JPS6328842B2 - - Google Patents

Info

Publication number
JPS6328842B2
JPS6328842B2 JP14298281A JP14298281A JPS6328842B2 JP S6328842 B2 JPS6328842 B2 JP S6328842B2 JP 14298281 A JP14298281 A JP 14298281A JP 14298281 A JP14298281 A JP 14298281A JP S6328842 B2 JPS6328842 B2 JP S6328842B2
Authority
JP
Japan
Prior art keywords
hydroxide ions
metal hydroxide
artificial
polynuclear metal
swellable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14298281A
Other languages
Japanese (ja)
Other versions
JPS5845107A (en
Inventor
Kunio Ootsuka
Mikya Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP14298281A priority Critical patent/JPS5845107A/en
Publication of JPS5845107A publication Critical patent/JPS5845107A/en
Publication of JPS6328842B2 publication Critical patent/JPS6328842B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ゴム、プラスチツクス、塗料等の充
填剤として適する層状の疎水性無機化合物および
その合成方法に関する。 〔従来の技術〕 従来、この種の充填剤は親水性であるため、有
機物との親和力が低い。すなわち一般に無機素材
は大きな表面エネルギを有し有機物やガスをよく
吸着する特性がある反面、親水性表面をもつもの
が多く、吸着水によつて無機素材の表面酸性や材
料強度が大きく変化する。 したがつて、有機物の充填剤として用いる場合
のように、有機系と無機系との複合に際しては、
ぬれ性の向上と製品の劣化防止の面から水分の除
去は非常に大切であり、無機素材の親油化疎水化
などの改質処理が必要となる。 このため、従来は無機素材に界面活性剤を用い
て表面処理を施し、疎水性を付与する方法が広く
採られていた。 〔発明が解決しようとする問題点〕 しかし、この方法は耐熱性が要求される分野に
おいては、使用時に界面活性剤が酸化もしくは燃
焼して付与した疎水性が消失してしまうため、使
用できない欠点があつた。 本発明者らは、人工フツ素雲母系鉱物の研究を
重ねていく過程で、上記要望を充足しかつ上記欠
点を解消する新規な物質を得るに至つた。 本発明は、疎水性が高く、数Å〜数10Åの均質
な細孔を有し、有機物との新和力が高く、しかも
用途の広い層状の疎水性無機化合物およびその合
成方法を提供することを目的とする。 〔問題点を解決するための手段〕 本発明の第一の特徴は、雲母群、バーミキユラ
イト群、またはスメクタイトの中から選ばれた膨
潤性人工フツ素雲母系鉱物の層状構造をホスト層
とし、このホスト層の層間にゲストとして多核金
属水酸化イオンが脱水された形態である金属酸化
物の架橋からなる細孔構造が形成された疎水性無
機化合物にある。 また本発明の第二の特徴は、雲母群、バーミキ
ユライト群、またはスメクタイトの中から選ばれ
た膨潤性人工フツ素雲母系鉱物の層間カチオンの
一部または全部を多核金属水酸化イオンで置換し
て上記鉱物の層間にゲスト相として上記多核金属
水酸化イオンを挿入した層間化合物を合成し、こ
の層間化合物を加熱してゲスト相の多核金属水酸
化イオンを脱水させて上記鉱物の層間に金属酸化
物の架橋からなる細孔構造を形成させる疎水性無
機化合物の合成方法にある。 なお、上記膨潤性人工フツ素雲母系鉱物の層間
カチオンの多核金属水酸化イオンによるイオンの
置換率は70%以上であることが好ましい。 また上記加熱脱水処理温度は500℃〜900℃であ
ることが好ましい。 〔作用〕 一般に人工フツ素雲母系鉱物は、天然雲母中の
水酸基(OH)をフツ素(F)で置換して得られ、結
晶構造が層状構造をなすものである。本発明は、
人工フツ素雲母系鉱物のうち、上記層状構造をホ
スト層とし、このホスト層の層間にゲストとして
水分子のみならず、極性有機分子等を取込んで膨
潤する膨潤性人工フツ素雲母系鉱物に係るもので
ある。 この膨潤性人工フツ素雲母系鉱物の一般式は、 W1〜1/3(X、Y)2.5〜3(Z4O10)F2 で表される。 ここで、 W:配位数12の陽イオン XおよびY:配位数6の陽イオン Z:配位数4の陽イオン である。これらのW、X、Y、Zは同型置換によ
り多種の膨潤性人工フツ素雲母系鉱物が合成でき
る。 特にこの膨潤性人工フツ素雲母系鉱物の層間カ
チオンである12配位のWi(i=1〜1/3)が、 (イ) i=1 すなわちWが1価の層電荷のK、
Na、Li等のうちいずれかである場合には「雲
母群」、 (ロ) i=2/3 すなわちWが2/3価の層電荷のK2/3
Na2/3、Li2/3等のうちのいずれかである場合に
は「バーミキユライト群」、 (ハ) i=1/3 すなわちWが1/3価の層電荷のK1/3
Na1/3、Li1/3等のいずれかである場合にはモン
ロリロナイト、バイデライト、ノントロナイト
等の「スメクタイト」 の形態をそれぞれとることが知られている。 この膨潤性人工フツ素雲母系鉱物のうちの多く
のものは、水中に投入すると層間に水分子が侵入
し層間間隔が拡大するため、水中で鉱物結晶の劈
開を起こし、鱗片状の超微粒子となる、いわゆる
自由膨潤現象を示す。 本発明は上記各種の膨潤性人工フツ素雲母系鉱
物の層間カチオンを多核金属水酸化イオンにより
置換して層間化合物(インタカレーシヨン化合
物)を合成し、この層間化合物を加熱脱水して上
記鉱物の層間に金属酸化物からなる架橋を形成
し、数Å〜数10Åの均質な疎水性を示す細孔を有
する疎水性無機化合物を得るものである。 すなわち、膨潤性人工フツ素雲母系鉱物の層間
カチオンを多核金属水酸化イオンで置換すると、
その層間に多核金属水酸化イオンが柱状のゲスト
相として配位し、この層間が多核金属水酸化イオ
ンのイオン半径の大きさに従つて開き、層間化合
物が合成される。この層間化合物を常圧または必
要あれば加圧もしくは減圧下で加熱すると、ゲス
トの多核金属水酸化イオンが脱水して、層間のゲ
スト相は酸化物の組成となる。しかし層間のゲス
ト相は酸化物の組成となるが、この加熱処理の後
も、上記柱状構造は形骸構造として残り、高比表
面積の数Å〜数10Åの均質な細孔を有する多孔質
物が得られる。 上記多核金属水酸化イオンとしては、多核水酸
化アルミニウムイオン〔Al6(OH)126+、多核水
酸化ジルコニウムイオン〔Zr4(OH)88+、多核水
酸化ビスマスイオン〔Bi6(OH)126+等が挙げら
れる。 したがつて層間が多核金属水酸化イオンによつ
て開かれる層間距離は、それぞれのイオン半径に
ほぼ等しく、多核水酸化アルミニウムイオンでは
約8.8Å、多核水酸化ジルコニウムイオンでは約
8.4Å、および多核水酸化ビスマスイオンでは約
7.4Åとなる。 この膨潤性人工フツ素雲母系鉱物の層間カチオ
ンを多核金属水酸化イオンで置換するには、イオ
ンの置換率が70%以上となるように行うことがよ
い。この置換は通常常温常圧下で、また必要があ
れば減圧もしくは加圧下で行われる。また置換率
が70%以上になる時間は、上記鉱物の層間カチオ
ンもしくは層間距離、または多核金属水酸化イオ
ンのイオン半径等により異なり、最低数時間から
最高数十日間の範囲で選定される。 このイオンの置換率を70%以上にする理由は、
70%未満の場合には、層間に配位した多核金属水
酸化イオンは加熱により脱水して酸化物組成の化
合物となるが、形骸構造として存在した柱状相が
その柱状数が少ないため安定に存在することがで
きず崩壊してしまうからである。 またこのための加熱脱水処理温度は、500℃〜
900℃の常圧下または必要あれば減圧もしくは加
圧下で行うことがよい。 この加熱脱水処理温度を500℃〜900℃にする理
由は、500℃未満の場合には、多核金属水酸化イ
オンの脱水が十分行われず、柱状のゲスト相が酸
化物組成になりにくく、900℃を越える場合には、
層状構造であるホスト層が崩壊して細孔が消失す
る。例えば雲母群の膨潤性人工フツ素雲母系鉱物
であるNaMg2.5(Si4O10)F2を900℃を越えて加熱
すると、この鉱物はマグネシオ・フルオ・リヒテ
ライト(magnesio−fluor−Richterite)
NaMgF2(Si4O112およびエンスタタイト
(Enstatite)MgSiO3に分解し、細孔が消失する。 この柱状のゲスト相が酸化物の組成となり、柱
状相が安定な形骸構造として残つた高比表面積の
細孔構造の多孔質物は、優れた疎水性を示す。こ
れは膨潤性人工フツ素雲母系鉱物自体は層間に存
在するカチオンが水和し易く、水に浸漬したとき
に水を層間に吸着する親水性であり、また層間カ
チオンが置換されて合成された多核金属水酸化イ
オンの層間化合物も多核金属水酸化イオンが水酸
基を含み、しかもイオン結合のため親水性を示す
のに対し、本発明で得られる多孔物質は、多核金
属水酸化イオンが500℃〜900℃の温度で加熱して
脱水され、酸化物の組成になつていること、およ
び結合様式がイオン結合から共有結合へと変化し
たことにより疎水性を示すものと考えられる。 このため有機系と無機系との複合に際しては、
本発明で得られる多孔物質の層状無機化合物は水
分が除去され、親油化疎水化の無機素材となる。 なお、一般に多核金属水酸化イオンは一般にど
んな金属塩の加水分解によつても容易に生成され
るもので、その反応式は一般に、 zMen++yH2O=Mez(OH)y(nz-y)++yH+ で表され、多核金属水酸化イオンの化学式は上述
の式のMez(OH)y(nz-y)+に示されるものである。
その構造は必ずしも厳密には決定することが困難
であるが上述に挙げた3つの多核金属水酸化イオ
ンはその構造が決定されているものである。一般
に、多核金属水酸化イオンであれば、イオン交換
により本発明疎水性無機化合物を得ることは可能
である。 〔発明の効果〕 以上述べたように、本発明によれば、膨潤性人
工フツ素雲母系鉱物の層状構造のホスト層間にゲ
ストとして金属酸化物の架橋からなる細孔構造を
形成することにより、数Å〜数10Åの均質な細孔
を多数有する層状の疎水性無機化合物が得られ
る。 この層状の疎水性無機化合物をゴム、プラスチ
ツクス、塗料の充填剤として利用すれば有機物と
の親和力が高いため、ゴム、プラスチツクス、塗
料等への分散が容易となる優れた効果がある。 また疎水性無機化合物が多数の細孔を有するこ
とから上記充填剤に限らず、触媒、触媒担体、ク
ロマトグラフイ用担体等の用途が考えられ、さら
に疎水性を利用して有機質−水系分離剤、酵素等
有機質担体等の用途が考えられる。 〔実施例〕 以下本発明の態様を明確にするために、実施例
を示してさらに具体的に説明するが、ここに示す
例はあくまでも一例であつてこれにより本発明の
範囲を限定するものではない。 実施例 1 雲母群の膨潤性人工フツ素雲母系鉱物である
NaMg2.5(Si4O10)F2の層間イオンであるNaイオ
ンを常温常圧下で多核水酸化アルミニウムイオン
〔Al6(OH)126+で置換させ、種々の置換率の層間
化合物を合成した。この層間化合物は化学分析お
よび示差熱分析により層間に多核水酸化アルミニ
ウムイオンが配位していることが判明した。また
その層間距離をX線回折により測定すると、イオ
ンを置換する前に比べて層間が約9Åだけ大きく
開かれていることが認められた。 この種々の置換率で合成された層間化合物を常
圧下で500℃1時間加熱処理したときのX線回折
による開かれた層間距離を第1表に示す。またこ
のときの窒素吸着法による多孔質物の比表面積の
値を第2表に示す。第1表および第2表から、イ
オンの置換率が70%未満の場合には、加熱により
多核水酸化アルミニウムイオンが脱水して形成し
た酸化物の柱状相の崩壊が推察された。またイオ
ンの置換率が70%以上の場合には、上記酸化物の
柱状相が形骸構造としてそのまま安定に存在し、
層間距離は9Åだけ大きく開かれたまま保持さ
れ、多孔質物質が得られることが判つた。
[Industrial Application Field] The present invention relates to a layered hydrophobic inorganic compound suitable as a filler for rubbers, plastics, paints, etc., and a method for synthesizing the same. [Prior Art] Conventionally, this type of filler is hydrophilic and therefore has low affinity with organic substances. In other words, inorganic materials generally have a large surface energy and have the property of adsorbing organic substances and gases well, but on the other hand, many have hydrophilic surfaces, and the surface acidity and material strength of the inorganic material change greatly depending on the adsorbed water. Therefore, when combining organic and inorganic materials, such as when used as an organic filler,
Removal of water is very important from the perspective of improving wettability and preventing product deterioration, and it is necessary to modify the inorganic material by making it lipophilic and hydrophobic. For this reason, in the past, a method of surface-treating an inorganic material using a surfactant to impart hydrophobicity has been widely adopted. [Problems to be solved by the invention] However, this method has the disadvantage that it cannot be used in fields where heat resistance is required because the surfactant oxidizes or burns during use and loses its hydrophobicity. It was hot. In the course of repeated research on artificial fluorinated mica minerals, the present inventors have obtained a novel substance that satisfies the above requirements and eliminates the above drawbacks. The present invention provides a layered hydrophobic inorganic compound that is highly hydrophobic, has homogeneous pores of several angstroms to several tens of angstroms, has high affinity with organic substances, and has a wide range of uses, and a method for synthesizing the same. With the goal. [Means for Solving the Problems] The first feature of the present invention is that the layered structure of a swellable artificial fluorinated mica mineral selected from the mica group, vermiculite group, or smectite is used as the host layer. , is a hydrophobic inorganic compound in which a pore structure consisting of crosslinks of metal oxides in the form of dehydrated polynuclear metal hydroxide ions as guests is formed between the layers of this host layer. The second feature of the present invention is that part or all of the interlayer cations of the swellable artificial fluorinated mica mineral selected from the mica group, vermiculite group, or smectite are replaced with polynuclear metal hydroxide ions. Then, an intercalation compound is synthesized in which the polynuclear metal hydroxide ion is inserted as a guest phase between the layers of the mineral, and this intercalation compound is heated to dehydrate the polynuclear metal hydroxide ion in the guest phase to form a metal between the layers of the mineral. A method for synthesizing a hydrophobic inorganic compound that forms a pore structure consisting of oxide crosslinks. The ion substitution rate of the interlayer cations of the swellable artificial fluorinated mica mineral by polynuclear metal hydroxide ions is preferably 70% or more. Moreover, it is preferable that the heating dehydration treatment temperature is 500°C to 900°C. [Operation] Artificial fluorine mica minerals are generally obtained by replacing the hydroxyl groups (OH) in natural mica with fluorine (F), and have a layered crystal structure. The present invention
Among artificial fluorinated mica-based minerals, the above-mentioned layered structure is used as a host layer, and the swellable artificial fluorinated mica-based mineral takes in not only water molecules but also polar organic molecules as guests between the layers of this host layer and swells. This is related. The general formula of this swellable artificial fluorinated mica mineral is represented by W 1-1/3 (X, Y) 2.5-3 (Z 4 O 10 ) F 2 . Here, W: a cation with a coordination number of 12, X and Y: a cation with a coordination number of 6, and Z: a cation with a coordination number of 4. By isomorphic substitution of these W, X, Y, and Z, various types of swellable artificial fluorinated mica minerals can be synthesized. In particular, the 12-coordinated W i (i = 1 to 1/3), which is the interlayer cation of this swellable artificial fluorinated mica-based mineral, is (a) K of the layer charge where i = 1, that is, W is monovalent,
If it is either Na, Li, etc., it is a "mica group", (b) i = 2/3, that is, K 2/3 of the layer charge where W is 2/3 valent.
If it is either Na 2/3 , Li 2/3, etc., it is a "vermiculite group", (c) i = 1/3, that is, K 1/3 of the layer charge where W is 1/3 valent.
It is known that when it is either Na 1/3 or Li 1/3 , it takes the form of "smectite" such as montrolilonite, beidellite, and nontronite, respectively. When many of these swellable artificial fluorinated mica minerals are put into water, water molecules invade between the layers and the interlayer spacing expands, causing the mineral crystals to cleave in the water, forming scale-like ultrafine particles. This shows the so-called free swelling phenomenon. The present invention involves replacing the intercalation cations of the various swellable artificial fluorinated mica minerals with polynuclear metal hydroxide ions to synthesize an intercalation compound (intercalation compound), and heating and dehydrating this intercalation compound to produce the above-mentioned minerals. A crosslink made of metal oxide is formed between the layers to obtain a hydrophobic inorganic compound having pores of several angstroms to several tens of angstroms and exhibiting homogeneous hydrophobicity. That is, when the interlayer cations of the swellable artificial fluorinated mica mineral are replaced with polynuclear metal hydroxide ions,
Polynuclear metal hydroxide ions are coordinated between the layers as a columnar guest phase, and the interlayers open according to the size of the ionic radius of the polynuclear metal hydroxide ions, thereby synthesizing an interlayer compound. When this intercalation compound is heated under normal pressure or, if necessary, increased pressure or reduced pressure, the polynuclear metal hydroxide ions of the guest are dehydrated, and the intercalated guest phase has an oxide composition. However, the guest phase between the layers has an oxide composition, but even after this heat treatment, the columnar structure remains as a skeleton structure, resulting in a porous material with a high specific surface area and homogeneous pores of several angstroms to several tens of angstroms. It will be done. The polynuclear metal hydroxide ions include polynuclear aluminum hydroxide ion [Al 6 (OH) 12 ] 6+ , polynuclear zirconium hydroxide ion [Zr 4 (OH) 8 ] 8+ , polynuclear bismuth hydroxide ion [Bi 6 ( OH) 12 ] 6+ etc. Therefore, the interlayer distance opened by polynuclear metal hydroxide ions is approximately equal to the radius of each ion, approximately 8.8 Å for polynuclear aluminum hydroxide ions, and approximately 8.8 Å for polynuclear zirconium hydroxide ions.
8.4 Å, and for polynuclear bismuth hydroxide ions ca.
It becomes 7.4Å. In order to replace the interlayer cations of this swellable artificial fluorinated mica mineral with polynuclear metal hydroxide ions, it is preferable to perform the replacement so that the ion replacement rate is 70% or more. This substitution is usually carried out at room temperature and pressure, and if necessary, under reduced pressure or increased pressure. Further, the time for the substitution rate to reach 70% or more varies depending on the interlayer cations or interlayer distances of the minerals, the ionic radius of the polynuclear metal hydroxide ions, etc., and is selected from a minimum of several hours to a maximum of several tens of days. The reason for making this ion substitution rate over 70% is
If it is less than 70%, the polynuclear metal hydroxide ions coordinated between the layers will be dehydrated by heating and become a compound with an oxide composition, but the columnar phase that existed as a skeleton structure will stably exist because the number of columns is small. This is because it cannot be done and collapses. In addition, the heating dehydration treatment temperature for this purpose is 500℃~
It is preferable to carry out the reaction at 900° C. under normal pressure or, if necessary, under reduced pressure or increased pressure. The reason why this heating dehydration treatment temperature is set to 500°C to 900°C is that if the temperature is lower than 500°C, the polynuclear metal hydroxide ions will not be sufficiently dehydrated and the columnar guest phase will not easily have an oxide composition. If it exceeds
The host layer, which has a layered structure, collapses and the pores disappear. For example, when NaMg 2.5 (Si 4 O 10 ) F 2 , a swelling artificial fluorinated mica-based mineral of the mica group, is heated above 900°C, this mineral becomes magnesio-fluor-Richterite.
It decomposes into NaMgF 2 (Si 4 O 11 ) 2 and enstatite MgSiO 3 and the pores disappear. This columnar guest phase has an oxide composition, and a porous material with a high specific surface area and a pore structure in which the columnar phase remains as a stable skeleton structure exhibits excellent hydrophobicity. This is because the cations present between the layers of the swellable artificial fluorinated mica mineral itself are easily hydrated and are hydrophilic, adsorbing water between the layers when immersed in water, and the cations between the layers are replaced. The intercalation compound of polynuclear metal hydroxide ions also contains hydroxyl groups, and exhibits hydrophilicity due to ionic bonding, whereas the porous material obtained by the present invention has polynuclear metal hydroxide ions that can be heated at temperatures of 500°C to It is thought that it exhibits hydrophobicity because it has been dehydrated by heating at a temperature of 900°C, resulting in an oxide composition, and because the bonding mode has changed from ionic bonds to covalent bonds. Therefore, when combining organic and inorganic systems,
Water is removed from the layered inorganic compound of the porous material obtained in the present invention, and it becomes a lipophilic and hydrophobic inorganic material. In general, polynuclear metal hydroxide ions are easily generated by hydrolysis of any metal salt, and the reaction formula is generally zMe n+ +yH 2 O=Mez(OH)y (nz-y) It is represented by + +yH + , and the chemical formula of the polynuclear metal hydroxide ion is shown in the above formula Mez(OH)y (nz-y)+ .
Although it is difficult to determine the structure exactly, the structures of the three polynuclear metal hydroxide ions mentioned above have been determined. Generally, it is possible to obtain the hydrophobic inorganic compound of the present invention by ion exchange if it is a polynuclear metal hydroxide ion. [Effects of the Invention] As described above, according to the present invention, by forming a pore structure consisting of crosslinks of metal oxide as a guest between the host layers of the layered structure of the swellable artificial fluorinated mica mineral, A layered hydrophobic inorganic compound having many homogeneous pores of several angstroms to several tens of angstroms in size is obtained. When this layered hydrophobic inorganic compound is used as a filler for rubber, plastics, paints, etc., it has a high affinity with organic substances, and has the excellent effect of facilitating dispersion into rubbers, plastics, paints, etc. Furthermore, since hydrophobic inorganic compounds have a large number of pores, they can be used not only as the above-mentioned fillers but also as catalysts, catalyst supports, chromatography supports, etc. Furthermore, they can be used as organic-aqueous separation agents by utilizing their hydrophobicity. Possible uses include organic carriers for enzymes, etc. [Examples] In order to clarify the aspects of the present invention, Examples will be shown and explained in more detail below, but the examples shown here are merely examples and are not intended to limit the scope of the present invention. do not have. Example 1 Swellable artificial fluorine mica mineral of the mica group
Na ions, which are intercalated ions of NaMg 2.5 (Si 4 O 10 ) F 2 , are replaced with polynuclear aluminum hydroxide ions [Al 6 (OH) 12 ] 6+ at room temperature and normal pressure to synthesize intercalated compounds with various substitution ratios. did. Chemical analysis and differential thermal analysis revealed that polynuclear aluminum hydroxide ions were coordinated between the layers of this interlayer compound. Furthermore, when the interlayer distance was measured by X-ray diffraction, it was found that the interlayer distance was widened by about 9 Å compared to before the ion substitution. Table 1 shows the interlayer distances opened by X-ray diffraction when the interlayer compounds synthesized with various substitution ratios were heat-treated at 500° C. for 1 hour under normal pressure. Further, Table 2 shows the values of the specific surface area of the porous material obtained by the nitrogen adsorption method. From Tables 1 and 2, it was inferred that when the ion substitution rate was less than 70%, the oxide columnar phase formed by dehydration of polynuclear aluminum hydroxide ions due to heating collapsed. In addition, when the ion substitution rate is 70% or more, the columnar phase of the above oxide exists stably as a skeleton structure,
It was found that the interlayer distance remained wide open by 9 Å, resulting in a porous material.

【表】【table】

〔用途〕[Application]

このように疎水性に優れた多孔質の無機物質
は、プラスチツクスへのなじみが極めて良好であ
り、単なる充填剤としての効果のみならず、ガラ
ス転移点の上昇で認められるように、耐熱温度の
上昇、さらに多数の細孔による保温保冷却効果、
極めて広範囲の用途に利用できる。
Porous inorganic substances with excellent hydrophobicity are extremely compatible with plastics, and are not only effective as fillers, but also have a high heat resistance temperature, as evidenced by an increase in the glass transition point. In addition, the heat retention and cooling effect due to the large number of pores increases.
Can be used for an extremely wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明実施例化合物の水および有機物の吸
着等温線図。
The figure is an isotherm diagram of adsorption of water and organic matter for compounds of examples of the present invention.

Claims (1)

【特許請求の範囲】 1 雲母群、バーミキユライト群、またはスメク
タイトの中から選ばれた膨潤性人工フツ素雲母系
鉱物の層状構造をホスト層とし、このホスト層の
層間にゲストとして多核金属水酸化イオンの脱水
された形態である金属酸化物の架橋からなる細孔
構造が形成された疎水性無機化合物。 2 雲母群、バーミキユライト群、またはスメク
タイトの中から選ばれた膨潤性人工フツ素雲母系
鉱物の層間カチオンの一部または全部を多核金属
水酸化イオンで置換して上記鉱物の層間にゲスト
相として上記多核金属水酸化イオンを挿入した層
間化合物を合成し、この層間化合物を加熱してゲ
スト相の多核金属水酸化イオンを脱水させて上記
鉱物の層間に金属酸化物の架橋からなる細孔構造
を形成させる疎水性無機化合物の合成方法。 3 膨潤性人工フツ素雲母系鉱物の層間カチオン
の多核金属水酸化イオンによるイオンの置換率が
70%以上である特許請求の範囲第2項記載の疎水
性無機化合物の合成方法。 4 加熱脱水処理温度が500℃〜900℃である特許
請求の範囲第2項または第3項記載の疎水性無機
化合物の合成方法。
[Claims] 1. A layered structure of a swellable artificial fluorinated mica mineral selected from the mica group, vermiculite group, or smectite is used as a host layer, and polynuclear metal water is present as a guest between the layers of this host layer. A hydrophobic inorganic compound with a pore structure formed by crosslinks of metal oxides, which are dehydrated forms of oxide ions. 2 Part or all of the interlayer cations of a swellable artificial fluorinated mica mineral selected from the mica group, vermiculite group, or smectite are replaced with polynuclear metal hydroxide ions to create a guest phase between the layers of the mineral. An intercalation compound into which the polynuclear metal hydroxide ions are inserted is synthesized, and this intercalation compound is heated to dehydrate the polynuclear metal hydroxide ions in the guest phase to create a pore structure consisting of crosslinks of metal oxides between the mineral layers. A method for synthesizing hydrophobic inorganic compounds that form. 3. Ion substitution rate of interlayer cations of swellable artificial fluorinated mica minerals by polynuclear metal hydroxide ions
A method for synthesizing a hydrophobic inorganic compound according to claim 2, wherein the hydrophobic inorganic compound is 70% or more. 4. The method for synthesizing a hydrophobic inorganic compound according to claim 2 or 3, wherein the heating dehydration treatment temperature is 500°C to 900°C.
JP14298281A 1981-09-09 1981-09-09 Laminar inorganic compound and its synthesizing method Granted JPS5845107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14298281A JPS5845107A (en) 1981-09-09 1981-09-09 Laminar inorganic compound and its synthesizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14298281A JPS5845107A (en) 1981-09-09 1981-09-09 Laminar inorganic compound and its synthesizing method

Publications (2)

Publication Number Publication Date
JPS5845107A JPS5845107A (en) 1983-03-16
JPS6328842B2 true JPS6328842B2 (en) 1988-06-10

Family

ID=15328171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14298281A Granted JPS5845107A (en) 1981-09-09 1981-09-09 Laminar inorganic compound and its synthesizing method

Country Status (1)

Country Link
JP (1) JPS5845107A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164506A (en) * 1984-09-05 1986-04-02 Nissan Motor Co Ltd Strut type suspension
JP2656778B2 (en) * 1986-06-26 1997-09-24 モービル・オイル・コーポレイション Layered metal oxides containing interlayer oxides and their synthesis
WO1988005453A1 (en) * 1987-01-26 1988-07-28 Shiseido Company Ltd. Synthetic mica powder, process for its production, and cosmetics containing said synthetic mica powder
US5436372A (en) * 1991-04-09 1995-07-25 Nippon Soken, Inc. Solid state displacement elements
US5414042A (en) * 1992-12-29 1995-05-09 Unitika Ltd. Reinforced polyamide resin composition and process for producing the same
JPH08120099A (en) * 1994-10-27 1996-05-14 Unitika Ltd Polyamide film and its preparation
JP4716556B2 (en) * 2000-11-20 2011-07-06 本田技研工業株式会社 Mounting structure of hydraulic shock absorber in vehicle suspension

Also Published As

Publication number Publication date
JPS5845107A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
EP3305726B1 (en) Method for preparing metal oxide-silica composite aerogel
Hutson et al. Control of microporosity of Al2O3-pillared clays: effect of pH, calcination temperature and clay cation exchange capacity
Yamanaka et al. High surface area solids obtained by intercalation of iron oxide pillars in montmorillonite
EP3305727B1 (en) Method for preparing metal oxide-silica composite aerogel
US4981825A (en) Dried metal oxide and clay particle compositions and method for the preparation thereof
JP3322115B2 (en) Method for producing porous silica
KR101127944B1 (en) Plate type inorganic material-aerogel complex and method for preparing thereof
JPS63112413A (en) Crosslinked clay having improved thermal stability
US5382558A (en) Heat resistant layered porous silica and process for producing the same
DE2825769C2 (en)
JPS6328842B2 (en)
US4792539A (en) Process for producing clay derivatives having a porous structure and novel clay derivatives obtained by the process
KR101516675B1 (en) Silica based nano sheet, dispersion sol of silica based nano sheet and method for preparing thereof
JP5212965B2 (en) Synthetic clay material and clay film
KR100352108B1 (en) Process for Preparing Porous Pillared Clays
JPS6246489B2 (en)
JPS60131878A (en) Manufacture of microporous clay material
JPS60200822A (en) Microporous clayey material consisting of smectite type mineral, neutral polymer and silica and its production
JPH0667762B2 (en) Clay derivative with porous structure
KR100245850B1 (en) Process for preparing sio2-tio2 pillared clays
Kittaka et al. Interlayer water molecules in vanadium pentaoxide hydrate. 2. Effect of intercalated metal ions on the adsorbability of water molecules
KR100925235B1 (en) A method for producing alumina-silica pillared clay using post intercalation of organic template
KR102556628B1 (en) The dealuminated high-silica zeolites with KFI topology, their manufacturing process and selective separation method as propylene adsorbents
JPH0144665B2 (en)
JP2636182B2 (en) Method to make interlayer cross-linked clay stable under hydrothermal conditions