JPH02207464A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH02207464A
JPH02207464A JP1028249A JP2824989A JPH02207464A JP H02207464 A JPH02207464 A JP H02207464A JP 1028249 A JP1028249 A JP 1028249A JP 2824989 A JP2824989 A JP 2824989A JP H02207464 A JPH02207464 A JP H02207464A
Authority
JP
Japan
Prior art keywords
sodium
negative electrode
electrode
battery
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028249A
Other languages
Japanese (ja)
Inventor
Riichi Shishikura
利一 獅々倉
Hiroshi Konuma
博 小沼
Masataka Takeuchi
正隆 武内
Mutsumi Kameyama
亀山 むつみ
Yoshikazu Kikuta
菊田 芳和
Manabu Ohira
学 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP1028249A priority Critical patent/JPH02207464A/en
Publication of JPH02207464A publication Critical patent/JPH02207464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase energy density, to lengthen cycle life, and to decrease self-discharge rate by specifically combining an electrode component and an electrolyte. CONSTITUTION:A battery has a positive electrode 1, a negative electrode 6, and a nonaqueous electrolyte. The negative electrode 6 is a complex of a sodium alloy, a carbon material, and a binder. The nonaqueous electrolyte is prepared by dissolving a sodium salt, or a sodium salt and an alkyl ammonium salt in a nonaqueous solvent containing 30vol.% or more m-trifluoromethyl anisole. The positive electrode consists mainly of sodium.cobalt oxide. The sodium salt is used as the active material for battery reaction and the supporting salt for giving electric conductivity. The m-trifluoromethyl anisole has low reactivity with the negative electrode 6 and is stable as the solvent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エネルギー密度が高く、自己放電率が小さく
、サイクル寿命が長い等、性能の良好な二次電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a secondary battery with good performance such as high energy density, low self-discharge rate, and long cycle life.

〔従来の技術〕[Conventional technology]

従来、アルカリ金属の一つであるリチウム金属を負極に
用いた二次電池は古くから注目されており、例えば、M
、 Hugheg、 et aL、  J 、  Po
werSources、 12. P83〜144 (
1984)にその総説が載っている。その中にリチウム
金属があまりにも活性なため溶媒と反応し、さらにデン
ドライト成長を起し、負極への適用の難しさが示されて
いる。
Conventionally, secondary batteries using lithium metal, which is one of the alkali metals, as a negative electrode have been attracting attention for a long time, and for example, M
, Hugheg, et al., J., Po.
werSources, 12. P83-144 (
(1984) contains a review. Among them, lithium metal is so active that it reacts with the solvent and causes dendrite growth, making it difficult to apply to negative electrodes.

その対策としてリチウム金属を合金化したり、導電性高
分子と複合化したりする試みがなされているが、これら
はA、N、DeyのJ 、E electrochem
、Soc、、118.No、lO,PL547〜154
9 (1971)や、特開昭59−132576号公報
、同60−262351号公報、同61245474号
公報、同62−140358号公報等に記載されている
As a countermeasure, attempts have been made to alloy lithium metal or composite it with conductive polymers;
,Soc,,118. No, IO, PL547-154
9 (1971), JP-A-59-132576, JP-A 60-262351, JP-A 61245474, JP-A No. 62-140358, etc.

また、ナトリウム系負極を用い、上記と同様に合金化や
導電性高分子との複合化を行っているが、これらについ
ては、Allied社またはA11ied  Sign
al I nc、が出願したUSP  4,668,5
96゜同4,753,858等に記載されている。
In addition, sodium-based negative electrodes are alloyed or composited with conductive polymers in the same way as above, but these are manufactured by Allied or A11ied Sign.
USP 4,668,5 filed by al I nc.
96° 4,753,858, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、アルカリ金属を負極に用いた室温作動用二次
電池は、上記のように、各方面で研究されているにもか
かわらずアルカリ金属と電解液との反応性を完全に抑制
するに到らず、いまだ汎用の二次電池に匹敵するほどの
市場を得たものはない。
By the way, as mentioned above, despite research in various fields on secondary batteries that use alkali metals as negative electrodes and operate at room temperature, it has not yet been possible to completely suppress the reactivity between the alkali metals and the electrolyte. However, there is still no product that has gained a market comparable to general-purpose secondary batteries.

しかし、一部に極小容量型(1+nAh乃至10mAh
)のリチウム系二次電池は上布されている。
However, there are some extremely small capacity types (1+nAh to 10mAh).
) lithium-based secondary batteries are covered.

マタカナダのMOLI  ENERGY  LIMIT
ED  が正極にMoS、を用い、負極にLi箔を用い
た比較的高容量(600mAh)の二次電池を商品化し
たが、充放電サイクルの可逆性、高速充放電特性、過放
電特性のいずれも同形状のニッケル・カドミウム系二次
電池を凌駕するに至らず、エネルギー密度が改善された
に留っており、汎用性に乏しい。
Mata Canada MOLI ENERGY LIMIT
ED has commercialized a relatively high capacity (600 mAh) secondary battery using MoS for the positive electrode and Li foil for the negative electrode, but the reversibility of the charge/discharge cycle, high-speed charge/discharge characteristics, and overdischarge characteristics are not satisfactory. However, it does not outperform a nickel-cadmium secondary battery of the same shape, and its energy density is only improved, so it lacks versatility.

このLi系負極が実用化されにくいのは、上記したよう
にリチウムと電解液との反応及びそれに由来するデンド
ライト成長による短絡現象が最大の原因である。
The main reason why this Li-based negative electrode is difficult to put into practical use is the short-circuit phenomenon caused by the reaction between lithium and the electrolyte and the resulting dendrite growth, as described above.

リチウムをナトリウム合金に代えることで電極電位が0
.2■ないし0.4V程度貴側にシフトするので、電解
液との反応性は若干緩和されるが充分ではない。
By replacing lithium with sodium alloy, the electrode potential can be reduced to 0.
.. Since the voltage is shifted to the noble side by about 2 to 0.4 V, the reactivity with the electrolyte is somewhat relaxed, but not enough.

本発明者らは、上記問題を解決すべ(鋭意研究した結果
、電極構成物質と電解液との優れた組合せを発見した。
The present inventors have solved the above problem (as a result of intensive research, they have discovered an excellent combination of an electrode constituent material and an electrolyte solution.

本発明は、上記の発見に基づいてなされたもので、各種
性能の優れた二次電池を提供することを目的とする。
The present invention was made based on the above discovery, and an object of the present invention is to provide a secondary battery with excellent various performances.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明の二次電池は、正極
と負極と非水電解液とによって構成され、負極がナトリ
ウム合金と炭素材料と結着剤との複合体からなり、非水
電解液がナトリウム塩またはナトリウム塩とアルキルア
ンモニウム塩を、mトリフルオロメチルアニソールを3
0容11%以上含む非水溶媒に溶解したものである。
In order to achieve the above object, the secondary battery of the present invention is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode is made of a composite of a sodium alloy, a carbon material, and a binder. The solution contains sodium salt or sodium salt and alkylammonium salt, mtrifluoromethylanisole,
It is dissolved in a non-aqueous solvent containing 11% or more by volume.

また、この場合ナトリウム・コバルト酸化物を主成分と
する正極が好適に使用出来る。
Further, in this case, a positive electrode containing sodium cobalt oxide as a main component can be suitably used.

本発明において、負極にナトリウム合金と炭素材料と結
着剤との複合体を用いる理由は、まずナトリウムの合金
でナトリウムの活性を低下せしめ、電解液との副反応を
抑えるとともに導電性の炭素材料を電極中にほどよく分
散させることにより、電極中に電解液を含浸させ、さら
に実効表面積を増大させ、実効電流密度を下げQかっ、
結着剤で充放電にともなう電極の形状変化や崩壊を抑制
するためである。
In the present invention, the reason why a composite of a sodium alloy, a carbon material, and a binder is used for the negative electrode is that first, the sodium alloy reduces the activity of sodium, suppresses side reactions with the electrolyte, and the conductive carbon material. By appropriately dispersing the electrode into the electrode, the electrode is impregnated with the electrolyte, further increasing the effective surface area and lowering the effective current density.
This is because the binder suppresses changes in shape and collapse of the electrodes due to charging and discharging.

上記複合体負極に用いるナトリウム合金としては、ナト
リウムと鉛の合金が適する。それは、ナトリウムの相手
金属の中で鉛が、その原子比当りの広い範囲に亘ってナ
トリウムと合金化しうるためである。すなわち、ナトリ
ウム−鉛では、ナトリウム:鉛の原子比が95:5から
2:98の範囲で合金化可能である。
As the sodium alloy used in the composite negative electrode, an alloy of sodium and lead is suitable. This is because, among the partner metals of sodium, lead can be alloyed with sodium over a wide range of its atomic ratio. That is, with sodium-lead, alloying is possible with an atomic ratio of sodium:lead in the range of 95:5 to 2:98.

またナトリウムと鉛の合金を電極に用いた場合、電極電
位に応じてナトリウムと相手金属との原子比が設定され
、逆にその原子比によって電極電位が設定されるため、
電気化学的に組成比をコントロールしやすくなる。しか
もこの合金は、狭い範囲、即ち0.5V程度の範囲内で
ナトリウムと相手金属との組成比が大きく変化するため
、電極に用いた場合に電池を充電しても、放電しても、
広い電気容量範囲で電位平坦性が保持される。
Furthermore, when an alloy of sodium and lead is used as an electrode, the atomic ratio between sodium and the other metal is set according to the electrode potential, and conversely, the electrode potential is set according to that atomic ratio.
It becomes easier to control the composition ratio electrochemically. Moreover, the composition ratio of sodium and the other metal in this alloy changes greatly within a narrow range, that is, within a range of about 0.5V, so when used as an electrode, even when a battery is charged or discharged,
Potential flatness is maintained over a wide capacitance range.

しかし、単純にナトリウム合金のみを電極として使用す
るだけでは、負極の利用率、可逆性を向上させる・には
至らず、本発明の如く炭素材料との複合体電極にする必
要がある。用いる炭素材料としては、カーボンブラック
または、黒鉛が適する。
However, simply using only a sodium alloy as an electrode does not improve the utilization rate and reversibility of the negative electrode, and it is necessary to use a composite electrode with a carbon material as in the present invention. Carbon black or graphite is suitable as the carbon material to be used.

上記カーボンブラックには、サーマルブラック、ファー
ネスブラック、アセチレンブラック等があるがいずれで
もよく特に制限はない。また黒鉛としては、天然黒鉛で
も人造黒鉛でもよく、また気相成長法により合成した繊
維状黒鉛でもよい。しかし、炭素材料の量があまり多過
ぎると電極容量、密度を下げる。適した量としては負極
重量当り、3%ないし20%がよい。
The above-mentioned carbon black includes thermal black, furnace black, acetylene black, etc., but any of them may be used without any particular limitation. Further, the graphite may be natural graphite or artificial graphite, or may be fibrous graphite synthesized by a vapor phase growth method. However, if the amount of carbon material is too large, the electrode capacity and density will be reduced. A suitable amount is 3% to 20% based on the weight of the negative electrode.

さらに複合電極が使用中に崩壊しないようにするため、
結着剤を添加する必要があるが、電極や電解液との反応
性がないことが必要で、通常ポリエチレン、ポリプロピ
レンの繊維または粉体を電極中によ(分散させて加熱溶
着させて用いる。また、より効果的な負極材の結着剤と
しては、例えばオレフィン系共重合体ゴム、例えばエチ
レン−プロピレンゴム(EPR)、エチレン−ブテンゴ
ム(EBR) 、エチレン−プロピレン−ジエンゴム(
EPDM)等が挙げられるが特にEPDMが好ましい。
Furthermore, to prevent the composite electrode from collapsing during use,
Although it is necessary to add a binder, it is necessary that it has no reactivity with the electrode or electrolyte, and is usually used by dispersing polyethylene or polypropylene fibers or powder into the electrode and welding it by heating. In addition, more effective binders for negative electrode materials include, for example, olefin copolymer rubbers such as ethylene-propylene rubber (EPR), ethylene-butene rubber (EBR), and ethylene-propylene-diene rubber (
EPDM), etc., and EPDM is particularly preferred.

この結着剤も多く使用すると、かえって電極性能を損な
う。適した量としては負極重量当り、1%ないし8%で
ある。
If too much of this binder is used, the electrode performance will be impaired. A suitable amount is 1% to 8% based on the weight of the negative electrode.

このような、負極を用いた場合、好適な電解液としては
、ナトリウム塩またはナトリウム塩とアルキルアンモニ
ウム塩をm−トリフルオロメチルアニソールを30容量
%以上含んだ溶媒に溶解したものが良い。
When such a negative electrode is used, a suitable electrolytic solution is one in which a sodium salt or a sodium salt and an alkylammonium salt are dissolved in a solvent containing 30% by volume or more of m-trifluoromethylanisole.

ナトリウム塩は当然電池反応の活物質として用いられる
が、アルキルアンモニウム塩は、必要に応じて電気伝導
性付与のために支持塩として用いられる。
Naturally, the sodium salt is used as an active material in the battery reaction, but the alkylammonium salt is used as a supporting salt to impart electrical conductivity, if necessary.

また、’m−1−リフルオロメチルアニソールが溶媒と
して、すぐれているのは、本発明の電池に用いる負極と
の反応性が低く、極めて安定だからである。
Furthermore, 'm-1-lifluoromethylanisole is excellent as a solvent because it has low reactivity with the negative electrode used in the battery of the present invention and is extremely stable.

本発明の電池用溶媒としてはm−)リフルオロメチルア
ニソール系化合物のみを用いても良いが、他の非水溶媒
との混合系でもよい。その場合m−トリフルオロメチル
アニソールを3Qvo1%以上含有していれば他の非水
溶媒との混合系で用いても良い。混合系で用いる場合そ
の種類に特に制限はないが、当然のことながら電極活物
質と強く反応するものは使用することはできない。
As the battery solvent of the present invention, the m-)lifluoromethylanisole compound alone may be used, but it may also be a mixed system with other non-aqueous solvents. In that case, it may be used in a mixed system with other non-aqueous solvents as long as it contains m-trifluoromethylanisole in an amount of 3Qvo 1% or more. When used in a mixed system, there are no particular restrictions on the type, but as a matter of course, those that strongly react with the electrode active material cannot be used.

混合される非水溶媒としては、例えば1,2ジメトキシ
エタン、グイグライム、トリグライム、テトラグライム
、ペンタグライム、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、l、43メチルジオキソラン、ジオ
キサン等のエーテル化合物、プロピレンカーボネート、
エチレンカポネート等のカーボネート類が挙げられるが
、特に1.2−ジメトキシエタン、グイグライム、テト
ラグライムが好ましい。
Examples of the non-aqueous solvent to be mixed include ether compounds such as 1,2 dimethoxyethane, guy glyme, triglyme, tetraglyme, penta glyme, tetrahydrofuran, 2-methyltetrahydrofuran, l,43 methyl dioxolane, and dioxane, propylene carbonate,
Examples include carbonates such as ethylene caponate, and 1,2-dimethoxyethane, guiglyme, and tetraglyme are particularly preferred.

次いで、本発明の電池に適した正極について説明する。Next, a positive electrode suitable for the battery of the present invention will be explained.

上記適した正極とは、本発明の電池に用いる負極に対し
て少なくとも1.5■以上の電圧を有し、かつ可逆的に
ナトリウムイオンを吸蔵、放出できる物であることが必
要であり、無機酸化物としては、例えばCoo、、Mn
0t、WO,、Mob、、M。
The above-mentioned suitable positive electrode must have a voltage of at least 1.5 μ or more with respect to the negative electrode used in the battery of the present invention, and must be capable of reversibly occluding and releasing sodium ions, and must be an inorganic material. Examples of oxides include Coo, Mn
0t,WO,,Mob,,M.

Ol、■、02等、無機カルコゲナイドとしては、例え
ばTiS、、Mo、S、、N i P S O3等、無
機ハライドとしては、例えばRuCQ−1RuBr−1
FeOCQ等がある。
Examples of inorganic chalcogenides include TiS, Mo, S, NiPSO3, etc., and examples of inorganic halides such as RuCQ-1RuBr-1.
There are FeOCQ, etc.

これらの中で、重量当り及び体積当りの電気容量、密度
が大きく、可逆性が良いものとしてC。
Among these, C has high electric capacity per weight and volume, high density, and good reversibility.

O3、MoO,、MoO,が挙げられるが、特に、C。O3, MoO,, MoO, and especially C.

O2が好ましい。このCoO,はNa十を層間に含んだ
形で存在しているいわゆる層間化合物の形を取り、層間
は、Na中の量により広がったり、縮んだりする。但し
、Na中は酸素間どうしのイオン反発を抑制する働きも
あり、Na十量が増えると必ずしもホスト格子のC軸が
延びるとは限らず、a軸及びb軸が若干延びる程度であ
る。そのため、C00、をホストに持つナトリウム・コ
バルト酸化物の充放電に伴う形状変化は比較的小さく、
他の無機物に比べ崩壊することが少ない。さらに、ナト
リウム・コバルト酸化物は電子伝導性が大きいため、導
電助材を殆ど必要としない。そのため、少ない導電助材
量または全く導電助材を使用しなくても電極として充分
に性能が発揮される。
O2 is preferred. This CoO is in the form of a so-called intercalation compound that exists in a form containing Na+ between layers, and the interlayers expand or contract depending on the amount of Na in the layer. However, Na also has the function of suppressing ion repulsion between oxygen atoms, and an increase in the amount of Na does not necessarily extend the C-axis of the host lattice, but only slightly extends the a-axis and b-axis. Therefore, the shape change due to charging and discharging of sodium cobalt oxide with C00 as host is relatively small.
It is less likely to disintegrate than other inorganic substances. Furthermore, since sodium cobalt oxide has high electronic conductivity, it hardly requires a conductive additive. Therefore, sufficient performance is exhibited as an electrode even if a small amount of conductive additive or no conductive additive is used.

〔実施例〕〔Example〕

次に実施例を示して本発明の二次電池を具体的に説明す
る。
Next, the secondary battery of the present invention will be specifically explained with reference to Examples.

実施例1 正極はNa1O1とCo、04を酸素雰囲気下で加熱反
応させ、N ao 7Coo tを合成し、それを粉砕
した後、予め混合しておいたアセチレンブラックとテト
ラフルオロエチレン(結着剤)の重量比が3=1の混合
物を加尤、N ao7Coo tが95%、混合物が5
%になるように混ぜて、正極活物質とし、直径15m5
、厚さ400μm程度になるよう円板状に加圧成形して
作製した。
Example 1 The positive electrode was made by heating and reacting Na1O1, Co, and 04 in an oxygen atmosphere to synthesize Nao7Coot, which was pulverized, and then premixed acetylene black and tetrafluoroethylene (binder). Add a mixture with a weight ratio of 3=1, Nao7Coot is 95%, and the mixture is 5
% to form a positive electrode active material and a diameter of 15m5.
, and was produced by pressure molding into a disk shape to have a thickness of about 400 μm.

また、負極は、Naとpbの原子比が3゜0:1゜0の
合金をよく粉砕した後、あらかじめ混合しておいたアセ
チレンブラックとEPDM(結着剤)の重量比が3:1
の混合物を加えNa合金が88%、上記混合物が12%
になるように混ぜて負極活物質とし、直径15mm、厚
さ300μ園程度になるよう円板状に加圧成形して作製
した。
In addition, the negative electrode was made by thoroughly grinding an alloy with an atomic ratio of Na and Pb of 3°0:1°0, and then using acetylene black and EPDM (binder) mixed in a weight ratio of 3:1.
Add a mixture of Na alloy to 88% and the above mixture to 12%.
A negative electrode active material was prepared by pressure molding the mixture into a disk shape with a diameter of 15 mm and a thickness of about 300 μm.

電解液は、m−トリフルオロメチルアニソールと1.2
−ジメトキシエタンの体積比で1:1の混合溶媒にN 
aP F sを0.1モル/12、B u、N B F
4(テトラブチルアンモニウムテトラフルオロボレート
)を0.5モル/Qになるようにそれぞれ溶かしたもの
を用いた。正極と負極の間にポリプロピレン製マイクロ
ポーラスフィルムとポリプロピレン製不織布をセパレー
ターとして用い、第1図に示すような、周知のコイン型
セルを組立てた。
The electrolyte contains m-trifluoromethylanisole and 1.2
- N in a mixed solvent of dimethoxyethane in a volume ratio of 1:1
aP F s 0.1 mol/12, B u, N B F
4 (tetrabutylammonium tetrafluoroborate) dissolved at a concentration of 0.5 mol/Q was used. A well-known coin-shaped cell as shown in FIG. 1 was assembled using a polypropylene microporous film and a polypropylene nonwoven fabric as separators between the positive electrode and the negative electrode.

この電池の組立直後の電圧は、2.53Vであった。こ
の電池を放電方向に電流3.0mAで電池電圧が2.O
Vになるまで放電し、次いで同じ電流値で電池電圧が3
.Ovになるまで充電し、以後放電・充電を繰返えして
、この電池の放電容量及び可逆性を調べたところ、最大
放電容量は12゜3sAh、放電容量が最大値の60%
に低下するまでのサイクル寿命は570回であった。
The voltage of this battery immediately after assembly was 2.53V. This battery was discharged at a current of 3.0 mA and a battery voltage of 2.0 mA. O
Discharge until the battery voltage reaches V, then at the same current value the battery voltage increases to 3.
.. After charging the battery until it reached Ov and then repeating discharging and charging, we investigated the discharge capacity and reversibility of this battery.The maximum discharge capacity was 12°3 sAh, and the discharge capacity was 60% of the maximum value.
The cycle life until it decreased to 570 times.

さらに上記と全く同じ電池を組み立て、充電状態にして
、室温、1ケ月間放置して自己放電率を調べたところ、
5.9%であった。また正極、負極を短絡し3日間放置
後、充放電を試みたとろこ、何の異常も見られず、正常
に作動できた。
Furthermore, when we assembled the exact same battery as above, left it in a charged state for one month at room temperature, and examined the self-discharge rate.
It was 5.9%. In addition, when the positive and negative electrodes were short-circuited and left for 3 days, charging and discharging was attempted, and no abnormality was observed and the battery operated normally.

実施例2 正極は市販のMOO3とアセチレンブラックとポリテト
ラフルオロエチレンを重量比で80+15=5になるよ
う混ぜて実施例1と同じように成型したものを用い、負
極は実施例1と全く同様のものを用いた。
Example 2 The positive electrode was made by mixing commercially available MOO3, acetylene black, and polytetrafluoroethylene in a weight ratio of 80+15=5 and molded in the same manner as in Example 1. The negative electrode was made in the same manner as in Example 1. I used something.

また、電解液は、m−トリフルオロメチルアニソールと
1.2−ジメトキシエタンの体積比が2=1の混合溶媒
にNaPF、を0.7モル/ Q、 B usEtNB
F4(トリブチルエチルアンモニウム テトラフルオロ
ボレート)を0.7モル/Qになるよう溶解したものを
用いた。
In addition, the electrolytic solution was a mixed solvent of m-trifluoromethylanisole and 1.2-dimethoxyethane with a volume ratio of 2=1, NaPF, 0.7 mol/Q, BusEtNB
F4 (tributylethylammonium tetrafluoroborate) dissolved at 0.7 mol/Q was used.

電池は第1図のようなコイン型セルを組み、実施例1と
同様の実験を行なった。但し、放電終止電圧のみを1.
5Vまで下げて行なった。
The battery was a coin-shaped cell as shown in FIG. 1, and the same experiment as in Example 1 was conducted. However, only the discharge end voltage should be set to 1.
I lowered it to 5V.

その結果、最大放電電気量は11 、5 mA h、放
電容量が最大値の60%に低下するまでのサイクル寿命
は630回、自己放電率は5.8%で過放電試験を行な
っても異常を見られなかった。
As a result, the maximum discharge amount of electricity was 11.5 mAh, the cycle life until the discharge capacity decreased to 60% of the maximum value was 630 times, and the self-discharge rate was 5.8%, which was abnormal even when an overdischarge test was performed. I couldn't see it.

実施例3 正極及び負極は実施例1と同じものを用い、電解液のみ
を次のようにして調製したものを用いた。
Example 3 The same positive and negative electrodes as in Example 1 were used, and only the electrolytic solution prepared as follows was used.

即ち、NaPFaを1.0モル/Qになるよう、m−ト
リフルオロメチルアニソールとグイグライムの体積比が
1=2の混合溶媒に溶かしたものを電解液とし、第1図
のようなコイン型セルを組みたて、実施例1と同様な実
験を行なった。
That is, the electrolyte was prepared by dissolving NaPFa at a concentration of 1.0 mol/Q in a mixed solvent of m-trifluoromethylanisole and guiglyme with a volume ratio of 1=2, and a coin-shaped cell as shown in Fig. 1 was prepared. An experiment similar to that in Example 1 was conducted using the following.

その結果、最大放電容量は12.5sAh、サイクル寿
命は608回、自己放電率は5.9%、また過放電試験
後に異常は見られなかった。
As a result, the maximum discharge capacity was 12.5 sAh, the cycle life was 608 times, the self-discharge rate was 5.9%, and no abnormality was observed after the overdischarge test.

実施例4 正極、負極は実施例1と同じものを用い、電解液のみを
次のように調製したものを用いた。即ち、NaPF5を
1.0モル/Q、Bu4NFBF4を0.5モル/eと
なるように、m−トリフルオロメチルアニソールと1.
2−ジメトキシエタンとテトラグライムの体積比が3:
4:1の混合溶媒に溶かしたものを電解液とし、第1図
に示すコイン型モルを組立て、実施1と同様な実験を行
なった。
Example 4 The same positive and negative electrodes as in Example 1 were used, and only the electrolyte solution prepared as follows was used. That is, m-trifluoromethylanisole and 1.0 mol/Q of NaPF5 and 0.5 mol/e of Bu4NFBF4 were added.
The volume ratio of 2-dimethoxyethane and tetraglyme is 3:
A coin-shaped mole shown in FIG. 1 was assembled using an electrolyte solution dissolved in a 4:1 mixed solvent, and an experiment similar to that in Example 1 was conducted.

その結果、最大放電容量は、12.5sAh、サイクル
寿命は625回、自己放電率は5.8%、また、過放電
試験後に異状は認められなかった。
As a result, the maximum discharge capacity was 12.5 sAh, the cycle life was 625 times, the self-discharge rate was 5.8%, and no abnormality was observed after the overdischarge test.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の二次電池は、エネルギー密
度が高く、サイクル寿命が長く、自己放電率も低い等、
多くの優れた性能を有するので、これを電源とする分野
に寄与することが極めて大きい。
As described above, the secondary battery of the present invention has high energy density, long cycle life, low self-discharge rate, etc.
Since it has many excellent performances, it will greatly contribute to the field of using it as a power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例において、電池性能を調べるのに使用し
たコイン型二次電池の縦断面図である。 1・・・・・・正極、2・・・・・・集電用金網、3・
・・・・・ポリプロピレン製不織布、4・・・・・・ポ
リプロピレン製マイクロポーラスフィルム、5・・・・
・・絶縁バッキング、6・・・・・・負極。
FIG. 1 is a longitudinal cross-sectional view of a coin-shaped secondary battery used to examine battery performance in Examples. 1...Positive electrode, 2...Wire mesh for current collection, 3.
...Polypropylene nonwoven fabric, 4...Polypropylene microporous film, 5...
...Insulating backing, 6...Negative electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)正極と負極と非水電解液からなる二次電池におい
て、負極がナトリウム合金と炭素材料と結着剤との複合
体からなり、非水電解液がナトリウム塩またはナトリウ
ム塩とアルキルアンモニウム塩を、m−トリフルオロメ
チルアニソールを30容量%以上含む非水溶媒に溶解し
たものであることを特徴とする二次電池。
(1) In a secondary battery consisting of a positive electrode, a negative electrode, and a nonaqueous electrolyte, the negative electrode is made of a composite of a sodium alloy, a carbon material, and a binder, and the nonaqueous electrolyte is a sodium salt or a sodium salt and an alkyl ammonium salt. Dissolved in a non-aqueous solvent containing 30% by volume or more of m-trifluoromethylanisole.
(2)正極がナトリウム・コバルト酸化物を主成分とす
る請求項(1)記載の二次電池。
(2) The secondary battery according to claim (1), wherein the positive electrode contains sodium cobalt oxide as a main component.
JP1028249A 1989-02-07 1989-02-07 Secondary battery Pending JPH02207464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028249A JPH02207464A (en) 1989-02-07 1989-02-07 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028249A JPH02207464A (en) 1989-02-07 1989-02-07 Secondary battery

Publications (1)

Publication Number Publication Date
JPH02207464A true JPH02207464A (en) 1990-08-17

Family

ID=12243306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028249A Pending JPH02207464A (en) 1989-02-07 1989-02-07 Secondary battery

Country Status (1)

Country Link
JP (1) JPH02207464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0746050A1 (en) * 1995-05-26 1996-12-04 Sony Corporation Non-aqueous electrolyte secondary battery
EP0757399A1 (en) * 1995-07-25 1997-02-05 Sumitomo Chemical Company, Limited Non-aqueous electrolyte and lithium secondary battery
EP0851524A1 (en) * 1996-12-27 1998-07-01 Sony Corporation Non-aqueous electrolyte secondary cell
KR100472511B1 (en) * 2002-10-29 2005-03-10 삼성에스디아이 주식회사 Lithium secondary battery without protection circuit module
JP2010027538A (en) * 2008-07-24 2010-02-04 Kyushu Univ Sodium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0746050A1 (en) * 1995-05-26 1996-12-04 Sony Corporation Non-aqueous electrolyte secondary battery
EP0757399A1 (en) * 1995-07-25 1997-02-05 Sumitomo Chemical Company, Limited Non-aqueous electrolyte and lithium secondary battery
EP0851524A1 (en) * 1996-12-27 1998-07-01 Sony Corporation Non-aqueous electrolyte secondary cell
KR100472511B1 (en) * 2002-10-29 2005-03-10 삼성에스디아이 주식회사 Lithium secondary battery without protection circuit module
JP2010027538A (en) * 2008-07-24 2010-02-04 Kyushu Univ Sodium secondary battery

Similar Documents

Publication Publication Date Title
US5051325A (en) Secondary battery
CA2043779A1 (en) Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes
US10923768B2 (en) Alkynyl-containing compound additive for non-aqueous electrolyte solution, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
EP1289044B1 (en) Nonaqueous electrolyte secondary battery
JP2000223152A (en) Lithium ion secondary battery having extended cycle life in charge/discharge
EP1391003B1 (en) Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery comprising the same
JPH02207464A (en) Secondary battery
JP2965674B2 (en) Lithium secondary battery
JP2839627B2 (en) Rechargeable battery
CN114641884A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JPH03196467A (en) Secondary battery
KR101511792B1 (en) Additives of electrode active materials for enhancement of battery capacity
KR20080070492A (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
JP3144832B2 (en) Non-aqueous solvent secondary battery
JPH05325961A (en) Lithium battery
JPH02207465A (en) Secondary battery
JPH08106920A (en) Lithium secondary battery
KR20190130483A (en) Cathode active material and fluoride ion battery
EP4210144A2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
JPH02207463A (en) Secondary battery
JP2898056B2 (en) Rechargeable battery
JPH0364869A (en) Secondary cell
JPH02207462A (en) Secondary battery
JPH046759A (en) Secondary battery
JPH03205767A (en) Secondary battery