JPS63284763A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS63284763A
JPS63284763A JP62118267A JP11826787A JPS63284763A JP S63284763 A JPS63284763 A JP S63284763A JP 62118267 A JP62118267 A JP 62118267A JP 11826787 A JP11826787 A JP 11826787A JP S63284763 A JPS63284763 A JP S63284763A
Authority
JP
Japan
Prior art keywords
battery
organic electrolyte
discharge
mixed solvent
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62118267A
Other languages
Japanese (ja)
Other versions
JPH0569265B2 (en
Inventor
Kensuke Tawara
謙介 田原
Hideo Sakamoto
秀夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP62118267A priority Critical patent/JPS63284763A/en
Priority to DE8787309971T priority patent/DE3785834T2/en
Priority to EP87309971A priority patent/EP0270264B1/en
Priority to US07/120,619 priority patent/US4804597A/en
Publication of JPS63284763A publication Critical patent/JPS63284763A/en
Publication of JPH0569265B2 publication Critical patent/JPH0569265B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Abstract

PURPOSE:To reduce volumetric expansion caused by electric discharge so as to enhance a discharge capacity per constant volume by using a mixed solvent mainly consisting of butylene carbonate and 1,2-dimethoxyethane as a solvent for organic electrolyte. CONSTITUTION:The organic electrolyte battery in the caption comprises at least a negative pole 2 containing lithium as its main active substance, an organic electrolyte and a positive pole 5 containing bismuth trioxide Bi2O3 as its main active substance. A mixed solvent mainly consisting of butylene carbonate and 1,2-dimethoxyethane is used as a solvent for electrolyte or a mixed solvent further containing ethylene carbonate. Thereby, battery expansion due to discharge of a Li/Bi2O3 system battery can be reduced to enhance a discharge capacity per unit volume simultaneously with alleviation of form change of a battery which is quite undesirable for reliability and safety of apparatuses using batteries.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムを負極主活物質とし、三酸化ビスマ
スRig’sを正極主活物質とする有機電解質電池の電
解質の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to improvement of the electrolyte of an organic electrolyte battery in which lithium is used as a negative electrode main active material and bismuth trioxide Rig's is used as a positive electrode main active material. .

リチウムを負極活物質とし、BitO*を正極活物質と
する有機電解質電池は、作動電圧が約1.5vであり、
アルカリマンガン電池や酸化銀電池等、水性のアルカリ
電解液を用いる従来一般市販電池とほぼ同じ作動電圧を
有するので、これらと互換性がある。しかも、アルカリ
電解液の様なりリープ現象がないため、電解液の漏液が
少なく、かつ自己放電が小さい、エネルギー密度が高い
等々の利点を有するので、長期(ill性に優れた高エ
ネルギー密度電池が期待できる。
An organic electrolyte battery using lithium as a negative electrode active material and BitO* as a positive electrode active material has an operating voltage of about 1.5V,
It has approximately the same operating voltage as conventional commercially available batteries that use aqueous alkaline electrolytes, such as alkaline manganese batteries and silver oxide batteries, so it is compatible with these batteries. Moreover, unlike alkaline electrolytes, there is no leap phenomenon, so there is less electrolyte leakage, self-discharge is small, and energy density is high. can be expected.

〔従来の技術〕[Conventional technology]

従来、この種の電池の有機電解質としては、プロピレン
カーボネート(以下、PCと略記)、T−ブチロラクト
ン5テトラヒドロフラン、1.2−ジメトキシエタン(
以下、DMEと略記)1ジオキフラン等の非プロトン性
有機溶媒の単独又は混合溶媒中に、支持電解質としてL
iCj! Oa、LiBF*。
Conventionally, organic electrolytes for this type of battery include propylene carbonate (hereinafter abbreviated as PC), T-butyrolactone 5-tetrahydrofuran, and 1,2-dimethoxyethane (
(hereinafter abbreviated as DME) 1 L as a supporting electrolyte in an aprotic organic solvent such as dioxifuran alone or in a mixed solvent.
iCj! Oa, LiBF*.

LLPF&l Li5(hcF3等のイオン解離性塩を
溶解したものが用いられていた。
LLPF&l Li5 (in which an ion dissociative salt such as hcF3 was dissolved) was used.

一般に、電池の電解質として必要な特性は種々あるが、
電池性能上量も重要な特性は、1)、イオン導電性が高
く、電極反応速度が速い2)、沸点が高く、凝固点が低
く、作動温度範囲が広い。
In general, there are various characteristics required for a battery electrolyte.
Characteristics that are also important in terms of battery performance are 1) high ionic conductivity and fast electrode reaction rate 2) high boiling point, low freezing point, and wide operating temperature range.

3)、正極、負極物質等に対して安定であり、かつ正負
極物質の溶解度が低い。
3) It is stable to positive and negative electrode materials, and has low solubility in positive and negative electrode materials.

4)1分解電圧が高い 等々があげられる。この様な観点から、高沸点、低凝固
点、高誘電率を存し支持電解質の溶解度の高いpcと低
粘性のDMEの混合溶媒にLiCI−Osを溶解した有
機電解質は優れたものであり、従来量もしばしば用いら
れてきた。
4) High decomposition voltage, etc. From this point of view, an organic electrolyte in which LiCI-Os is dissolved in a mixed solvent of PC, which has a high boiling point, a low freezing point, and a high dielectric constant, and has high solubility as a supporting electrolyte, and DME, which has a low viscosity, is superior, and is superior to conventional electrolytes. Quantity has also often been used.

〔発明が解決しようとする問題点〕 しかしながら、従来この種の電池を実際の機器に搭載し
放電させると、電池の放電の進行に伴い、負極のLiは
電解液中にLi゛ イオンとして溶解し、電解液中を移
動し正極と反応することによって、その体積が減少する
が、正極の体積が負極の体積減少以上に膨張するため、
電池ケースを膨張させ、はなはだしい場合には、電池使
用機器本体を破損するという問題があった。このため、
従来この種の電池においては、一定サイズの電池スペー
ス内に充填する正極および負極活物質量を小さくし、従
って放電可能な電池容量を低く抑えることによって、放
電による電池体積(電池ケース)の膨張を抑制する方法
が行われて来た。しかし、この方法では電池使用機器か
ら許容される一定体積当たりの放電容量が小さくなると
いう問題があった。
[Problem to be solved by the invention] However, when this type of battery is conventionally installed in an actual device and discharged, as the battery discharge progresses, Li in the negative electrode dissolves into the electrolyte as Li ions. , by moving through the electrolyte and reacting with the positive electrode, its volume decreases, but the volume of the positive electrode expands more than the volume reduction of the negative electrode, so
There is a problem in that the battery case expands, and if the battery case expands significantly, it can damage the main body of the device using the battery. For this reason,
Conventionally, in this type of battery, expansion of the battery volume (battery case) due to discharge is prevented by reducing the amount of positive and negative electrode active materials filled in a battery space of a certain size, and thus keeping the dischargeable battery capacity low. Measures have been taken to suppress it. However, this method has a problem in that the discharge capacity per constant volume allowed by the device using the battery becomes small.

本発明は、この種電池の有機電解質の改良により、この
様な放電による体積膨張を低減することによって、電池
使用機器の中での信転性、安全性を高め、かつ同時に一
定体積当たりの放電容量を向上させることを目的とする
The present invention improves the organic electrolyte of this type of battery to reduce the volume expansion caused by discharge, thereby increasing reliability and safety in equipment using the battery, and at the same time reducing the discharge per constant volume. The purpose is to improve capacity.

〔問題点を解決するための手段〕[Means for solving problems]

上記の様な問題点を解決するために、本発明は、この種
電池の有機電解質の溶媒として、ブチレンカーボネート
(以下BCと略記) 1.2−ジメトキシエタンとを主体とする混合溶媒もし
くは、これに更にエチレンカーボネート(以下ECと略
記)をも含む混合溶媒を用いることを提起するものであ
る。
In order to solve the above-mentioned problems, the present invention proposes a mixed solvent mainly consisting of butylene carbonate (hereinafter abbreviated as BC) and 1,2-dimethoxyethane as a solvent for the organic electrolyte of this type of battery. The present invention proposes the use of a mixed solvent that further contains ethylene carbonate (hereinafter abbreviated as EC).

支持電解質としては、この混合溶媒に溶解してLi”イ
オンを解離する塩で、負極Liや正極活物質と直接反応
しないものであれば良いが、広い温度範囲で溶解度の高
いLiCj Oa、 Liap#、 LIPFi+Li
ChSO3等が良い。
The supporting electrolyte may be a salt that dissolves in this mixed solvent to dissociate Li'' ions and does not react directly with the negative electrode Li or positive electrode active material, but LiCj Oa, Liap#, which has high solubility over a wide temperature range, may be used as the supporting electrolyte. , LIPFi+Li
ChSO3 etc. are good.

また、BCとDMEの混合比は、はぼl:1でイオン導
電率が最大となるため3:1−1:3が特に好ましい。
Further, the mixing ratio of BC and DME is particularly preferably 3:1 to 1:3 since the ionic conductivity is maximized at approximately 1:1.

また、有機電解質溶媒として従来のpcとDMEの混合
溶媒を用いた場合のPCに対しても見られたことである
が、有機電解質溶媒としてBCとDMHの混合溶媒を用
いた場合にも、電池の放電末期に若干のBCの分解が見
られ、この分解生成物とLiが反応し、Li表面に褐色
の反応生成物が生じるため、電池内部抵抗が増加し、作
動電圧が低下するため、電池の放電持続時間を一定のカ
ットオフ電圧で打ち切った場合には有効な放電容量がや
や小さくなり、活物質の利用率がその分低くなる傾向が
ある。この程度は、BCの純度や放電電流等々に依存し
、電池の使われ方によっては問題にならないが、一般に
は好ましくない性質である。
In addition, this was observed for PC when a conventional mixed solvent of PC and DME was used as the organic electrolyte solvent, but when a mixed solvent of BC and DMH was used as the organic electrolyte solvent, the battery A slight decomposition of BC is observed at the end of discharge, and this decomposition product reacts with Li to produce a brown reaction product on the Li surface, which increases the internal resistance of the battery and lowers the operating voltage. When the discharge duration is cut off at a certain cutoff voltage, the effective discharge capacity becomes somewhat smaller, and the utilization rate of the active material tends to decrease accordingly. This degree depends on the purity of BC, discharge current, etc., and is not a problem depending on how the battery is used, but it is generally an undesirable property.

一方、BCとDMEに更にエチレンカーボネートを加え
た混合溶媒を用いた場合には、この放電末期のLi表面
の褐色の反応生成物の生成が抑制され、はとんど見られ
なくなり、活物質の利用率が改善され、放電容量が大き
くなることが分かった。ECの添加によりLi表面の反
応生成物の生成が抑制される理由は定かではないが、結
果としてBCの分解が抑制されるものと推定される。E
Cの添加量は、後述の実施例で示す様に数%で十分な効
果がある。また、体積比でECが50%以上では、凝固
点が高くなり電池の作動温度範囲が狭くなるため、EC
の量は50%以下が好ましい。
On the other hand, when a mixed solvent containing ethylene carbonate is added to BC and DME is used, the formation of brown reaction products on the Li surface at the end of discharge is suppressed and is almost never seen, and the active material It was found that the utilization rate was improved and the discharge capacity was increased. Although it is not clear why the addition of EC suppresses the formation of reaction products on the Li surface, it is presumed that the decomposition of BC is suppressed as a result. E
As shown in the examples below, the amount of C added is a few percent, which has a sufficient effect. In addition, if the EC is 50% or more by volume, the freezing point will be high and the operating temperature range of the battery will be narrow.
The amount of is preferably 50% or less.

〔作用〕[Effect]

上記の様に有機電解質の溶媒としてBCとDMEを主体
とする混合溶媒を用いた電池の場合には、従来のPCと
DMHの混合溶媒を用いた電池の場合に比べ、一定の放
電容量に対する電池体積の膨張が著しく小さいため、与
えられた一定の電池スペース内により多量の正・負活物
質を充填することができ、単位体積当たりの放電容量を
著しく向上することができる。
As mentioned above, in the case of a battery using a mixed solvent mainly composed of BC and DME as the organic electrolyte solvent, compared to the case of a battery using a conventional mixed solvent of PC and DMH, the battery for a given discharge capacity Since the volume expansion is extremely small, a larger amount of positive and negative active materials can be filled in a given battery space, and the discharge capacity per unit volume can be significantly improved.

放電による電池体積の膨張が改善される理由は必ずしも
明らかではないが、次の様に推定される。
The reason why the expansion of battery volume due to discharge is improved is not necessarily clear, but it is presumed as follows.

三酸化ビスマスとリチウムの電池放電反応は、次の(1
)式で示され、反応生成物はBiとLixOである。
The battery discharge reaction of bismuth trioxide and lithium is as follows (1
), and the reaction products are Bi and LixO.

6 Li +B1)0i−→2 Bi + 3 Li、
0  ・・・・・・(1)この反応では、本来第1表に
示す樟にLi、 Bigest84、 Li□0のそれ
ぞれの密度と代置からBi冨Os 1モルに対して(1
)式の反応量で計算される体積では、電池反応後のBi
とI、izoの体積を加えた値は反応前のLiとBit
’sの体積を加えた値よりも小さい。にもかかわらず、
実際に電池を放電すると電池が膨張する理由は、正極で
の反応生成物が単純に式(1)の様に生成するのではな
く、電解質を取り込んだ形で反応が進むものと推定され
る。実際、反応後の電池を分解してみると、電解液はほ
とんど全て正極反応生成体中に吸蔵されており、液体は
ほとんど見られない、この様に正極反応生成体中に電解
質溶媒が吸蔵されることにより正極が膨張するため、電
解質溶媒の種類、状態が正極の放電による膨張に著しい
影響を与えるものと推定される。
6 Li +B1)0i-→2 Bi + 3 Li,
0...(1) In this reaction, based on the respective densities and substitutions of Li, Bigest84, and Li□0 in camphor shown in Table 1, (1
), the volume calculated from the reaction amount in the formula is Bi after the battery reaction.
The value obtained by adding the volume of I and izo is Li and Bit before the reaction
is smaller than the sum of the volume of 's. in spite of,
The reason why the battery expands when it is actually discharged is presumed to be that the reaction product at the positive electrode is not simply produced as shown in equation (1), but that the reaction progresses while incorporating electrolyte. In fact, when we disassemble the battery after the reaction, we find that almost all of the electrolyte is occluded in the cathode reaction product, and almost no liquid is visible.In this way, the electrolyte solvent is occluded in the cathode reaction product. Since the positive electrode expands due to this, it is presumed that the type and condition of the electrolyte solvent have a significant effect on the expansion of the positive electrode due to discharge.

第1表 〔実施例〕 以下、実施例により本発明を更に詳細に説明する。Table 1 〔Example〕 Hereinafter, the present invention will be explained in more detail with reference to Examples.

第1図は本発明の一例を示すボタン型電池の断面図であ
る0図において、lは負極端子を兼ねる負極缶であり、
Ni−3US−Niの3層クランド板を絞り加工したも
のである。負極2は、厚さ1.41のリチウムシートを
打ち抜いて上記負極缶内面に圧着されている。6はNi
メッキしたSUS製の正極缶であり、正極端子を兼ねて
いる。この正極缶内に、後述の正極5が充填され、その
上にマイクロポーラスなポリプロピレンシートからなる
セパレータ4が載置されている。3は正極は負極間に電
解液を保持する含浸材であり、ポリプロピレンを主要素
とする不織布からなる。7はポリプロピレンを主体とす
るガスケットであり、負極缶lと正極缶6の間に介在し
、正極と負極の電気的絶縁性を保つと同時に、正極缶開
口縁が内側に折り曲げられ、カシメられることによって
、電池内容物を密封、封止している。
FIG. 1 is a cross-sectional view of a button-type battery showing an example of the present invention. In FIG. 0, l is a negative electrode can that also serves as a negative electrode terminal;
This is a drawn Ni-3US-Ni 3-layer crush plate. The negative electrode 2 is formed by punching out a lithium sheet with a thickness of 1.41 mm and press-bonding it to the inner surface of the negative electrode can. 6 is Ni
This is a plated SUS positive electrode can that also serves as the positive electrode terminal. This positive electrode can is filled with a positive electrode 5, which will be described later, and a separator 4 made of a microporous polypropylene sheet is placed thereon. 3, the positive electrode is an impregnated material that holds an electrolyte between the negative electrodes, and is made of a nonwoven fabric whose main element is polypropylene. 7 is a gasket mainly made of polypropylene, which is interposed between the negative electrode can 1 and the positive electrode can 6 to maintain electrical insulation between the positive electrode and the negative electrode, and at the same time, the opening edge of the positive electrode can is bent inward and caulked. The battery contents are sealed and sealed.

正極5は、正極活物質である純度99.99%の三酸化
ビスマス粉末を大気中900℃で5時間溶解熱処理し、
冷却後、粒径100μ醜以下に粉砕したものと炭素導電
剤(グラファイト又はカーボンブラック等)及びフッ素
樹脂からなる結着剤とを、重量比95.7 + 4 :
 0.3の割合で混合し、断面り字状のSUS製正極保
持リング8と共にペレット状に加圧成形した後、100
℃で十分真空加熱乾燥したものを用いた。正極合剤重量
は電it個当たり0゜26gであった。
The positive electrode 5 is prepared by melting and heat-treating 99.99% pure bismuth trioxide powder, which is a positive electrode active material, at 900°C in the atmosphere for 5 hours.
After cooling, the particles pulverized to a particle size of 100 μm or less, a carbon conductive agent (graphite or carbon black, etc.) and a binder consisting of a fluororesin were mixed at a weight ratio of 95.7 + 4:
After mixing at a ratio of 0.3 and press forming into a pellet together with a positive electrode holding ring 8 made of SUS having a cross-sectional shape, 100
The material was thoroughly dried under vacuum heating at ℃. The weight of the positive electrode mixture was 0.26 g per unit.

本実施例で用いた電解液は、(a)、BCとDMEの体
積比1:1混合溶媒にLiCJ Oeを1モル/l溶解
したもの、(bl、BcとDMEにさらにECを体積比
で45:50:5の割合で混合した混合溶媒にLiCj
! 0.を1モル/1溶解したもの、及び従来例として
、(C1,PCとDMEのl:1混合溶媒にLiCl 
O,を1モル/l溶解したもの、の3種である。それぞ
れの電解液を用い、上記の様にして、電解液の種類以外
は全て同様な3種類の電池を作製した。電池の大きさは
、直径9.45fi、高さ3.0目であり、注入した電
解液量は、各電解液とも電池1個当たり45μ!であっ
た。
The electrolytes used in this example were (a), LiCJ Oe dissolved at 1 mol/l in a mixed solvent of BC and DME in a volume ratio of 1:1, and (bl), EC in addition to Bc and DME in a volume ratio of 1:1. LiCj was added to the mixed solvent mixed in the ratio of 45:50:5.
! 0. As a conventional example, (C1, LiCl dissolved in a 1:1 mixed solvent of PC and DME)
There are three types: 1 mol/l of O. Using each electrolyte solution, three types of batteries were fabricated as described above, except for the type of electrolyte solution. The size of the battery is 9.45 fi in diameter and 3.0 fi in height, and the amount of electrolyte injected is 45 μ per battery for each electrolyte! Met.

第2図に、この様にして作った電池の20℃における7
、5にΩ定抵抗放電特性を示し、また第2表に、カ・7
トオフ電圧1.ζV迄の放電容量と7.5にΩで550
時間時間数電(この持金ての電池は完全に放電し尽くし
作動電圧はOvになっていた)した後の電池の高さと放
電前の電池の高さとの差(放電による膨み)の結果を示
した。
Figure 2 shows the battery made in this way at 7°C at 20°C.
, 5 shows the Ω constant resistance discharge characteristics, and Table 2 shows the Ω constant resistance discharge characteristics.
Turn-off voltage 1. Discharge capacity up to ζV and 550 at Ω to 7.5
The result of the difference between the height of the battery after several hours of electricity (this battery was completely discharged and the operating voltage was Ov) and the height of the battery before discharge (swelling due to discharge) showed that.

これらの結果から明らかな様に、本発明電池fblと従
来電池(C1ではカットオフ電圧1.2V迄の放電容量
にほとんど差はないが、放電による電池の膨みは、本発
明による電池(blの方が従来電池(C1に比べて著し
く小さくなっている。即ち、電池使用機器から許される
電池の最大高さが3.2龍の場合、本発明による電池中
)では、少なくとも76 m Ah以上の放電容量を取
り出すことが可能であるが、従来電池(elでは76m
Ah放電させると電池高さが3.36n以上迄膨むため
、3.2鶴以下とするためには、正負活物質量を約10
%減らす必要があり、従ってその分取り出せる放電容量
も低下する。
As is clear from these results, there is almost no difference in discharge capacity up to a cutoff voltage of 1.2V between the battery fbl of the present invention and the conventional battery (C1), but the swelling of the battery due to discharge is greater than that of the battery according to the present invention (bl). is significantly smaller than the conventional battery (C1; i.e., if the maximum height of the battery allowed by the device using the battery is 3.2 mm, the battery according to the present invention) is at least 76 mAh or more. It is possible to take out the discharge capacity of 76 m for conventional batteries (EL
When the Ah discharge is performed, the battery height expands to 3.36n or more, so in order to make it 3.2n or less, the amount of positive and negative active materials must be approximately 10
%, and the discharge capacity that can be taken out also decreases accordingly.

talでは、第2図の様に放電末期に内部抵抗が増大す
るため作動電圧がやや低下し、カットオフ電圧1.2v
迄の放電容量は、山)や(C1よりやや小さくなってい
るが、放電による電池の膨みは、(bl同様に、fcl
に比べて著しく小さい。このため、許容される同一体積
当たりの容量では従来電池fclより本発明により電池
(alの方が大きくなる。又、電池の形状変化が小さい
ことは、電池使用機器の信幀性、安全性のために極めて
重要な利点である。
In tal, the internal resistance increases at the end of discharge as shown in Figure 2, so the operating voltage decreases slightly, and the cutoff voltage is 1.2V.
The discharge capacity up to this point is slightly smaller than that of (mountain) and (C1, but the swelling of the battery due to discharge is similar to (bl), fcl
significantly smaller than. For this reason, the battery (al) according to the present invention has a larger allowable capacity per the same volume than the conventional battery fcl.Furthermore, the small change in the shape of the battery improves the reliability and safety of equipment using the battery. This is an extremely important advantage.

第2表 各便とも20個の平均値 〔発明の効果〕 以上詳述した様に、本発明は電解質溶媒としてブチレン
カーボネートと1,2−ジメトキシエタンを主体とする
混合溶媒もしくはこれに更にエチレンカーボネートを含
んだ混合溶媒を用いることによって、Li/BigOs
系電池の放電による電池膨張を著しく低減させることが
でき、単位体積当たりの放電容量を著しく向上され、同
時に電池使用機器の信幀性、安全性に好ましくない電池
の形状変化を著しく低減する等々、優れた効果を有する
Average value of 20 values for each flight in Table 2 [Effects of the invention] As detailed above, the present invention uses a mixed solvent mainly consisting of butylene carbonate and 1,2-dimethoxyethane, or a mixed solvent containing ethylene carbonate as an electrolyte solvent. By using a mixed solvent containing Li/BigOs
It is possible to significantly reduce battery expansion due to discharge of system batteries, significantly improve discharge capacity per unit volume, and at the same time significantly reduce changes in battery shape that are unfavorable for reliability and safety of equipment using batteries. Has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において実施した電池の一例を示す断面
口、第2図は7,5にΩ定抵抗放電特性の比較図である
。 ■・・・負極缶   2・・・負極リチウム3・・・含
浸材   4・・・セパレータ5・・・正極    6
・・・正極缶 7・・・ガスケット 8・・・正極保持リング以上
FIG. 1 is a cross-sectional view showing an example of a battery implemented in the present invention, and FIG. 2 is a comparison diagram of Ω constant resistance discharge characteristics at 7 and 5. ■...Negative electrode can 2...Negative electrode lithium 3...Impregnating material 4...Separator 5...Positive electrode 6
...Positive electrode can 7...Gasket 8...Positive electrode holding ring or higher

Claims (3)

【特許請求の範囲】[Claims] (1)リチウムを主活物質とする負極と、有機電解質と
、三酸化ビスマスBi_2O_3を主活物質とする正極
とから少なくとも成り、前記有機電解質の溶媒としてブ
チレンカーボネートと1,2−ジメトキシエタンとを主
体とする混合溶媒を用いたことを特徴とする有機電解質
電池。
(1) Consisting of at least a negative electrode containing lithium as the main active material, an organic electrolyte, and a positive electrode containing bismuth trioxide Bi_2O_3 as the main active material, and containing butylene carbonate and 1,2-dimethoxyethane as a solvent for the organic electrolyte. An organic electrolyte battery characterized by using a mixed solvent as a main component.
(2)前記有機電解質の溶媒として、更にエチレンカー
ボネートをも含む混合溶媒を用いたことを特徴とする特
許請求の範囲第(1)項記載の有機電解質電池。
(2) The organic electrolyte battery according to claim (1), wherein a mixed solvent further containing ethylene carbonate is used as a solvent for the organic electrolyte.
(3)前記有機電解質に溶解する支持電解質として過塩
素酸リチウムLiClO_4を用いたことを特徴とする
特許請求の範囲第(1)項もしくは第(2)項記載の有
機電解質電池。
(3) The organic electrolyte battery according to claim (1) or (2), characterized in that lithium perchlorate LiClO_4 is used as a supporting electrolyte dissolved in the organic electrolyte.
JP62118267A 1986-11-13 1987-05-15 Organic electrolyte battery Granted JPS63284763A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62118267A JPS63284763A (en) 1987-05-15 1987-05-15 Organic electrolyte battery
DE8787309971T DE3785834T2 (en) 1986-11-13 1987-11-11 CELL WITH ORGANIC ELECTROLYTE.
EP87309971A EP0270264B1 (en) 1986-11-13 1987-11-11 An organic electrolyte cell
US07/120,619 US4804597A (en) 1986-11-13 1987-11-13 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62118267A JPS63284763A (en) 1987-05-15 1987-05-15 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS63284763A true JPS63284763A (en) 1988-11-22
JPH0569265B2 JPH0569265B2 (en) 1993-09-30

Family

ID=14732405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62118267A Granted JPS63284763A (en) 1986-11-13 1987-05-15 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63284763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281679A (en) * 1988-05-09 1989-11-13 Sanyo Electric Co Ltd Battery with nonaqueous electrolyte
JPH0215568A (en) * 1988-07-01 1990-01-19 Sanyo Electric Co Ltd Nonaqueous type electrolyte battery
JPH02299159A (en) * 1989-05-15 1990-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281679A (en) * 1988-05-09 1989-11-13 Sanyo Electric Co Ltd Battery with nonaqueous electrolyte
JPH0715820B2 (en) * 1988-05-09 1995-02-22 三洋電機株式会社 Non-aqueous electrolyte battery
JPH0215568A (en) * 1988-07-01 1990-01-19 Sanyo Electric Co Ltd Nonaqueous type electrolyte battery
JP2698103B2 (en) * 1988-07-01 1998-01-19 三洋電機株式会社 Non-aqueous electrolyte primary battery
JPH02299159A (en) * 1989-05-15 1990-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPH0569265B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
EP1009055B1 (en) Nonaqueous electrolyte battery and charging method therefor
EP0803924B1 (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US7326493B2 (en) Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates
CN101373851B (en) Non-aqueous electrolytic solution secondary battery
JP3249305B2 (en) Non-aqueous electrolyte battery
KR20060041828A (en) Electrolyte solution and battery
KR20020020698A (en) Non-aqueous electrolyte secondary cell and device using the same
KR20060094477A (en) Non-aqueous electrolyte secondary battery
JPH10154532A (en) Organic electrolyte secondary battery
CN105742703A (en) High-voltage functional electrolyte containing LiDFOB additive and preparation and application thereof
EP1289044B1 (en) Nonaqueous electrolyte secondary battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
CA2413593A1 (en) Double current collector positive electrode for alkali metal ion electrochemical cells
JP3451781B2 (en) Organic electrolyte secondary battery
JPS63284763A (en) Organic electrolyte battery
JP4737952B2 (en) Non-aqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0426075A (en) Organicelectrolyte battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP4245538B2 (en) Lithium battery
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPH02207464A (en) Secondary battery
KR20010106515A (en) High performance lithium ion polymer cells and batteries