JPS63292532A - Manufacture of semiconductive electric circuit - Google Patents

Manufacture of semiconductive electric circuit

Info

Publication number
JPS63292532A
JPS63292532A JP62128851A JP12885187A JPS63292532A JP S63292532 A JPS63292532 A JP S63292532A JP 62128851 A JP62128851 A JP 62128851A JP 12885187 A JP12885187 A JP 12885187A JP S63292532 A JPS63292532 A JP S63292532A
Authority
JP
Japan
Prior art keywords
superconducting
oxide
material layer
layer
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62128851A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62128851A priority Critical patent/JPS63292532A/en
Publication of JPS63292532A publication Critical patent/JPS63292532A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture superconductive electric circuits easily and certainly by subjecting a superconductive material layer formed on a base to anode oxidation, caustification, and other necessary treatments for provision of an oxide layer, applying heat treatment for reaction of applicable elements, and by forming a electrical circuit consisting of an oxide superconductor. CONSTITUTION:A superconductive material layer 2 of multi-element alloy is formed on the base 1, wherein the alloy consists of those component elements of an oxide superconductor type except oxygen, and is subjected to anode oxidation, chemical conversion treatment, etc., to form the same oxide layer 6 as the electric circuit to be manufactured. Then it undergoes heat treatment to cause reaction of the oxygen and other elements of the oxide layer 6 with the elements of the superconductive material layer 2, and thus an electric circuit consisting of an oxide superconductor is formed. Thus electric circuit can be formed easily and certainly.

Description

【発明の詳細な説明】 U産業上の利用分野1 本発明は、超電導マグネットに使用されるシートコイル
、あるいはジョセフソン素子としてコンピュータの回路
中へ設けられたり、あるいはトランジスタのゲートとし
て用いられる電気回路等の超電導電気回路の製造方法に
関するものである。
Detailed Description of the Invention U Industrial Application Field 1 The present invention is applicable to sheet coils used in superconducting magnets, or electric circuits provided in computer circuits as Josephson elements, or used as gates of transistors. The present invention relates to a method of manufacturing a superconducting electric circuit such as the above.

[技術背景] 近時、常電導状態から超電導状態へ遷移する臨界温度(
T c)がきわめて高いL a−B a−Cu−0系、
Y−8r−Cu−0系等のいわゆるA −B −Cu−
0系(ただし、AはLa、Ce、Y、Yb、Sc等のT
IIa族元素を示し、BはSr、Ba等のアルカリ土類
金属元素を示す)の酸化物系超電導体が種々発見されて
おり、さらに、この酸化物系超電導体を基板上に回路パ
ターンとして形成した電気回路の製造が種々試みられて
いる。
[Technical background] Recently, the critical temperature at which the normal conductive state transitions to the superconducting state (
L a-B a-Cu-0 system with extremely high T c),
So-called A-B-Cu- such as Y-8r-Cu-0 series
0 series (However, A is T such as La, Ce, Y, Yb, Sc, etc.)
Various oxide-based superconductors have been discovered, and these oxide-based superconductors can be formed as circuit patterns on substrates. Various attempts have been made to manufacture such electric circuits.

[問題点を解決するための手段] 本発明は上記事情に鑑みてなされたものであって、基板
上に、酸化物系超電導体の構成元素のうち酸素を除く元
素からなる多元系合金の超電導原料層を形成し、この超
電導原料層に、陽極酸化処理、化成化処理等を施して製
造すべき電流回路と同一の酸化物層を形成し、次に熱処
理を施して酸化物層の酸素および各元素と、前記超電導
原料層の各元素を反応させて酸化物系超電導体からなる
電流回路を形成することを特徴としている。
[Means for Solving the Problems] The present invention has been made in view of the above circumstances, and includes a superconductor of a multi-component alloy consisting of elements other than oxygen among the constituent elements of an oxide superconductor on a substrate. A raw material layer is formed, and this superconducting raw material layer is subjected to anodic oxidation treatment, chemical conversion treatment, etc. to form an oxide layer that is the same as the current circuit to be manufactured, and then heat treatment is performed to remove oxygen and oxygen in the oxide layer. The method is characterized in that a current circuit made of an oxide-based superconductor is formed by reacting each element with each element of the superconducting raw material layer.

[実施例] 以下、本発明をY −B a−Cu−0系の超電導導体
を具備する超電導シートコイルの製造方法に適用した例
を図面を参照して具体的に説明する。
[Example] Hereinafter, an example in which the present invention is applied to a method for manufacturing a superconducting sheet coil including a Y-B a-Cu-0 based superconducting conductor will be specifically described with reference to the drawings.

まず、第1図(a)に示すように、所定の組成比に配合
されたY −B a−Cua元系合金からなるターゲッ
トを、Cu、Ag、Pt、Au、Pd等からなり、所定
厚さを有する正方形状の基板lの表面にスパッタ法等に
より所定厚さに被着させ、超電導原料層2を形成する。
First, as shown in FIG. 1(a), a target made of a Y-B a-Cua element alloy blended in a predetermined composition ratio is made of Cu, Ag, Pt, Au, Pd, etc. to a predetermined thickness. A superconducting raw material layer 2 is formed by depositing the superconducting material layer 2 on the surface of a square substrate 1 having a predetermined thickness by sputtering or the like to a predetermined thickness.

次に、第1図(b)に示すよう上記超電導原料層2の上
に、製造すべきシートコイルの電流回路と同一のらせん
状パターン3が切り取られたポリイミド等の高分子材料
からなる遮蔽シート4を、焼き付は等の手段により張り
付け、第1図(c)に示すような材料板5を得る。この
際、ポリイミド溶液をワニスとして、超電導層2の上に
らせん状パターン3が残るよう塗布することによって材
料板5を得るようにしてもよい。
Next, as shown in FIG. 1(b), a shielding sheet made of a polymeric material such as polyimide is placed on top of the superconducting raw material layer 2, in which a spiral pattern 3 identical to the current circuit of the sheet coil to be manufactured is cut out. 4 is attached by baking or other means to obtain a material plate 5 as shown in FIG. 1(c). At this time, the material plate 5 may be obtained by applying a polyimide solution as a varnish so that the spiral pattern 3 remains on the superconducting layer 2.

続いて、この材料板5を、NaOH、K OH。Next, this material plate 5 was treated with NaOH and KOH.

Ba0H,Ca0H等のアルカリ金属の水酸化物の水溶
液中に浸漬するとともに、この水溶液中に通電して陽極
酸化処理を行なう。これによって、材料板5表面の遮蔽
シート4に覆われていない部分、つまり遮蔽シート4の
らせん状パターン3から露出している部分に酸化物層6
が形成されろ。
It is immersed in an aqueous solution of a hydroxide of an alkali metal such as Ba0H or Ca0H, and is anodized by passing electricity through the aqueous solution. As a result, an oxide layer 6 is formed on the part of the surface of the material plate 5 that is not covered with the shielding sheet 4, that is, the part exposed from the spiral pattern 3 of the shielding sheet 4.
be formed.

この酸化物層6は、陽極酸化処理の際の電流密度と処理
時間を調節することによって所望の厚さに形成すること
ができる。なお、この酸化物層の形成は、陽極酸化処理
のみならず、クロム酸化合物等を用いた化成化処理によ
っても行なうことができる。
This oxide layer 6 can be formed to a desired thickness by adjusting the current density and treatment time during the anodic oxidation treatment. Note that this oxide layer can be formed not only by anodic oxidation treatment but also by chemical conversion treatment using a chromic acid compound or the like.

次に、上記のようにらせん状の酸化物層6が形成された
材料板5を、800〜950℃程度の温度に数時間〜1
00時間加熱する加熱処理を施す。
Next, the material plate 5 on which the spiral oxide layer 6 has been formed as described above is heated to a temperature of about 800 to 950°C for several hours to 1 hour.
Heat treatment is performed for 00 hours.

この加熱処理条件は、生成する酸化物系超電導材料の種
類により適宜設定されるが、A −B −Cu−0系の
超電導材料を生成するには700〜1100°Cに1〜
300時間加熱する条件であればよく、特に面述の範囲
が好ましい。
The conditions for this heat treatment are appropriately set depending on the type of oxide-based superconducting material to be produced, but in order to produce A-B-Cu-0-based superconducting material, the temperature is 700 to 1100°C.
Any condition may be used as long as it is heated for 300 hours, and the range described above is particularly preferred.

このような加熱処理によって、酸化物層6に含まれる酸
素と各元素が相互に拡散して超電導原料層2を構成する
元素と反応し、前記酸化物層6が形成された部分に酸化
物系超電導導体が生成され、これが電流回路となる。そ
して、基板5の周縁を削り、第1図(d)に示すような
円板状にしてシートコイル7を得る。このようなシート
コイル7を多数枚積層すれば、第1図(e)に示すよう
なマグネットコイル8となり、このマグネットコイル8
は、加速器用マグネット、超電導発電機用マグネット等
の超電導機器用に使用することができる。
Through such heat treatment, oxygen and each element contained in the oxide layer 6 mutually diffuse and react with the elements constituting the superconducting raw material layer 2, and an oxide-based material is formed in the portion where the oxide layer 6 is formed. A superconducting conductor is created, which becomes a current circuit. Then, the peripheral edge of the substrate 5 is shaved to form a disk shape as shown in FIG. 1(d) to obtain a sheet coil 7. If a large number of such sheet coils 7 are stacked, a magnet coil 8 as shown in FIG. 1(e) is obtained, and this magnet coil 8
can be used for superconducting equipment such as accelerator magnets and superconducting generator magnets.

なお、上記実施例の変形例として、超電導原料層2を形
成してから次に陽極酸化処理を施して超電導層2の表面
全体に酸化物層を形成し、この酸化物層を、硫酸や硝酸
等の強酸を電解液として用いた電解エツチング等の化学
的な方法、または、放電加工や旋盤加工等の機械加工に
よって切削することによりらせん状の酸化物層とし、そ
の後上記実施例と同様に、加熱処理を施してらせん状の
酸化物層の部分を酸化物系超電導導体とすることにより
超電導シートコイルを得る方法を実施してもよい。
As a modification of the above embodiment, after forming the superconducting raw material layer 2, an anodizing treatment is performed to form an oxide layer on the entire surface of the superconducting layer 2, and this oxide layer is treated with sulfuric acid or nitric acid. A spiral oxide layer is formed by cutting it by a chemical method such as electrolytic etching using a strong acid such as the above as an electrolyte, or by machining such as electric discharge machining or lathe machining, and then, as in the above example, A method of obtaining a superconducting sheet coil by heat-treating the helical oxide layer to convert it into an oxide-based superconducting conductor may be implemented.

以上の超電導シートコイルの製造方法によれば、容易に
かつ確実に酸化物系超電導導体からなる電流回路を形成
することができ、また、酸化物層6の形成は、加熱処理
における酸化作用によるものではなく陽極酸化処理によ
って形成するので、加熱処理の際にガス雰囲気を厳密に
制御する必要がないという利点もある。
According to the method for manufacturing a superconducting sheet coil described above, it is possible to easily and reliably form a current circuit made of oxide-based superconducting conductors, and the formation of the oxide layer 6 is due to the oxidation effect during heat treatment. Since it is formed by anodic oxidation treatment instead of a heat treatment, there is also the advantage that there is no need to strictly control the gas atmosphere during the heat treatment.

また、このようにして得られた酸化物系の超電導シート
コイル7は、液体窒素で冷却することによって超電導状
態に遷移するものであり、従来の合金系の超電導導体や
化合物系の超電導導体に比較して格段に有利な冷却条件
で使用することができる。
In addition, the oxide-based superconducting sheet coil 7 thus obtained transitions to a superconducting state by cooling with liquid nitrogen, and is compared to conventional alloy-based superconducting conductors and compound-based superconducting conductors. It can be used under extremely advantageous cooling conditions.

なお、上記実施例では、本発明をY −B a−Cu−
O系の酸化物系超電導導体を具備するノートコイルに適
用したが、Yの代わりにLa、Sc、Ce、Pr。
In addition, in the above-mentioned example, the present invention was described as Y-B a-Cu-
It was applied to a note coil equipped with an O-based oxide-based superconducting conductor, but instead of Y, La, Sc, Ce, and Pr were used.

Nd、Pm、Eu、Gd、Tb、’Dy、Ho、Er、
Tm、Yb、Lu等のl1la族元素の1種以」−1ま
た、Baの代わりに、Sr、Be、Mg、Ra等のアル
カリ土類金属元素の1種以上が用いられた酸化物系のも
のを適用してもよく、さらに、シートコイルに限らず、
ジョセフソン素子としてコンピュータの回路中へ設けら
れたり、あるいはトランジスタのゲートとして用いられ
る電気回路等に適用してもよい。
Nd, Pm, Eu, Gd, Tb, 'Dy, Ho, Er,
One or more of the l1la group elements such as Tm, Yb, Lu, etc.''-1 Also, oxide-based oxides in which one or more of the alkaline earth metal elements such as Sr, Be, Mg, and Ra are used instead of Ba. Furthermore, it is not limited to sheet coils,
It may be provided in a computer circuit as a Josephson element, or applied to an electric circuit used as a gate of a transistor.

また、上記基板Iとしては、Cu、Ag、P t、Au
Further, as the substrate I, Cu, Ag, Pt, Au
.

Pdの他に、Si、Al2O3、T iS ro 3、
あるいはS l % G a A s等を用いてもよい
。さらに、超電導原料層2を形成する方法としては、上
記スパッタ法の他に、原料粉末を加圧焼成する方法や、
蒸着法、MBE法、CVD法等によっても実施し得る。
In addition to Pd, Si, Al2O3, TiS ro 3,
Alternatively, S 1 % Ga As or the like may be used. Furthermore, as a method for forming the superconducting raw material layer 2, in addition to the above-mentioned sputtering method, a method of pressurizing and firing raw material powder,
It can also be carried out by a vapor deposition method, an MBE method, a CVD method, or the like.

[製造例] YI7原子%、Ba3′3原子%となるように、Cu−
Y−Baa元系合金を配合し、この合金を、厚さ0 、
5 mm、直径300mmのCuからなる基板の上に蒸
着させ、厚さ1μmの超電導層を形成した。次に、この
超電導層の上に、ポリイミドからなり、かつ、らせん状
のパターンが切り取られた遮蔽シートを焼き付けて基板
を得た。
[Production example] Cu-
A Y-Baa elemental alloy is blended, and this alloy is made into a material with a thickness of 0,
A superconducting layer with a thickness of 1 μm was formed by vapor deposition on a substrate made of Cu with a thickness of 5 mm and a diameter of 300 mm. Next, a shielding sheet made of polyimide with a spiral pattern cut out was baked onto this superconducting layer to obtain a substrate.

この基板に陽極酸化処理を施し、遮蔽シートが覆われて
いない前記パターンから露出している基板表面に酸化物
層を形成した。
This substrate was anodized to form an oxide layer on the surface of the substrate exposed from the pattern not covered with the shielding sheet.

陽極酸化処理の条件は、 ・処理水溶液の組成−NaOH10% ・電流密度−2A/cm’ ・処理温度および時間−60℃、10分で行なった。The conditions for anodizing treatment are: ・Composition of treated aqueous solution - NaOH 10% ・Current density -2A/cm' - Processing temperature and time: -60°C for 10 minutes.

次に、前記基板を、(800)’Cで(50)時間加熱
処理を行ない、らせん状の酸化物層の酸素を超電導層の
各元素と反応させ、らせん状の超電導体導体を生成させ
て超電導シートコイルを製造した。
Next, the substrate is heat-treated at (800)'C for (50) hours to cause oxygen in the spiral oxide layer to react with each element in the superconducting layer to generate a spiral superconductor conductor. A superconducting sheet coil was manufactured.

この超電導シートコイルの電流回路の一部を取り出し抵
抗値がゼロとなる臨界温度を測定したところ、90にと
いう優秀な値を示した。
When a part of the current circuit of this superconducting sheet coil was taken out and the critical temperature at which the resistance value becomes zero was measured, it showed an excellent value of 90.

[発明の効果] 以上説明したように、本発明の超電導電気回路の製造方
法によれば、基板上に、超電導導体からなる回路パター
ンを形成するにあたり、基板上に酸化物系超電導体の構
成元素のうち酸素を除く元素からなる多元系合金の超電
導原料層を形成し、この超電導原料層に、陽極酸化処理
、化成化処理等を施して製造すべき電流回路と同一の酸
化物層を形成して基板を得、次にこの基板に熱処理を施
して酸化物層の酸素および各元素と、前記超電導原料層
の各元素を反応させる方法であるから、容易にかつ確実
に電流回路を形成することができ、また、陽極酸化処理
等の化成処理の条件を調節することによって所望の厚さ
の超電導層を形成することができる。
[Effects of the Invention] As explained above, according to the method for manufacturing a superconducting electric circuit of the present invention, when forming a circuit pattern made of a superconducting conductor on a substrate, constituent elements of an oxide-based superconductor are formed on the substrate. A superconducting raw material layer of a multi-component alloy consisting of elements excluding oxygen is formed, and this superconducting raw material layer is subjected to anodizing treatment, chemical conversion treatment, etc. to form an oxide layer that is the same as the current circuit to be manufactured. This method enables the formation of a current circuit easily and reliably, since the method involves obtaining a substrate, and then subjecting this substrate to heat treatment to cause oxygen and each element in the oxide layer to react with each element in the superconducting raw material layer. Furthermore, a superconducting layer with a desired thickness can be formed by adjusting the conditions of chemical conversion treatment such as anodic oxidation treatment.

さらに、加熱処理における酸化作用によって酸化物層を
形成するのでなく、陽極酸化処理等によって酸化物層を
形成するので、加熱処理の際にガス雰囲気を厳密に制御
する必要がないという利点もある。
Furthermore, since the oxide layer is not formed by oxidation during heat treatment but by anodization or the like, there is also the advantage that there is no need to strictly control the gas atmosphere during heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明を説明するためのもので
、第1図(a)は超電導原料層が形成された基板の斜視
図、第1図(b)は基板および遮蔽シートの斜視図、第
1図(c)は材料板の斜視図、第1図(d)はシートコ
イルの斜視図、第1図(e)はシートコイルを用いて作
られたマグネットコイルの斜視図である。 l ・・・基板、   2・・・・・・超電導原料層、
6・・ ・酸化物層、7・・・・シートコイル。
1(a) to 1(d) are for explaining the present invention. FIG. 1(a) is a perspective view of a substrate on which a superconducting raw material layer is formed, and FIG. 1(b) is a perspective view of a substrate and a shield. FIG. 1(c) is a perspective view of a sheet, FIG. 1(c) is a perspective view of a material plate, FIG. 1(d) is a perspective view of a sheet coil, and FIG. 1(e) is a perspective view of a magnet coil made using a sheet coil. It is a diagram. l...Substrate, 2...Superconducting raw material layer,
6... Oxide layer, 7... Sheet coil.

Claims (1)

【特許請求の範囲】[Claims] 基板上に、酸化物系超電導体の構成元素のうち酸素を除
く元素からなる多元系合金の超電導原料層を形成し、こ
の超電導原料層に、陽極酸化処理、化成化処理等を施し
て製造すべき電流回路と同一の酸化物層を形成し、次に
熱処理を施して酸化物層の酸素および各元素と、前記超
電導原料層の各元素を反応させて酸化物系超電導体から
なる電流回路を形成することを特徴とする超電導電気回
路の製造方法。
A superconducting raw material layer of a multi-component alloy consisting of constituent elements of an oxide superconductor excluding oxygen is formed on a substrate, and this superconducting raw material layer is subjected to anodizing treatment, chemical conversion treatment, etc. to produce the superconducting material. The same oxide layer as the current circuit is formed, and then heat treatment is performed to react the oxygen and each element in the oxide layer with each element in the superconducting raw material layer to form a current circuit made of an oxide-based superconductor. A method for manufacturing a superconducting electric circuit, comprising: forming a superconducting electric circuit.
JP62128851A 1987-05-26 1987-05-26 Manufacture of semiconductive electric circuit Pending JPS63292532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128851A JPS63292532A (en) 1987-05-26 1987-05-26 Manufacture of semiconductive electric circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128851A JPS63292532A (en) 1987-05-26 1987-05-26 Manufacture of semiconductive electric circuit

Publications (1)

Publication Number Publication Date
JPS63292532A true JPS63292532A (en) 1988-11-29

Family

ID=14994946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128851A Pending JPS63292532A (en) 1987-05-26 1987-05-26 Manufacture of semiconductive electric circuit

Country Status (1)

Country Link
JP (1) JPS63292532A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137408A (en) * 1990-09-28 1992-05-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive wire material and coil using the material
US5116810A (en) * 1989-10-16 1992-05-26 American Superconductor Corporation Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116810A (en) * 1989-10-16 1992-05-26 American Superconductor Corporation Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby
US5321003A (en) * 1989-10-16 1994-06-14 American Superconductor Corporation Connection between high temperature superconductors and superconductor precursors
JPH04137408A (en) * 1990-09-28 1992-05-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive wire material and coil using the material

Similar Documents

Publication Publication Date Title
EP0414819B1 (en) Method of forming crystallite-oriented superconducting ceramics by electrodeposition and thin film superconducting ceramic made thereby
AU604827B2 (en) New superconductive compounds of the k2nif4 structural type having a high transition temperature, and method for fabricating same
JPH03504713A (en) Fabrication of superconducting thin films
JPS63292532A (en) Manufacture of semiconductive electric circuit
US6332967B1 (en) Electro-deposition of superconductor oxide films
US5550104A (en) Electrodeposition process for forming superconducting ceramics
JPS63304678A (en) Manufacture of oxide superconducting circuit
JPS63292606A (en) Manufacture of superconductive sheet coil
JP2595274B2 (en) Method of forming oxide-based superconductor layer
JPS63244526A (en) Manufacture of compound superconductive wire
JP2585624B2 (en) Superconducting coil fabrication method
JPH01261204A (en) Production of oxide based superconductor
JPH01256107A (en) Manufacture of oxide superconducting coil
JP2645490B2 (en) How to make superconducting material
JP2592842B2 (en) Method for manufacturing compound superconducting wire
JPH02102123A (en) Production of superconductor
JPH01169981A (en) Manufacture of superconducting thin-film
JP2019125436A (en) Oxide superconducting wire
KR100512474B1 (en) Ceramic coating solution and the mathod for superconductivity wire
JPH06120575A (en) Manufacture of superconductive circuit
JPH06287100A (en) Formation of thin oxide superconducting film containing rare earth element
JPH0453817B2 (en)
JPS63269413A (en) Superconductive member and its manufacture
JPH05132303A (en) Production of superconducting film
JPH084199B2 (en) Superconducting magnetic shield