JPS63288210A - High-strength and high-elastic modulus polyester fiber and production thereof - Google Patents

High-strength and high-elastic modulus polyester fiber and production thereof

Info

Publication number
JPS63288210A
JPS63288210A JP12214287A JP12214287A JPS63288210A JP S63288210 A JPS63288210 A JP S63288210A JP 12214287 A JP12214287 A JP 12214287A JP 12214287 A JP12214287 A JP 12214287A JP S63288210 A JPS63288210 A JP S63288210A
Authority
JP
Japan
Prior art keywords
zone
stretching
strength
heat treatment
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12214287A
Other languages
Japanese (ja)
Inventor
Takemoto Kamata
健資 鎌田
Kanji Yoshida
吉田 完爾
Shuichi Ikemoto
池本 修一
Yuichi Fukui
福井 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP12214287A priority Critical patent/JPS63288210A/en
Publication of JPS63288210A publication Critical patent/JPS63288210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the titled fiber using a raw material of garment grade by applying zone drawing and two or more stage of zone heat treatment on polyethylene terephthalate undrawn yarn with specified intrinsic viscosity. CONSTITUTION:The objective fiber with intrinsic viscosity <=0.90, tenacity >=9.5g/d and initial elastic modulus >=110g/d can be obtained by applying one or more stages of zone drawing followed by two or more stages of zone heat treatment on polyester undrawn yarn with intrinsic viscosity <=0.90 (pref. <=0.8) consisting virtually of polyethylene terephthalate (pref. with birefringence DELTAn<=70 and degree of crystallinity <=20%).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、産業資材用として有用な実質的にポリエチレ
ンテレフタレート(以下PBTと略記する)からなる高
強力・高弾性率繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high-strength, high-modulus fiber made essentially of polyethylene terephthalate (hereinafter abbreviated as PBT) useful as an industrial material.

(従来の技術) PET繊維は、三大合成繊維の一つとして、広く衣料及
び産業資材として用いられている。
(Prior Art) PET fibers are one of the three major synthetic fibers and are widely used in clothing and industrial materials.

産業資材に用いられる繊維は、引張り強度及び初期弾性
率が衣料用繊維より大きいものが要求されておシ、通常
、単繊維の引張シ強度で&0〜1αOI!/d、初期弾
性率90〜160g/dの範囲内にある。この様な高強
力・高弾性率繊維は一般には固相重合方法等で得た重合
度の高いPET(固有粘度1.0〜1.2)を溶M紡糸
した後、公知の延伸あるいは熱処理によって達成される
Fibers used for industrial materials are required to have higher tensile strength and initial elastic modulus than clothing fibers, and usually the tensile strength of a single fiber is &0~1αOI! /d, and the initial elastic modulus is within the range of 90 to 160 g/d. Such high-strength, high-modulus fibers are generally produced by melt-spinning PET with a high degree of polymerization (intrinsic viscosity 1.0 to 1.2) obtained by solid phase polymerization, etc., and then subjecting it to known stretching or heat treatment. achieved.

(発明が解決しようとする問題点) しかしながら、重合度の高いPETから高強力・高弾性
率PET繊維を得ようとすると、重合設備の新設あるい
は延伸、熱処理設備の新設等を考えなければならない。
(Problems to be Solved by the Invention) However, in order to obtain high-strength, high-modulus PET fibers from PET with a high degree of polymerization, it is necessary to consider the installation of new polymerization equipment or new stretching and heat treatment equipment.

そこで、本発明者等は既存の衣料用グレードの固有粘度
を有するPETを用い、従来技術を用いた紡糸によって
得られた未延伸PET糸を高温でゾーン延伸かつ高温ゾ
ーン熱処理を施こすことKより高強力・高弾性率のポリ
エステ!V繊維が得られることを見い出したものである
Therefore, the present inventors used existing PET having an intrinsic viscosity of clothing grade, and zone-stretched the undrawn PET yarn obtained by spinning using the conventional technology and subjected it to high-temperature zone heat treatment. High strength and high elastic modulus polyester! It was discovered that V fibers can be obtained.

(問題点を解決するための手段) 本発明は、固有粘度がα9o以下、引張強度が9.59
/ d以上、初期弾性率が110j9/d以上であって
、実質的にポリエチレンテンフタV−)からなっている
ことを特徴とする高強力・高弾性率ポリエステ1v繊維
、並びに固有粘度がα90以下であって、実質的にポリ
エチレンテレフタレートからなるボリエヌテv 未延伸
糸に1段以上のゾーン延伸と、2段以上のゾーンzさ処
理を施こすことを特徴とする高強力・高弾性ポリエステ
々繊維の製法である。
(Means for solving the problems) The present invention has an intrinsic viscosity of α9o or less and a tensile strength of 9.59.
/ d or more, an initial elastic modulus of 110j9/d or more, and a high-strength, high-elastic modulus polyester 1v fiber characterized by being substantially made of polyethylene tenfuta (V-), and an intrinsic viscosity of α90 or less A high-strength, high-elasticity polyester fiber characterized by subjecting an undrawn yarn to one or more stages of zone stretching and two or more stages of zone z-stretching treatment to an undrawn yarn consisting essentially of polyethylene terephthalate. It's the manufacturing method.

本発明のポリエステA/繊維を製造するために用いられ
る実質的KPETからなる重合体としては、くり返し単
位がテレフタル酸とエチレングリコ−μの縮合反応によ
って得られる重合体の他、テレフタル酸以外の成分とし
てイソフタμ酸、染色性向上のために用いられるスルホ
ン化テVフタμ酸やスルホン化イソフタル酸等の第3成
分を少量含むものであってもよい。また、エチレングリ
コ−p以外の成分としてブタンジオ−μ等の第3成分を
少量含むものでちってもよい。しかし#I、3成分は重
合体分子の配列を乱すため、できるだけ少ない方が好ま
しい。固有粘度(以下〔η〕と略記する)が1.0以下
のPRTの重合法は、公知の溶融縮重合反応によって得
ることができ、普通衣料用ポリエステル繊維には〔η〕
がcL7前後のポリマーチップが使用される。また0、
7以上のものも重縮合時の減圧度、時間、温度を調整す
ることにより得ることができる。〔η〕が1.0近くに
なると溶融時の粘度が高くなるため溶融重縮合は困難と
なるが、この場合は公知の固相重合法を用いることがで
きる。〔η〕が1.0以下、好ましくは0.9以下のP
ETを280℃以上で溶融紡糸すると、加水分解が主因
となり得られた未延伸糸の粘度が若干低下する。この低
下の度合いは、ポリマーの中の水分や紡糸温度、溶融時
間によって変化する。本発明の場合、この紡糸された繊
維形態での〔η〕が、119以下、ポリマーの製造およ
び紡糸の観点から好ましくは、CL8以下の未延伸状1
夷の繊維を使用する。紡糸によって得られる未延伸糸の
4造(結晶性、配向度等)は紡糸速度やノズル直下の冷
却速度等によって変化するが本発明の場合未延伸糸の構
造は強度発現に対して大きな要因ではない。
Polymers consisting essentially of KPET used to produce the polyester A/fiber of the present invention include polymers whose repeating units are obtained by a condensation reaction of terephthalic acid and ethylene glyco-μ, as well as polymers containing components other than terephthalic acid. It may also contain a small amount of a third component such as isophthalic acid, sulfonated teVphthalic acid or sulfonated isophthalic acid used to improve dyeability. Further, a material containing a small amount of a third component such as butanedio-μ as a component other than ethylene glycol-p may be used. However, #I, the third component disturbs the arrangement of polymer molecules, so it is preferable to have as little amount as possible. The polymerization method for PRT having an intrinsic viscosity (hereinafter abbreviated as [η]) of 1.0 or less can be obtained by a known melt condensation reaction, and polyester fibers for clothing usually have [η]
Polymer chips with a value of around cL7 are used. 0 again,
7 or more can also be obtained by adjusting the degree of pressure reduction, time, and temperature during polycondensation. When [η] approaches 1.0, the viscosity during melting increases, making melt polycondensation difficult; however, in this case, a known solid phase polymerization method can be used. P with [η] of 1.0 or less, preferably 0.9 or less
When ET is melt-spun at a temperature of 280° C. or higher, the viscosity of the resulting undrawn yarn is slightly lowered mainly due to hydrolysis. The degree of this decrease varies depending on the water content in the polymer, the spinning temperature, and the melting time. In the case of the present invention, [η] in the form of the spun fiber is preferably 119 or less, and preferably CL8 or less in the undrawn state from the viewpoint of polymer production and spinning.
Use the fibers of Yi. The structure (crystallinity, degree of orientation, etc.) of the undrawn yarn obtained by spinning changes depending on the spinning speed, the cooling rate directly below the nozzle, etc., but in the case of the present invention, the structure of the undrawn yarn is not a major factor in the strength development. do not have.

しかしながら、本発明のゾーン延伸およびゾーン熱処理
(で用いる未延伸糸としては配向や結晶化があまり進行
していない状■の繊維を用いるのが好ましく、複屈折率
△nが100以下、好ましくは70以下の未延伸糸を用
いるのがよい。壕だ結晶化度も3oチ以下、好ましくは
20チ以下の未延伸糸を用いるのがよい。
However, as the undrawn yarn used in the zone drawing and zone heat treatment (of the present invention), it is preferable to use fibers in a state (2) in which orientation and crystallization have not progressed much, and the birefringence Δn is 100 or less, preferably 70. It is preferable to use the following undrawn yarns.It is preferable to use undrawn yarns with a trench crystallinity of 3° or less, preferably 20° or less.

次に本発明における未延伸糸のゾーン延伸法およびゾー
ン熱処理方法について説明する。従来の衣料用ポリエス
テ/L/繊維の延伸はPETの18以上で、即ち80℃
近辺で延伸し次いで約120〜200℃の高温状部で熱
処理あるいは若干の後延伸を行い、4〜5g/dの強度
の繊維を得ている。
Next, the zone drawing method and zone heat treatment method of undrawn yarn in the present invention will be explained. Conventional polyester/L/fiber for clothing is stretched at 18 or higher than PET, i.e. at 80°C.
The fibers are stretched in the vicinity and then heat treated or slightly post-stretched at a high temperature of about 120 to 200°C to obtain fibers with a strength of 4 to 5 g/d.

一方高強力を発現させるために、J、Appl。On the other hand, in order to express high potency, J. Appl.

Polymer Sci、、  26 1951(’8
1)にはゾーン延伸、ゾーン熱処理法で従来の衣料用未
延伸糸を延伸し比較的強度の高い繊維、約&8 g/d
の強度を有する繊維が開示されている。本発明ではこれ
ら従来法の延伸技術で得られる繊維の構造を解析し、強
度発現にはPETm維中の非晶鎖の配向(Fa)が重要
であることをつきとめ、Faを1に近づける延伸法を検
討し本発明を完成するに至った。
Polymer Sci,, 26 1951 ('8
1) Relatively strong fibers, approximately &8 g/d, are produced by drawing conventional undrawn yarn for clothing using zone drawing and zone heat treatment.
A fiber is disclosed that has a strength of . In the present invention, we analyzed the structure of fibers obtained by these conventional drawing techniques, found that the orientation (Fa) of amorphous chains in PETm fibers is important for strength development, and developed a drawing method that brings Fa closer to 1. After studying the following, we have completed the present invention.

即ち、未延伸糸を狭い領域で高温状aKすることにより
、分子鎖の運動を活発にし、次いで応力を繊維の長さ方
向に付与することKより分子鎖を配列させて、配列した
分子が分子運動でもとの状態へ戻る(即ち緩和する)前
にその配列状頼を凍結してしまうという思想である。狭
い領域を必要とする理由は配向に必要な応力を有効に付
与するためでありその間隔は糸の温度および後に続く凍
結速度に依存するので明確に規定するのは現状では困難
であるので後に具体的な実施例で示すことにする。本発
明が従来のゾーン延伸法と異なる点は、ゾーン領域が高
温状態例えば250℃(従来法は90℃)であること、
延伸速度が速い例えば301rL/分(従来法は4 a
m /分)であること、さらにゾーン加熱領域を出た繊
維が直ちに急冷されるということ、例えば水冷雰囲気(
従来法はなし)である。このような新規なゾーン延伸法
により従来の衣料用グレードの未延伸糸からa 5 p
/d以上という高強力糸を得ることができる。しかし、
Faを1.0に近づけ、更に結晶化度を大きくして弾性
率の向上を図るためには、ゾーン延伸方法のみでは達成
することが困難な為、ゾーン加熱領域及び急冷領域を多
段設置すること、更にテンンヨンバー等使用することK
より高張力を付与できるように装置を改造することで、
単繊維の引張強度が9.59 / 6以上で、かつ単繊
維の初期弾性率が110fl/d以上の高強力、高弾性
率ポリエステル繊維を得ることができる。
That is, by subjecting the undrawn yarn to a high temperature aK in a narrow region, the motion of the molecular chains is activated, and then stress is applied in the length direction of the fiber. The idea is to freeze the alignment before it returns to its original state (that is, relaxes) through exercise. The reason why a narrow area is required is to effectively apply the stress necessary for orientation, and since the interval depends on the temperature of the yarn and the subsequent freezing rate, it is currently difficult to define it clearly, so it will be explained in detail later. This will be shown in a concrete example. The present invention differs from conventional zone stretching methods in that the zone region is at a high temperature, for example, 250°C (90°C in the conventional method);
The drawing speed is high, for example, 301 rL/min (the conventional method is 4 a
m /min) and that the fibers exiting the zone heating area are immediately quenched, e.g. in a water-cooling atmosphere (
(No conventional method). This novel zone drawing method produces a5p from conventional clothing grade undrawn yarn.
A high tenacity yarn having a strength of /d or more can be obtained. but,
In order to bring Fa closer to 1.0, further increase the degree of crystallinity, and improve the elastic modulus, it is difficult to achieve this with only the zone stretching method, so it is necessary to install multiple zone heating regions and rapid cooling regions. , and also use Tennyomber, etc.
By modifying the equipment to be able to apply higher tension,
A high-strength, high-modulus polyester fiber having a single fiber tensile strength of 9.59/6 or more and a single fiber initial elastic modulus of 110 fl/d or more can be obtained.

次に多段ゾーン延伸、ゾーン加熱装置の一例を第1図で
説明する。Aは未延伸糸の送り出しボビン、Bは延伸熱
処理系の巻取ボビンである。
Next, an example of a multi-stage zone stretching and zone heating apparatus will be explained with reference to FIG. A is a delivery bobbin for undrawn yarn, and B is a winding bobbin for a drawing heat treatment system.

A%Bの間に(Zn+1)個のローラーと、(n)個の
ゾーン加熱装置(Zn)とn個のテンションパー(Tn
)が設置されている。(1)、(2)のローラーによシ
ボビンAの糸を定速で引き出し、ローラー(3)へ糸は
引き取られるが、このローラー(2)と(3)の間を通
過する間に糸は例えば第2図に示したゾーン加熱装置(
zl)を通過し、さらにテンションパー(T1)を通過
する。ここでローラー(2)とローラー(3)の周速度
が同じであれば、糸はゾーン加熱あるいはゾーン熱処理
を受けたことになり、もし、ローラー(3)の周速度が
ロープ−(2)のそれよりも大きければ糸はゾーン延伸
処理を受けたことになる。
Between A%B, there are (Zn+1) rollers, (n) zone heating devices (Zn) and n tensioners (Tn).
) is installed. The yarn from the grain bobbin A is pulled out at a constant speed by rollers (1) and (2), and the yarn is taken to roller (3), but while passing between rollers (2) and (3), the yarn For example, the zone heating device shown in Figure 2 (
zl) and then tension par (T1). If the circumferential speeds of roller (2) and roller (3) are the same, it means that the yarn has undergone zone heating or zone heat treatment, and if the circumferential speed of roller (3) is the same as that of rope (2), If it is larger than that, the yarn has undergone a zone drawing process.

次に第2図のゾーン加熱装置について説明する。ゾーン
延伸の基本的思想は糸を短かい領域で加熱し、PIT分
子の熱運動を活発にした状態で糸に張力を付与し、分子
鎖を延伸方向に配向させ、配向した分子を分子の緩和を
抑制した状態で凍結させることにより、高度罠配向した
繊維、即ち高強力繊維を得るものである。ここで分子鎖
に付与される延伸力が大きい程分子の配向は促進される
が、このためには加熱ゾーンの巾を狭くする方が、延伸
応力が集中するため好ましい。また配向した分子を凍結
させるためには、ゾーン延伸後急冷することが好ましい
Next, the zone heating device shown in FIG. 2 will be explained. The basic idea of zone stretching is to heat the yarn in a short region, apply tension to the yarn while activating the thermal motion of PIT molecules, orient the molecular chains in the stretching direction, and relax the oriented molecules. By freezing the fibers in a suppressed state, highly trap-oriented fibers, that is, high-strength fibers are obtained. Here, the greater the stretching force applied to the molecular chains, the more the molecular orientation is promoted; however, for this purpose, it is preferable to narrow the width of the heating zone because the stretching stress is concentrated. Further, in order to freeze the oriented molecules, it is preferable to rapidly cool the film after zone stretching.

第2図は一対の細いニクロム線(約1■φ)(ハ)に電
流を流して発熱させ、この一対のニクロム線ビラの間に
繊維(へ)を通過させ、ゾーン延伸又はゾーン加熱させ
る。また急冷を目的としてこの一対のニクロム線は断熱
材に)と水冷却機能を有する金属ブロック(ホ)の中に
設置されている。金属ブロック(ホ)には冷却水の出入
口(イ)、に)がそれぞれ設けられ冷却水を流すように
なっている。
FIG. 2 shows a pair of thin nichrome wires (approximately 1 φ) (c) that are heated by passing an electric current through them, and the fibers are passed between the pair of nichrome wires for zone stretching or zone heating. In addition, for the purpose of rapid cooling, this pair of nichrome wires is installed inside a metal block (e) that has a heat insulating material and a water cooling function. The metal block (E) is provided with cooling water inlets and outlets (A) and (B), respectively, for cooling water to flow through it.

狭い領域での加熱、即ちゾーン加熱装置についてはニク
ロム線方式以外にヒートエッヂを用いる方法、赤外線や
レーザー光線を糸道に集光させる方法、短かいヒートチ
ューブを用いる方法等各種の方法を用いることが出来る
For heating in a narrow area, that is, a zone heating device, various methods can be used in addition to the nichrome wire method, such as a method using a heat edge, a method that focuses infrared rays or a laser beam on the yarn path, and a method that uses a short heat tube. .

また、冷却方法としては、氷原外に冷却空気や冷却窒素
ガス等気体を用いることも出来る。
Further, as a cooling method, it is also possible to use a gas such as cooling air or cooling nitrogen gas outside the ice field.

テンションパーT、は公知の機構のものを用いることが
出来、ゾーン延伸・熱処理時に糸に付与する張力を制御
するものである。ローラー(3)で引き取られた糸はロ
ーラー(3)と周速度が同じローラー(4)K引き取ら
れ、ローラー(4)、(5)の間でローラー(2)、(
3)間で受けたと同じような処理を受け、逐次多段処理
を受け、巻取りボビンの)に巻取られる。この間、n個
のゾーン加熱処理装置でゾーン延伸又はゾーン熱処理を
受けるが、各段数で加熱温度や、延伸倍率、さらに延伸
張力が異なっていても良い。本発明の特徴はこのように
ゾーン延伸、ゾーン熱処理を多段で行なうこと以外にゾ
ーン延伸温度を高くし、かつ延伸に於ける変形速度を早
くして、延伸時の応力を大きくした点にある。
The tensioner T can be of a known mechanism and is used to control the tension applied to the yarn during zone drawing and heat treatment. The yarn taken up by roller (3) is taken up by roller (4) K, which has the same circumferential speed as roller (3), and is passed between rollers (4) and (5) by rollers (2) and (
3) The material is subjected to the same processing as in the previous step, sequentially subjected to multi-stage processing, and then wound onto the winding bobbin. During this time, the film is subjected to zone stretching or zone heat treatment using n zone heat treatment apparatuses, but the heating temperature, stretching ratio, and stretching tension may be different for each stage. The feature of the present invention is that, in addition to performing the zone stretching and zone heat treatment in multiple stages, the zone stretching temperature is increased, the deformation rate during stretching is increased, and the stress during stretching is increased.

ゾーン加熱領域での糸の変形ゾーンの長さをtとし、糸
の送り速度、延伸糸の引き取り速度をそれぞれV、 、
V、とすれば、この変形ゾーンでニュートン流動が成立
すると仮定すると、変形の応力σは 但し、ηは粘度、2 (= V2/V+ )は延伸倍率
従って変形応力σはηを一定とすると変形ゾーンの巾t
が小さく、■、が大きい程大きくなる。
The length of the yarn deformation zone in the zone heating area is t, and the yarn feeding speed and drawn yarn take-up speed are V, respectively.
V, and assuming that Newtonian flow is established in this deformation zone, the deformation stress σ is, however, η is the viscosity, 2 (= V2/V+) is the stretching magnification, and therefore the deformation stress σ is the deformation stress when η is constant. Zone width t
is smaller, and the larger ■ is, the larger it is.

本発明では、ゾーン温度を高くして、即ち好ましくは1
50℃以上にすることで粘度を下げて分子運動を烈しく
し、高速で変形、好ましくはvlを1m / win、
より好ましくは5m/minという速度で延伸すること
により、分子に大きな変形応力を付与するように工夫し
たものである。
In the present invention, the zone temperature is increased, i.e. preferably 1
By heating the material to 50°C or higher, the viscosity is lowered, the molecular motion becomes more intense, and the material is deformed at high speed, preferably at a vl of 1 m/win.
More preferably, by stretching at a speed of 5 m/min, a large deformation stress is applied to the molecules.

このようにしてゾーン延伸で非晶鎖が高度に配向した延
伸糸は、高張力下でゾーン熱処理を受けて、緩和が進行
しない形で結晶性の向上が図られる。このゾーン熱処理
を多段にすることにより、また温度や張力を制御するこ
とにより、構造の均一性が増大し、欠陥のない高配向、
高結晶性繊維が得られる。
The drawn yarn, in which the amorphous chains are highly oriented by zone drawing, is subjected to zone heat treatment under high tension to improve crystallinity without progressing relaxation. By performing this zone heat treatment in multiple stages and by controlling the temperature and tension, the uniformity of the structure increases, resulting in highly oriented, defect-free,
Highly crystalline fibers are obtained.

以下実施例により本発明を更に具体的に説明するが、本
発明において使用される物性値は以下の方法で測定され
たものである。
The present invention will be explained in more detail with reference to Examples below, and the physical property values used in the present invention were measured by the following methods.

引張強度(DS):インヌトロン型引張試験機を使用し
て、単繊維20本の試料長20m、引張速度20 ym
 / min、  での20℃、65チ相対湿度での切
断点の平均強度(、!il/d)初期弾性率(E)二同
上条件測定において、応力〜歪曲線の初期勾配より求め
たヤング率の平均値(g/d ) 固有粘度(〔η〕):フエノー/I//テトフクロルエ
タン(50750重量混合比)溶媒を用いてポリマーあ
るいは繊維を所定量溶解させ、その後25℃で粘度測定
用装置を使用して測定した値(dl/g) 非晶配向度(Fa):Jl維の偏光顕微鏡による全複屈
折率(Δn)及び繊維の密度ρ(g/ctnり及び以下
で定義される結晶部の配向度(Fc)を使用して次の式
に従って計算した値。
Tensile strength (DS): Using an Innutron type tensile tester, sample length of 20 single fibers was 20 m, and tensile speed was 20 ym.
Average strength (,!il/d) at the cutting point at 20°C and 65° relative humidity at / min, Initial modulus of elasticity (E) 2 Young's modulus determined from the initial slope of the stress-strain curve in the measurement under the same conditions as above. Average value (g/d) Intrinsic viscosity ([η]): Dissolve a predetermined amount of polymer or fiber using a phenol/I//tetofuchloroethane (mixing ratio by weight of 50,750) solvent, then heat the solution at 25°C for viscosity measurement. Values measured using the device (dl/g) Degree of amorphous orientation (Fa): Total birefringence (Δn) of Jl fibers measured using a polarizing microscope and fiber density ρ (g/ctn) defined below. Value calculated according to the following formula using the degree of orientation (Fc) of the crystal part.

Fa=(△n−α212−XC−Fc )/(α1q 
5−(1−XC))ここにXcは結晶化度であり次の弐
によって密度と関係づけられる。
Fa=(△n-α212-XC-Fc)/(α1q
5-(1-XC)) Here, Xc is the degree of crystallinity and is related to the density by the following 2.

Xc=(1,455−1,9424/ρ)/Q、12全
複屈折率(ムn)二偏光顕微鏡を使用し、セナμモン型
のコンペンセーターを用い干渉縞と消光角度から繊維の
りタープ−ジョンCr)を測定し測微マイクロメーター
によシ繊維の直径(d)を測定し次式により計算した。
Xc = (1,455-1,9424/ρ)/Q, 12 total birefringence (mn) Using a two-polarized light microscope, the fiber glue tarp was determined from the interference fringes and extinction angle using a Senna μ-Mon type compensator. - John Cr) was measured, and the diameter (d) of the fiber was measured using a micrometer and calculated using the following formula.

Δn = r / d 繊維密度(ρ):四塩化炭素〜nヘプタン系密度勾配管
にて測定した30℃における密度。
Δn=r/d Fiber density (ρ): Density at 30°C measured in a carbon tetrachloride to n-heptane density gradient tube.

結晶配向度(Fc ):X線発生装置を使用して、繊維
にX線を照射した時に観測される結晶性散乱の内、赤道
上に観測される主要な三つの散乱(PET結晶において
(010)(〒1o)(100)に帰属される)の方位
角方向の次の式で定義される配向度Hから計算した値 配向度010(/7010)=(1ao−半価幅。1o
)/180/7− −(180−半価幅〒18)/18
0H−(180−半価値、。o)/180FC=(H0
10+H110+H100)/3〔実施例1〕 固有粘度〔η〕=cL792のPETチップを公知の方
法で乾燥後、溶融紡糸法(紡糸温度298℃、紡糸速度
2100 m/ min、) Kより、未延伸糸を得た
。この時の繊維の性状は、〔η〕=α692で、6デニ
ー/L//フイラメント(dpf)、△n=20X10
−”、Xc=7%であった。かかる繊維を第1図及び第
2図に示す装置によりゾーン延伸、ゾーン熱処理をおこ
なった。ゾーン延伸操作は、ローラー(2)と(3)の
間で行ない、繊維の送り速度を、1m/分〜30fi7
分に可変し、ヒータ温度を230〜1050℃まで可変
して、見掛けの延伸倍率を、4〜5倍に設定しておこな
った。ゾーン熱処理操作は、Z、以降のゾーン加熱装置
とテンンヨンバーを使用して繊維に掛ける張力を1. 
O〜1,7g/dKなるよう可変し、ヒータ段数を10
〜50段として、N2雰囲気中でおこなった。
Crystal orientation (Fc): Of the crystalline scattering observed when a fiber is irradiated with X-rays using an X-ray generator, there are three main types of scattering observed on the equator ((010 ) (attributed to 〒1o) (100)) Value calculated from the degree of orientation H defined by the following formula in the azimuth direction: degree of orientation 010 (/7010) = (1ao - width at half maximum.1o
)/180/7- -(180-half width 〒18)/18
0H-(180-half value, .o)/180FC=(H0
10+H110+H100)/3 [Example 1] After drying a PET chip with intrinsic viscosity [η]=cL792 by a known method, undrawn yarn was prepared using melt spinning method (spinning temperature 298°C, spinning speed 2100 m/min) K. I got it. The properties of the fiber at this time are [η] = α692, 6 denier/L//filament (dpf), △n = 20X10
-", Xc = 7%. The fibers were subjected to zone stretching and zone heat treatment using the apparatus shown in Figures 1 and 2. The zone stretching operation was carried out between rollers (2) and (3). and set the fiber feeding speed to 1m/min to 30fi7.
The heater temperature was varied from 230 to 1050°C, and the apparent stretching ratio was set to 4 to 5 times. The zone heat treatment operation involves applying tension to the fibers using Z, subsequent zone heating equipment and tension bar.
The number of heater stages was set to 10.
The test was carried out in an N2 atmosphere with 50 stages.

表1に延伸・加熱処理条件の数例を示す。また得られた
繊維の性能を表2に示す。
Table 1 shows some examples of stretching and heat treatment conditions. Furthermore, the performance of the obtained fibers is shown in Table 2.

表  1 表  2 〔実施例2〕 実施例1で用いたのと同じ未延伸糸を用いて第1図及び
第2図に示す装置により逐次ゾーン延伸、ゾーン熱処理
を行なった。
Table 1 Table 2 [Example 2] The same undrawn yarn used in Example 1 was sequentially subjected to zone stretching and zone heat treatment using the apparatus shown in FIGS. 1 and 2.

延伸操作は、繊維の送り速度を1m/分にし、ヒータ温
度を50〜270℃まで可変して、見掛けの全延伸倍率
を、5倍に設定しておこなった。延伸操作は総てN、雰
囲気中でおこなった。
The stretching operation was carried out by setting the fiber feeding speed to 1 m/min, varying the heater temperature from 50 to 270°C, and setting the apparent total stretching ratio to 5 times. All stretching operations were performed in a N atmosphere.

更に張力については、ヒータ温度毎(操作した。Furthermore, the tension was adjusted for each heater temperature.

本実施例では、ローフ(2)の糸送り速度を1fi/w
inに設定し、最終段ローフ(1’71を5m/m1n
K設定し、途中のローラはフリーローフトシテ、ゾーン
延伸、ゾーン熱処理を行なった。
In this example, the yarn feeding speed of the loaf (2) is 1fi/w.
Set the final stage loaf (1'71 to 5m/m1n
K was set, and intermediate rollers were subjected to free loft sheeting, zone stretching, and zone heat treatment.

表3に延伸熱処理条件、表4に得られた繊維O性能を各
々示した。
Table 3 shows the stretching heat treatment conditions, and Table 4 shows the obtained fiber O performance.

表  3 表  4 〔発明の効果〕 本発明によれば、固有粘度がα9o以下という通常の衣
料用ポリエステ/I/Il維と同程度の固有粘度であり
々がら、引張強度が9.5 g / 4以上で且つ初期
弾性率が110 g/d以上という産業資材用に適した
高強力、高弾性率ポリエヌテμ繊維を得ることができる
ので、特別の重合設備や紡糸設備を必要とせず、極めて
経済的である。
Table 3 Table 4 [Effects of the Invention] According to the present invention, although the intrinsic viscosity is α9o or less, which is comparable to that of ordinary polyester/I/Il fibers for clothing, the tensile strength is 9.5 g/ 4 or more and an initial elastic modulus of 110 g/d or more, which makes it possible to obtain high-strength, high-elastic modulus polyene teμ fibers suitable for industrial materials, so there is no need for special polymerization equipment or spinning equipment, making it extremely economical. It is true.

東回面の簡単な説明 第1図は本発明の実施に使用するゾーン延伸、ゾーン熱
処理装置の概略側面図、第2図は第1図の装置における
ゾーン加熱装置の拡大斜視図である。
BRIEF DESCRIPTION OF THE EAST WIDE FIG. 1 is a schematic side view of a zone stretching and zone heat treatment apparatus used in the practice of the present invention, and FIG. 2 is an enlarged perspective view of the zone heating apparatus in the apparatus of FIG.

人は未延伸糸の送り出しボビン Bは延伸繰処理系の巻取ボビン 2.4・・・・・・2nは送りローブ 1.3・・・・・・2n+1は引取ローブZ1.Z2.
・・・・・・Znはゾーン加熱装置TI + ’r、 
l・−・・・・Tnはテンンヨンバー(イ)、(ロ)は
水出入口 (/うけヒータにクロム線) に)は断熱材 (ホ)は水冷却金属ブロック (へ)は繊維
The delivery bobbin B for the undrawn yarn is the winding bobbin 2.4...2n of the drawing and winding processing system, and the feeding lobe 1.3...2n+1 is the take-up lobe Z1. Z2.
...Zn is zone heating device TI+'r,
l...Tn is the tension bar (a), (b) is the water inlet/outlet (chrome wire on the heater) is the insulation material (e) is the water cooling metal block (f) is the fiber

Claims (2)

【特許請求の範囲】[Claims] (1)固有粘度が0.90以下、引張強度が9.5g/
d以上、初期弾性率が110g/d以上であつて、実質
的にポリエチレンテレフタレートからなつていることを
特徴とする高強力、高弾性率ポリエステル繊維。
(1) Intrinsic viscosity is 0.90 or less, tensile strength is 9.5g/
A high-strength, high-modulus polyester fiber having an initial elastic modulus of 110 g/d or more and consisting essentially of polyethylene terephthalate.
(2)固有粘度が0.90以下であつて、実質的にポリ
エチレンテレフタレートからなるポリエステル未延伸糸
に1段以上のゾーン延伸と2段以上のゾーン熱処理を施
こすことを特徴とする高強力、高弾性率ポリエステル繊
維の製法。
(2) High strength, characterized by subjecting an undrawn polyester yarn having an intrinsic viscosity of 0.90 or less and consisting essentially of polyethylene terephthalate to one or more stages of zone stretching and two or more stages of zone heat treatment; Manufacturing method for high modulus polyester fiber.
JP12214287A 1987-05-19 1987-05-19 High-strength and high-elastic modulus polyester fiber and production thereof Pending JPS63288210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12214287A JPS63288210A (en) 1987-05-19 1987-05-19 High-strength and high-elastic modulus polyester fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12214287A JPS63288210A (en) 1987-05-19 1987-05-19 High-strength and high-elastic modulus polyester fiber and production thereof

Publications (1)

Publication Number Publication Date
JPS63288210A true JPS63288210A (en) 1988-11-25

Family

ID=14828651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12214287A Pending JPS63288210A (en) 1987-05-19 1987-05-19 High-strength and high-elastic modulus polyester fiber and production thereof

Country Status (1)

Country Link
JP (1) JPS63288210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351338A (en) * 1989-07-17 1991-03-05 Ishikawa Pref Gov Production of high-strength and high-elastic modulus fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351338A (en) * 1989-07-17 1991-03-05 Ishikawa Pref Gov Production of high-strength and high-elastic modulus fiber

Similar Documents

Publication Publication Date Title
KR0142181B1 (en) High strength, high modulus polyamide yarn and its manufacturing method
US5217485A (en) Polypropylene monofilament suture and process for its manufacture
JP3673401B2 (en) Polyolefin molded products
JP2733548B2 (en) Low-shrinkage, high-strength poly (hexamethylene adipamide) yarn and method for producing the same
KR840000771B1 (en) Self-crimping polyamide fibers
JP3613719B2 (en) Method for producing polybenzazole fiber
KR100420457B1 (en) A high-speed method for producing a fully oriented nylon yarn and a yarn produced therefrom
US6428891B1 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for production thereof
US4440710A (en) Process for the preparation of high Young&#39;s modulus poly-p-phenylene-terephthalamide
JPH02127507A (en) Monofilament having high tenacity and high tensile uniformity and method and apparatus for spinning and drawing it
US5279783A (en) Process for manufacture of polyamide monofilament suture
US4016236A (en) Process for manufacturing aromatic polymer fibers
KR0168633B1 (en) Process for making low shrinkage, high tenacity poly yarn
JPH07505455A (en) Polyamide monofilaments exhibiting high tenacity and methods for producing them
GB2078605A (en) Polyester fiber and process for producing same
JPS63288210A (en) High-strength and high-elastic modulus polyester fiber and production thereof
EP0912778B1 (en) Ultra-oriented crystalline filaments and method of making same
JP2003527497A (en) Manufacture of poly (trimethylene) terephthalate woven staples
JPH0261109A (en) Polyester fiber
JPS6321918A (en) High modulus poly-p-phenylene terephthalamide fiber
JP2008031617A (en) Biodegradable monofilament and method for producing the same
JPS62299513A (en) Production of polyphenylene sulfide monofilament
JPS63315608A (en) Polyester fiber
JPH03260114A (en) Production of high-modulus fiber composed of melt-anisotropic polymer
JPS63135516A (en) Polyester fiber having high strength