原因となって、リザーバーか
ら固体電解質管内へのナトリウムの移動がスムーズでな
い上に、ステンレス製つインクを固体電解質管内とりザ
ーバー内の全体に均一に充填しにくいことから、電池の
充放電特性が不安定になったり、個々の電池の容量のバ
ラツキが大きいという問題点があった。また、ステンレ
ス製つインクを充填するのに手間取るために電池の生産
性が劣るという問題点もあった。
(Problems to be Solved by the Invention) In the above-mentioned conventional technology, the movement of sodium from the reservoir into the solid electrolyte tube is not smooth due to the presence of the stainless steel wick itself and its uneven filling, and the stainless steel Since it is difficult to uniformly fill the entire interior of the solid electrolyte tube and reservoir with the manufactured ink, there are problems in that the charging and discharging characteristics of the battery become unstable and the capacity of individual batteries varies widely. Another problem was that the productivity of the battery was poor because it took time to fill the stainless steel ink.

発明の構成 (問題点を解決するための手段) 本発明、は上記問題点を解決するために、金属製ウィッ
ク又はその焼結体の少なくとも外周を、導電性を有し多
数の孔を有する外皮で包んでなる筒状のナトリウム保持
体を固体電解質管の内周に沿うように配置するという構
成を採用している。
Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides at least the outer periphery of a metal wick or a sintered body thereof with a conductive outer skin having a large number of holes. A structure is adopted in which a cylindrical sodium holder made of aluminum is placed along the inner periphery of the solid electrolyte tube.

(作用) 上記構成を採用したことにより、ナトリウム保持体が外
皮で包まれているので、固体電解質管の内周に沿うよう
に容易に挿入することができ、陰極作用物質であるナト
リウムはりザーバーと固体電解質管内との間に中空が形
成されているため、リザーバーから固体電解質管内にス
ムーズに移動する。また、放電末期に固体電解質管内側
のナトリウムの液面が下がっても固体電解質管の内壁と
外皮との密着性を良好に形成できるため、ウィック又は
その焼結体を浸み上がってくるナトリウムが固体電解質
管の表面に常にスムーズに供給されてナトリウムの利用
率が向上する。また、ナトリウム保持体は従来のように
固体電解質管内でウィック又はその焼結体の形状がはじ
めて形成されるのではなく、あらかじめ導電性を有し、
多数の孔を有する外皮でウィック又はその焼結体を包み
こむことにより製造するため、常に一定の多孔度で均一
な形状あものが得られる。
(Function) By adopting the above configuration, the sodium holder is wrapped in an outer skin, so it can be easily inserted along the inner circumference of the solid electrolyte tube, and the sodium holder, which is a cathode active substance, can be easily inserted into the tube. Since a hollow space is formed between the solid electrolyte and the inside of the tube, it moves smoothly from the reservoir into the solid electrolyte tube. In addition, even if the sodium level inside the solid electrolyte tube drops at the end of discharge, good adhesion can be formed between the inner wall of the solid electrolyte tube and the outer skin, so that the sodium that seeps up through the wick or its sintered body will not be absorbed. Sodium is constantly and smoothly supplied to the surface of the solid electrolyte tube, improving the utilization rate of sodium. In addition, the sodium holder is not formed in the shape of a wick or its sintered body for the first time in a solid electrolyte tube as in the past, but has conductivity in advance.
Since it is manufactured by enclosing the wick or its sintered body in a shell having a large number of holes, a uniform shape and constant porosity can always be obtained.

(実施例) 以下に本発明を具体化した一実施例を第1図〜第5図を
用いて説明する。
(Example) An example embodying the present invention will be described below with reference to FIGS. 1 to 5.

第1図に示すように、円筒状のナトリウム−硫黄電池の
下部には円筒状の陽極容器2が配設され、その底面2a
の中央部には陽極端子1が固着されている。陽極容器2
の上端部にはαアルミナ製の絶縁リング3が固着されて
いる。同′ll3mリング3の上部にはりザーバ−4が
固着されている。また、絶縁リング3の内周部には有底
円筒状のβアルミナ製の固体電解質管5が固着され、陽
極容器2内の底部まで延びている。
As shown in FIG. 1, a cylindrical anode container 2 is disposed at the bottom of the cylindrical sodium-sulfur battery, and its bottom surface 2a
An anode terminal 1 is fixed to the center of the tube. Anode container 2
An insulating ring 3 made of α-alumina is fixed to the upper end of the holder. A lever 4 is fixed to the upper part of the 3m ring 3. Further, a solid electrolyte tube 5 made of β-alumina and having a cylindrical shape with a bottom is fixed to the inner circumference of the insulating ring 3 and extends to the bottom of the anode container 2 .

同固体電解質管5の内側にはナトリウム保持体6が固体
電解質管5の内周に沿うように挿入されている。
A sodium holder 6 is inserted inside the solid electrolyte tube 5 so as to extend along the inner periphery of the solid electrolyte tube 5 .

同ナトリウム保持体6について説明すると、第2図に示
すようにナトリウム保持体6は導電性を有し多数の孔を
有する外皮として、固体電解質管5の内周に沿って密着
挿入できる寸法で円筒状に形成された導電性の金1ii
7 (ステンレス製100メツシユ金¥14)を用い、
その内周部に圧縮成形された一定の厚さのステンレス製
ウィックで成形されたナトリウム保持体6が密着された
構造を有している。なお、ナトリウム保持体6は一定形
状に成形された焼結体であってもよい。
To explain the sodium holder 6, as shown in FIG. conductive gold 1ii formed in the shape of
7 (stainless steel 100 mesh gold ¥14),
It has a structure in which a sodium holder 6 molded from a compression molded stainless steel wick having a constant thickness is tightly attached to its inner circumferential portion. Note that the sodium holder 6 may be a sintered body formed into a certain shape.

上記のように、あらかじめ成形されたナトリウム保持体
6は固体電解質管5の内周に沿って密着挿入され、ナト
リウム保持体6は固体電解質管5の内周部全体に接した
状態となる。そのような状態においては、第3図に示す
ようにナトリウム保持体6の外周に位置する導電性の金
網7が固体電解質管5に接している。
As described above, the preformed sodium holder 6 is tightly inserted along the inner periphery of the solid electrolyte tube 5, so that the sodium holder 6 is in contact with the entire inner periphery of the solid electrolyte tube 5. In such a state, the conductive wire mesh 7 located on the outer periphery of the sodium holder 6 is in contact with the solid electrolyte tube 5, as shown in FIG.

そして、第1図に示すように同ナトリウム保持体6には
、その内側に満たされたナトリウムNが含浸されている
。なお、固体電解質管5の下部にはステンレス製ウィッ
クがあらかじめ詰め込まれている。
As shown in FIG. 1, the inside of the sodium holding body 6 is impregnated with sodium N. Note that a stainless steel wick is packed in the lower part of the solid electrolyte tube 5 in advance.

一方、陽極容器2と固体電解質管5で形成される空間に
はカーボン製の陽極成型体8が充填されている。同陽極
成型体8には、陽極作用物質としての硫黄が含浸されて
いる。
On the other hand, a space formed by the anode container 2 and the solid electrolyte tube 5 is filled with an anode molded body 8 made of carbon. The anode molded body 8 is impregnated with sulfur as an anode active substance.

上記リザーバー4の上端部には上Wt4aが形成   
−され、同上蓋4aの中央部には細長い円環状の陰極管
9が固着されており、その上端部は陰極端子9aとなっ
ている。
An upper Wt4a is formed at the upper end of the reservoir 4.
An elongated annular cathode tube 9 is fixed to the center of the upper lid 4a, and the upper end thereof serves as a cathode terminal 9a.

次に上記実施例の作用・効果について説明する。Next, the functions and effects of the above embodiment will be explained.

電池の放電時にはナトリウム保持体6に含浸されたナト
リウムNがナトリウムイオンとなって固体電解質管5内
を通過して陽極成型体8内に入り、そこで硫黄と反応し
て多硫化ナトリウムが生成する。そして、電流は陽極端
子1から外部負荷を通って陰極端子9aから陰極管9へ
向って流れる。
When the battery is discharged, sodium N impregnated into the sodium holding body 6 becomes sodium ions, passes through the solid electrolyte tube 5, and enters the anode molded body 8, where it reacts with sulfur to produce sodium polysulfide. The current then flows from the anode terminal 1 through the external load and from the cathode terminal 9a to the cathode tube 9.

放電によってナトリウム保持体6中のナトリウ1Nは減
少するが、ナトリウム保持体6と陰極管9との間で形成
された空間に充填されているナトリウムNから順次補充
される。
Although the sodium 1N in the sodium holding body 6 decreases due to the discharge, the space formed between the sodium holding body 6 and the cathode tube 9 is sequentially replenished from the sodium N filled therein.

本発明においては、放電がm続してナトリウム保持体6
と陰極管9との間の空間に充填されたナトリウムNの液
面が低下しても、ナトリウム保持体6中をナトリウムN
が浸み上がり、常に固体電解質管5内壁の上部までナト
リウムNが供給されるので、放電の末期まで陰極の分極
は一定に保たれる。
In the present invention, the discharge continues for m and the sodium holder 6
Even if the liquid level of sodium N filled in the space between the
Since sodium N is always supplied to the upper part of the inner wall of the solid electrolyte tube 5, the polarization of the cathode is kept constant until the end of discharge.

一方、電池の充電時には多硫化ナトリウム中のナトリウ
ムイオンは固体電解質管5を通ってナトリウム保持体6
へ戻る。
On the other hand, when charging the battery, sodium ions in the sodium polysulfide pass through the solid electrolyte tube 5 into the sodium holding body 6.
Return to

前記導電性の金網7で包まれたナトリウム保持体6はあ
らかじめ定められた寸法で成形され、しかも固体電解質
管5と接する側に導電性の金′yJ7を配置しているの
で、固体電解質管5内にその内周に沿って容易に密着挿
入することができるのに加えて、高価なステンレス製ウ
ィックの使用量を減少させることもでき、コストダウン
が可能である。
The sodium holder 6 wrapped in the conductive wire mesh 7 is molded to have predetermined dimensions, and since the conductive gold J7 is disposed on the side in contact with the solid electrolyte tube 5, the solid electrolyte tube 5 In addition to being able to be easily and tightly inserted into the interior along the inner periphery of the wick, the amount of expensive stainless steel wicks used can be reduced, resulting in cost reduction.

また、前記のように、ナトリウムNが固体電解質管5の
内周に沿って浸み上がり、固体電解質管5の表面に常に
スムーズに供給されるので、ナトリウム保持体6と陰極
管9で形成された空間中のナトリウムNが減少したとき
もナトリウムNの浸み上がり効果があるので、固体電解
質管5が広い面積で使用可能である。
In addition, as described above, sodium N permeates along the inner circumference of the solid electrolyte tube 5 and is always smoothly supplied to the surface of the solid electrolyte tube 5, so that the sodium N is formed by the sodium holder 6 and the cathode tube 9. Even when the sodium N in the space decreases, there is an effect of the sodium N seeping up, so the solid electrolyte tube 5 can be used over a wide area.

従って、ナトリウムNの利用率が向上し、その結果電池
の容量、効率も向上するとともに、電池の容量変動が小
さく、安定した特性が得られ、また個々の電池のバラツ
キも減少する。
Therefore, the utilization rate of sodium N is improved, and as a result, the capacity and efficiency of the battery are improved, and at the same time, fluctuations in the battery capacity are small, stable characteristics are obtained, and variations among individual batteries are also reduced.

ここで上記ナトリウムNの利用率に関して述べる。Here, the utilization rate of sodium N will be described.

本実施例におけるナトリウムNの利用率を測定するため
に、次のような実験を行った。
In order to measure the utilization rate of sodium N in this example, the following experiment was conducted.

まず、上記実施例で用いたナトリウム保持体6を挿入し
た固体電解質管5の内側にナトリウムNを充填し、一方
陽極容器2と固体電解質管5で形成される空間にもナト
リウムNを充填した。そして、330℃に昇温して放電
方向に80mA/aJの電流を流した。すると、固体電
解質管5内側のナトリウムNはナトリウムイオンとなっ
て、固体電解質管5を通過して陽極容器2内へ入る0通
電は固体電解質管5内側のナトリウムNがほとんどなく
なるまで継続した。そして、分極電圧を測定し、ナトリ
ウム利用率との関係を求めた。その結果は第5図のAに
示すとおりである。
First, the inside of the solid electrolyte tube 5 into which the sodium holder 6 used in the above example was inserted was filled with sodium N, and the space formed by the anode container 2 and the solid electrolyte tube 5 was also filled with sodium N. Then, the temperature was raised to 330° C., and a current of 80 mA/aJ was passed in the discharge direction. Then, the sodium N inside the solid electrolyte tube 5 turned into sodium ions, which passed through the solid electrolyte tube 5 and entered the anode container 2. The zero energization continued until almost all the sodium N inside the solid electrolyte tube 5 disappeared. Then, the polarization voltage was measured and its relationship with the sodium utilization rate was determined. The results are shown in A of FIG.

なお、固体電解質管5内側のナトリウムNがなくなると
、利用率は100%である。
Note that when the sodium N inside the solid electrolyte tube 5 is exhausted, the utilization rate is 100%.

一方、従来の構造の電池、即ち線径8μmのステンレス
製ウィックを固体電解質管5の内側に空孔率97%で充
填したものについて、上記と同様にしてナトリウム利用
率と分極電圧の関係を求め、その結果を第5図にBとし
て併記した。
On the other hand, for a battery with a conventional structure, that is, a stainless steel wick with a wire diameter of 8 μm filled inside the solid electrolyte tube 5 with a porosity of 97%, the relationship between the sodium utilization rate and the polarization voltage was determined in the same manner as above. The results are also shown in FIG. 5 as B.

第5図かられかるように、従来の電池では固体電解質管
5内側のナトリウムNが減少するにつれて、固体電解質
管5の表面にナトリウムNが供給される面積が小さくな
るので、電気抵抗が上昇して分極電圧が太き(なり、ま
たばらつきも大きくなる。
As can be seen from FIG. 5, in conventional batteries, as the sodium N inside the solid electrolyte tube 5 decreases, the area to which sodium N is supplied to the surface of the solid electrolyte tube 5 becomes smaller, so the electrical resistance increases. As a result, the polarization voltage becomes thicker (and the variation becomes larger).

それに対して、本実施例ではナトリウムNの利用率が9
0%以上まで分極電圧が一定であり、ナトリウムNが十
分に利用されていることがわかる。
In contrast, in this example, the utilization rate of sodium N was 9
It can be seen that the polarization voltage is constant up to 0% or more, and that sodium N is sufficiently utilized.

さらに、本実施例では固体電解質管5が破損してもナト
リウム保持体6は導電性の金1ii7で固体電解質管5
側が覆われているので、−気にナトリウムNが漏洩する
ことがない、従って、ナトリウムNと硫黄が接触して一
気に反応することがないので安全である。
Furthermore, in this embodiment, even if the solid electrolyte tube 5 is damaged, the sodium holder 6 is made of conductive gold 1ii7 and the solid electrolyte tube 5 is
Since the sides are covered, there is no leakage of sodium N into the atmosphere. Therefore, it is safe because sodium N and sulfur do not come into contact and react all at once.

本発明は上記実施例に限定されず、次のように構成する
こともできる。
The present invention is not limited to the above embodiments, but can also be configured as follows.

(1)上記実施例ではナトリウム保持体6は、外周部の
みに導電性の金網7を形成したものであったが、第4図
に示すようにナトリウム保持体6の外周部に加えて内周
部にも導電性の金y47を設けることができる。
(1) In the above embodiment, the sodium holder 6 had a conductive wire mesh 7 formed only on the outer periphery, but as shown in FIG. Conductive gold Y47 can also be provided on the portion.

この場合には、ナトリウム保持体6としてのステンレス
製ウィックの保持強度が一層向上するとともに、安全性
が向上する。
In this case, the holding strength of the stainless steel wick as the sodium holding body 6 is further improved, and safety is also improved.

(2)上記実施例では、ナトリウム保持体6は底面のな
い筒状のものであったが、底面まで一体に成形されたも
のを使用することもできる。
(2) In the above embodiment, the sodium holder 6 was cylindrical without a bottom surface, but it is also possible to use one in which the bottom surface is integrally molded.

その場合には、固体電解質管5内の底部へあらかじめス
テンレス製ウィックを詰め込む必要がなく、ナトリウム
保持体6を固体電解質管5内へ挿入するだけで済む。
In that case, there is no need to fill the bottom of the solid electrolyte tube 5 with a stainless steel wick in advance, and it is sufficient to simply insert the sodium holder 6 into the solid electrolyte tube 5.

(3)導電性を有し多数の孔を有する外皮として、上記
実施例では導電性の金網を用いたが、その材質、形状、
大きさ等は特に限定されず、またナトリウム保持体6と
して、上記実施例ではステンレス製つインクを用いたが
、それについても同様に特に限定されない、これらの条
件は電池の大きさ、形状、電池容量、固体電解質管の大
きさ、形状により決定される。
(3) In the above example, a conductive wire mesh was used as the conductive outer skin having many holes, but its material, shape,
There are no particular limitations on the size, etc., and although stainless steel ink was used as the sodium holder 6 in the above embodiments, there are no particular limitations on it either. It is determined by the capacity, size and shape of the solid electrolyte tube.

発明の効果 本発明のナトリウム−硫黄電池は、全体が均一に成形さ
れたナトリウム保持体を固体電解質管内へ容易に挿入で
きるのに加えて、リザーバーと固体電解質管内との間に
中空が形成されているので、リザーバーから固体電解質
管内へナトリウムがスムーズに供給され、電池容量の変
動が小さく、安定した特性が得られるとともに、個々の
電池のバラツキが減少するという優れた効果を奏する。
Effects of the Invention In the sodium-sulfur battery of the present invention, in addition to being able to easily insert a uniformly shaped sodium carrier into the solid electrolyte tube, a hollow space is formed between the reservoir and the solid electrolyte tube. As a result, sodium is smoothly supplied from the reservoir into the solid electrolyte tube, resulting in small fluctuations in battery capacity, stable characteristics, and reduced variations among individual batteries.

また固体電解質管が破損しても安全性が確保されるのに
加えて、ナトリウム保持体をあらかじめ成形できるので
、電池の組立が容易で生産性が向上し、高価なステンレ
ス製ウィックの使用量を減少させることができるので、
コストダウンをはかることができるとともに、作業性も
大幅に改善されるという効果も奏する。
In addition to ensuring safety even if the solid electrolyte tube is damaged, the sodium holder can be formed in advance, making battery assembly easier, increasing productivity, and reducing the amount of expensive stainless steel wick used. Because it can be reduced,
Not only can costs be reduced, but workability is also significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のナトリウム−硫黄電池を示す断面図、
第2図はナトリウム保持体の斜視図、第3図はナトリウ
ム保持体と固体電解質管との関係を示す一部断面図、第
4図は本発明の別個を示すナトリウム保持体と固体電解
質管との関係を示す一部断面図、第5図はナトリウムN
の利用率と分極電圧との関係を示すグラフである。
FIG. 1 is a sectional view showing the sodium-sulfur battery of the present invention;
Fig. 2 is a perspective view of the sodium holder, Fig. 3 is a partial sectional view showing the relationship between the sodium holder and the solid electrolyte tube, and Fig. 4 is a separate view of the sodium holder and the solid electrolyte tube of the present invention. Figure 5 is a partial cross-sectional view showing the relationship between sodium N
3 is a graph showing the relationship between the utilization rate and polarization voltage.

Claims (1)

【特許請求の範囲】[Claims] 1、金属製ウイック又はその焼結体の少なくとも外周を
、導電性を有し多数の孔を有する外皮(7)で包んでな
る筒状のナトリウム保持体(6)を固体電解質管(5)
の内周に沿うように配置したことを特徴とするナトリウ
ム−硫黄電池。
1. A cylindrical sodium holder (6) formed by wrapping at least the outer periphery of a metal wick or its sintered body with a conductive outer skin (7) having a large number of holes, and a solid electrolyte tube (5)
A sodium-sulfur battery characterized by being arranged along the inner circumference of the battery.
JP62130954A 1987-05-27 1987-05-27 Sodium-sulfur battery Expired - Lifetime JP2620238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130954A JP2620238B2 (en) 1987-05-27 1987-05-27 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130954A JP2620238B2 (en) 1987-05-27 1987-05-27 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS63294671A true JPS63294671A (en) 1988-12-01
JP2620238B2 JP2620238B2 (en) 1997-06-11

Family

ID=15046521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130954A Expired - Lifetime JP2620238B2 (en) 1987-05-27 1987-05-27 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2620238B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364857A (en) * 1989-07-31 1991-03-20 Agency Of Ind Science & Technol Porous electrode structure
JPH05109432A (en) * 1991-03-11 1993-04-30 Hughes Aircraft Co Glass sealing material for sodium-sulfur battery and battery manufactured therewith
KR100294468B1 (en) * 1994-06-08 2001-10-24 남창우 Sodium-sulfur battery having multi-layered sulfur electrode
US9577297B2 (en) 2011-09-30 2017-02-21 General Electric Company Electrochemical cells including a conductive matrix

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485332A (en) * 1977-12-19 1979-07-06 Yuasa Battery Co Ltd Sodiummsulfur cell
JPS5935373A (en) * 1982-08-20 1984-02-27 Yuasa Battery Co Ltd Sodium-sulfur battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485332A (en) * 1977-12-19 1979-07-06 Yuasa Battery Co Ltd Sodiummsulfur cell
JPS5935373A (en) * 1982-08-20 1984-02-27 Yuasa Battery Co Ltd Sodium-sulfur battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364857A (en) * 1989-07-31 1991-03-20 Agency Of Ind Science & Technol Porous electrode structure
JP2673584B2 (en) * 1989-07-31 1997-11-05 工業技術院長 Method for producing porous electrode structure
JPH05109432A (en) * 1991-03-11 1993-04-30 Hughes Aircraft Co Glass sealing material for sodium-sulfur battery and battery manufactured therewith
KR100294468B1 (en) * 1994-06-08 2001-10-24 남창우 Sodium-sulfur battery having multi-layered sulfur electrode
US9577297B2 (en) 2011-09-30 2017-02-21 General Electric Company Electrochemical cells including a conductive matrix

Also Published As

Publication number Publication date
JP2620238B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US4376811A (en) Electrochemical cell
CA1300678C (en) Electrochemical cell
US3410726A (en) Electric cell with water repellant coated porous layer and method of making said layer
JPS63294671A (en) Sodium-sulfur cell
US4076902A (en) Sodium-sulfur storage battery
US4492742A (en) Electrochemical storage cell
US3048645A (en) Primary dry cell
US4004068A (en) Electrochemical cell of a rechargeable nature
US3811955A (en) High discharge rate mercury cell
US4230780A (en) Sodium-sulphur electric cell
JP2635989B2 (en) Sodium-sulfur battery
JP2612894B2 (en) Sodium-sulfur battery
JP2568622B2 (en) Sodium-sulfur battery
JP2612888B2 (en) Sodium-sulfur battery
EP0096052A4 (en) Electrochemical cell.
US4405694A (en) Electrochemical cell
GB2213311A (en) High temperature electrochemical cell
JPH01320770A (en) Lithium battery
JPS6353865A (en) Sodium-sulfur battery
JPH01221867A (en) Sodium-sulfur battery
KR0121437Y1 (en) Electric battery
JP2614262B2 (en) Sodium-sulfur battery
JPH05266921A (en) Sodium-sulfur battery
JPS594541Y2 (en) flat battery
JPH07326382A (en) Hermetically sealed button-type alkali battery