JPS63282668A - Apparatus for measuring surface resistance distribution - Google Patents

Apparatus for measuring surface resistance distribution

Info

Publication number
JPS63282668A
JPS63282668A JP11695587A JP11695587A JPS63282668A JP S63282668 A JPS63282668 A JP S63282668A JP 11695587 A JP11695587 A JP 11695587A JP 11695587 A JP11695587 A JP 11695587A JP S63282668 A JPS63282668 A JP S63282668A
Authority
JP
Japan
Prior art keywords
surface resistance
conductive film
constant voltage
current
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11695587A
Other languages
Japanese (ja)
Other versions
JPH0697240B2 (en
Inventor
Yasuo Saruwatari
猿渡 康雄
Ryuji Fukumura
福村 龍二
Shinichiro Maeda
前田 新一郎
Shiro Nakamura
史郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62116955A priority Critical patent/JPH0697240B2/en
Publication of JPS63282668A publication Critical patent/JPS63282668A/en
Publication of JPH0697240B2 publication Critical patent/JPH0697240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To perform highly accurate measurement within a short time, by providing a constant voltage or current power supply, an X-Y axis drive apparatus, a current supply terminal and a means for measuring the surface resistance of a conductive film. CONSTITUTION:This measuring apparatus is constituted of the recording panel 1 provided to the upper surface of an X-Y plotter being an X-Y axis drive apparatus, a pen driving frame 2, a pen carriage 3, a current supply terminal 4, the operation control apparatus 5 of the X-Y plotter, a constant voltage power source 8, an A/D converter 9, an operational processing apparatus 10 and a display apparatus 10'. A conductive base material 6 wherein a conductive film is provided to the surface of a substrate is fixed so that the conductive film is turned upwardly and one side thereof becomes parallel to the X-axis direction of the panel 1. The surface resistance of the conductive film can be judged on the basis of the magnitude of the voltage signal applied between a paste, that is, the cathode of the constant voltage power source 8 and the current supply terminal 4. The digital signal converted by the converter 9 is operationally processed along with the operation data of the current supply terminal 4 inputted from the apparatus 5 by the apparatus 10 to be displayed on the display apparatus 10'.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面抵抗分布測定装置に関する。詳しくは、
基板の表面に導電性皮膜を有する導電性基材の表面抵抗
分布測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface resistance distribution measuring device. For more information,
The present invention relates to a surface resistance distribution measuring device for a conductive base material having a conductive film on the surface of the substrate.

(従来技術) 基板の表面に導電性皮膜を有する導電性基材、汐11え
ばポリエチレンテレフタレートフィルムのような高分子
基板の片面又は両面に、蒸着法又はスパッタ法等によっ
て金属及び/又は、金属酸[ヒ物を積層した導電性フィ
ルムは、各種表示用透明′d℃極、タッチ・ξネル、熱
線反射フィルム、電出波遮へい板等広範囲に用途が展開
されている。
(Prior art) A conductive substrate having a conductive film on the surface of the substrate, such as a polymer substrate such as a polyethylene terephthalate film, is coated with metal and/or metal acid by vapor deposition or sputtering on one or both sides of the substrate. [Conductive films laminated with cylindrical materials are used in a wide range of applications, including transparent 20°C polarity for various displays, touch/200° panels, heat ray reflective films, and electromagnetic wave shielding plates.

中でもタッチノミネルは、ディスプレイの表面を指又は
ペン等で軽く触れるだけで指示できる新しい入力機器と
して銀行のA.T.M.やオフィスオートメーンヨン機
器等に使用されている。
Among them, Touch Nominel is a new input device that allows you to give instructions by simply touching the surface of the display with your finger or a pen. T. M. It is used in office automation equipment, etc.

タッチ・ξネルに使用する導電性フィルムは、う明快(
透過率)、表面抵抗(導電率)などのフ〜イルムの表面
特性が重要とされる。
The conductive film used for touch and ξ channels is transparent (
The surface properties of the film, such as transmittance) and surface resistance (electrical conductivity), are important.

特にアナログ式タッチパネルに於ては、表面抵抗が導電
皮膜全面にわたり均一であること、つまり、表面抵抗分
布の均一性が重要な評価項目の一つとなっている。
Particularly in analog touch panels, one of the important evaluation items is that the surface resistance is uniform over the entire surface of the conductive film, that is, the uniformity of the surface resistance distribution.

この表面抵抗分布の測定は、人手により例え、ば第4図
に示すような装置を用いて行われていた。
The surface resistance distribution has been measured manually using, for example, a device as shown in FIG.

導電性皮膜を有する導電性基材6の両端を、ペースト7
′が陽極、ペースト7が陰極に、なるように直流定電圧
電源8を用いて定電圧を印加する。
A paste 7 is applied to both ends of the conductive base material 6 having a conductive film.
A constant voltage is applied using a DC constant voltage power source 8 such that ' is an anode and paste 7 is a cathode.

次いで導電性基材6のA点からB点までの間を、一定間
隔ν11えば10#間隔毎に通電端子4を接触させ各点
の電圧を測定する。更に、A点よシ例えば20鴎下の位
置C点から上記と同様の操作をD点まで行う。この操作
を繰り返して導電性基材6の全面にわたって接触させた
点の′電圧を測定する。
Next, the current-carrying terminal 4 is brought into contact with the conductive base material 6 from point A to point B at regular intervals ν11, for example, every 10#, and the voltage at each point is measured. Furthermore, the same operation as above is performed from point C, which is located 20 minutes from point A, for example, to point D. This operation is repeated to measure the voltage at the points brought into contact over the entire surface of the conductive base material 6.

A点からB点まで或は、6点からD点までの間に於て、
表面抵抗が均一であれば電圧の測定値は直線的に増加す
る。しかし均一でない場合は、電圧は、理論値より算出
される直線からずれを生じる。
From point A to point B or from point 6 to point D,
If the surface resistance is uniform, the measured voltage will increase linearly. However, if it is not uniform, the voltage will deviate from the straight line calculated from the theoretical value.

従来は、測定された各点のべ圧をグラフ[ヒし、上記の
理論値から算出された直線とのずれで表面抵抗分布の均
一性を評価していた。
Conventionally, the uniformity of the surface resistance distribution was evaluated by plotting the measured pressure at each point on a graph, and by looking at the deviation from the straight line calculated from the above-mentioned theoretical values.

(発明が解決しようとする問題点) 上記のよう々測定を行う際、正確で精度の高い結果を得
るために測定者は、通電端子を予め定められた点に正確
に且つ一定した圧力で接触させる必要があり、高度な熟
練を要求されていた。更に測定点は、導電性基材の面積
によっても異なるが、通常よく利用される大きさA4サ
イズ:210saX297mmの場合では300点程度
の多数の点を測定しなければならないので測定に長時間
を要する問題点がちった。
(Problem to be Solved by the Invention) When performing measurements as described above, in order to obtain accurate and highly accurate results, the measurer must touch the current-carrying terminal to a predetermined point with precision and constant pressure. This required a high degree of skill. Furthermore, the measurement points vary depending on the area of the conductive substrate, but in the case of the commonly used A4 size: 210sa x 297mm, it is necessary to measure a large number of about 300 points, so it takes a long time to measure. There was a problem.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明者らは、上記問題点を克服し、高精度で効率的に
測定できる導電性皮膜の表面抵抗分布測定装置を鋭意検
討した結果、定電圧又は定電流電源と、X−Y軸駆動装
置とX−Y軸駆動装置のペン固定治具に固定された通電
端子と、該通電端子からの出力に基づいて、導電性皮膜
の表面抵抗を測定する手段とを有する表面抵抗分布測定
装置により、上記の問題点が解決されることを見出し、
この知見に基づき不発明を完成した。
(Means for Solving the Problems) As a result of intensive study on a surface resistance distribution measuring device for conductive films that can overcome the above problems and measure efficiently with high accuracy, the present inventors have found that constant voltage or constant voltage A means for measuring the surface resistance of a conductive film based on a current power supply, an X-Y axis drive device, a current-carrying terminal fixed to a pen fixing jig of the X-Y-axis drive device, and an output from the current-carrying terminal. We have discovered that the above problems can be solved by a surface resistance distribution measuring device having
Based on this knowledge, he completed his invention.

次に図面を用いて本発明の実施態様を具体的に例示して
詳細に説明する。
Next, embodiments of the present invention will be specifically illustrated and explained in detail using the drawings.

第1図は不発明の装置の一例であり、第2図は第1図の
通電端子4の拡大図である。又第3図は、第1図の装置
で測定した測定結果の一例である。
FIG. 1 shows an example of the inventive device, and FIG. 2 is an enlarged view of the current-carrying terminal 4 shown in FIG. Moreover, FIG. 3 is an example of the measurement results measured with the apparatus shown in FIG. 1.

第1図中1は、X−Yプロッターの上面に設けられた記
録ノミネル、2はペン5駆動枠、3はペンキャリッジ、
4は通電端子、5はX−Yプロッターの作動制御装置で
ある。また8は定電圧電源、9はA/Dコンノζ−ター
、10は演算処理装置、10′は表示装置である。
In Fig. 1, 1 is a recording nominal provided on the top surface of the X-Y plotter, 2 is a pen 5 drive frame, 3 is a pen carriage,
Reference numeral 4 represents a power supply terminal, and reference numeral 5 represents an operation control device for the X-Y plotter. Further, 8 is a constant voltage power supply, 9 is an A/D controller, 10 is an arithmetic processing unit, and 10' is a display device.

基板の表面に導電性皮膜を有する導電性基材6は、導電
皮膜が上になるように記録パネル1の上に固定される。
A conductive base material 6 having a conductive film on the surface of the substrate is fixed onto the recording panel 1 with the conductive film facing upward.

このとき、導電性基材の一辺が記録パネル1のX軸方向
と平行になるよつに固定される。
At this time, the conductive base material is fixed so that one side thereof is parallel to the X-axis direction of the recording panel 1.

導電性基材6の対向する2辺には、定電圧を印加するI
J−−線を接続するために導電性の良好なペースト7 
、7’が3〜5嶋の幅で上記の対向する2辺全長にわた
シ塗布される。ペースト7.7−としては、例えば金ペ
ースト、銀慇−スト等が用いられる。該ペースト7 、
7’には、通常直流定電圧電源8から出力される直流電
圧が、例えば7が陰極、7パが陽極となるように接続さ
れ印加される。
A constant voltage is applied to two opposing sides of the conductive base material 6.
Good conductive paste 7 to connect J-- wire
, 7' are applied across the entire length of the above two opposing sides with a width of 3 to 5 wafers. As the paste 7.7-, for example, gold paste, silver paste, etc. are used. The paste 7,
A DC voltage normally outputted from a DC constant voltage power source 8 is applied to 7' by connecting it so that 7 becomes a cathode and 7P becomes an anode.

直流定電圧電源の代りに交流定電圧電源又は交流もしく
は直流の定電流電源を使用しても差し支えない。
Instead of the DC constant voltage power supply, an AC constant voltage power supply or an AC or DC constant current power supply may be used.

X−Y軸駆動装置は、・ξネル上に設けられたペン固定
治具がX軸及びY軸の任意の方向に移動し、且つペン固
定治具がアンプダウンの機能を有する装置であり、その
作動は通常コンピューターからの情報により制御される
The X-Y axis drive device is a device in which a pen fixing jig provided on the ξ channel moves in any direction of the X axis and Y axis, and the pen fixing jig has an amplifier down function, Its operation is usually controlled by information from a computer.

X−Y軸駆動装置としては、例えば第1図で用いた公知
のX−Yプロッターが挙げられる。本発明に於いてX−
、Yプロッターを使用する際は導電性基材がツクネル上
に固定され、ペンがX−Y方向に移動するフラットベラ
−型プロッターが好ましい。又、本発明のX−Y軸駆動
装置のペン固定治具は、X−Yプロッターのベンキャリ
ッジに相当する。
As the X-Y axis drive device, for example, the known X-Y plotter used in FIG. 1 can be mentioned. In the present invention, X-
When using a Y plotter, a flat-bell type plotter in which the conductive substrate is fixed on a tunnel and the pen moves in the X-Y direction is preferred. Further, the pen fixing jig of the X-Y axis drive device of the present invention corresponds to the Benn carriage of an X-Y plotter.

本発明で最も大きな特徴は、ペン固定治具に導電性を有
する通電端子を取り付けたことにある。
The most significant feature of the present invention is that a conductive current terminal is attached to the pen fixing jig.

通電端子4は、第2図に示すように通電端子の本体41
の先端部に接触子42を設けたものである。
The current-carrying terminal 4 has a main body 41 of the current-carrying terminal as shown in FIG.
A contact 42 is provided at the tip.

通電端子の本体41の材質は絶縁性物質例えば、絶縁性
の合成樹脂等が用いられ接触子42の材質としては、導
電性の良好な、導電性ゴム、導電性樹脂及び金、銀、銅
、アルミニウム等の金属が使用される。接触子42は、
第2図(a)〜(c)に示すように、板状(al、柱状
、半球状(blとして固定、或は、ローラー又はボール
状等の回転可能な形状(clとして本体41に取り付け
られる。導電性ゴムは、適度な硬さと柔軟性を有するの
で好ましい。導電性ゴムとしては例えばンリコンゴムに
カーゼンブラック、グラファイト、銀、ニッケル等の粒
子を錬シ込んだものが用いられる。接触子42をローラ
ー又はボール状とする場合は、導電性ゴムでも金属でも
よい。
The material of the main body 41 of the current-carrying terminal is an insulating material, such as an insulating synthetic resin, and the material of the contact 42 is a material with good conductivity such as conductive rubber, conductive resin, gold, silver, copper, etc. Metals such as aluminum are used. The contact 42 is
As shown in FIGS. 2(a) to (c), a plate-like shape (al, columnar shape, hemispherical shape (bl) may be fixed, or a rotatable shape such as a roller or ball shape (cl) may be attached to the main body 41. Conductive rubber is preferable because it has appropriate hardness and flexibility. For example, conductive rubber used is non-conductive rubber in which particles of carzen black, graphite, silver, nickel, etc. are injected. Contactor 42 When it is shaped like a roller or ball, it may be made of conductive rubber or metal.

接触子42は太きすぎると導電性基材との接触面積が広
くなり、測定点が少なくなるので得られる分布はマクロ
的となる。即ち表面抵抗分布の正確さが低下する。通常
、接触子42が導電性皮膜に接触する面積は、001〜
1m2、好ましくは005〜0,5−の大きさとされる
If the contactor 42 is too thick, the contact area with the conductive base material will be large, and the number of measurement points will be reduced, so that the obtained distribution will be macroscopic. That is, the accuracy of the surface resistance distribution decreases. Usually, the area where the contactor 42 contacts the conductive film is 001~
The size is 1 m2, preferably 0.05 to 0.5.

接触子42は、導電性基材6の例えば、陰極から陽極に
向けて、固定された接触子のときは断続的に、回転可能
な接触子のときは断続的又は連続的に接触を行いつつ移
動する。しかして陽極まで達したならば、Y軸方向に1
〜30=am行を変えて再度陰極側から同様の操作を行
うよう制御される。
The contact 42 contacts the conductive base material 6, for example, from the cathode to the anode, intermittently in the case of a fixed contact, and intermittently or continuously in the case of a rotatable contact. Moving. However, once it reaches the anode, it is 1 in the Y-axis direction.
~30 = Control is performed so that the am row is changed and the same operation is performed again from the cathode side.

接触子42と導電性皮膜とが接触を繰り返す間隔は小さ
い方が正確さが向上するので好ましい。即ち回転可能に
設けられた接触子42を連続的に接触させる方法が最も
好ましい。断続的に接触させるときの最小の間隔は、接
触子42の大きさ及びX−Y軸駆動゛装置の性能に制限
され、通常接触する間隔は1〜10−の範囲から選ばれ
る。これらの作動は第1図に於てはX−Yプロッターの
作動制御装置5により行われる。
It is preferable that the interval at which the contactor 42 and the conductive film repeatedly make contact is small because accuracy is improved. That is, the most preferable method is to bring the rotatably provided contactor 42 into continuous contact. The minimum interval for intermittent contact is limited by the size of the contactor 42 and the performance of the X-Y axis drive device, and the usual contact interval is selected from the range of 1 to 10-. These operations are performed by an operation control device 5 of the X-Y plotter in FIG.

導電皮膜の表面抵抗は、ペースト7即ち定電圧電源8の
陰極と通電端子4との間にかかる電圧信号の大きさによ
り判定することができる。電圧信号は、表示、記録及び
/′又は演算等の処理装置に入力され処理される。例え
ばCRTディスプレイ、記録計等に表示、記録し、又は
、パーソナルコンピューターを用いた演算処理により所
望の形態でアウトプットを得ることができる。
The surface resistance of the conductive film can be determined by the magnitude of the voltage signal applied between the paste 7, that is, the cathode of the constant voltage power source 8, and the current-carrying terminal 4. The voltage signal is input to and processed by a processing device for display, recording and/or calculation. For example, output can be obtained in a desired form by displaying and recording on a CRT display, recorder, etc., or by arithmetic processing using a personal computer.

演算処理される場合、第1図に於てアナログ信号の電圧
は、A/’Dコンバーター9によシディジタル信号に変
換される。
When arithmetic processing is performed, the voltage of the analog signal in FIG. 1 is converted into a sidigital signal by the A/'D converter 9.

該ディジタル信号は、清算処理装置10で別途X−Yプ
ロッターの制御装置5より入力された通電端子4の作動
データと共に演算処理される。演算処理結果は、表示装
置10′に表示及び/゛又は、記録される。X−Yプロ
ッターの作動制御装置5の容量(能力)が大きければ、
同装置を用いてA/Dコンノ々−ター9の出力信号を処
理することもできる。即ちX−Yプロッターの作動制御
装置5と演算処理装置10の両方を一台の・ξ−ソナル
コンピューターを用いて行うこともできる。
The digital signal is subjected to arithmetic processing in the settlement processing device 10 together with the operation data of the energizing terminal 4 inputted separately from the control device 5 of the X-Y plotter. The arithmetic processing results are displayed and/or recorded on the display device 10'. If the capacity (ability) of the operation control device 5 of the X-Y plotter is large,
The same device can also be used to process the output signal of the A/D converter 9. That is, both the operation control device 5 and the arithmetic processing device 10 of the X-Y plotter can be performed using one ξ-sonal computer.

接触子42にlmX1mの導電性ゴムの平板を用いた第
1図及び第2図(a)の装置で表面抵抗分布を測定した
結果の一例を第3図に示す。第3図中、12は測定対象
となる導電性基材を表し、EFfa’1の直線13は理
論値より得られる標準線である。
FIG. 3 shows an example of the results of measuring the surface resistance distribution using the apparatus shown in FIGS. 1 and 2(a) using a conductive rubber flat plate measuring 1 m x 1 m as the contactor 42. In FIG. 3, 12 represents the conductive base material to be measured, and the straight line 13 of EFfa'1 is a standard line obtained from theoretical values.

又、EF間の曲線14は接触子が接触して得られた電圧
信号を演算処理により、標準線との偏差で表した測定線
である。これをY軸方向に繰り返して測定し演算処理し
て表した線が各々、G−H。
Further, the curve 14 between EF and EF is a measurement line obtained by calculating the voltage signal obtained when the contactor contacts and expressing the deviation from the standard line. The lines obtained by repeatedly measuring and processing this in the Y-axis direction are GH.

I−J 、 K−L 、 M−N 、 O−P間の曲線
である。
These are curves between I-J, K-L, MN, and OP.

測定線14が標準線13より上側では、理論値より抵抗
は大きく、下側では小さいことを表している。測定線1
4が標準線13と平行ならば、表面抵抗分布はX軸方向
に均一であり又、Y軸方向の分布は、Y軸に平行な線上
にある各測定線の偏差比べることによシ、分布の均一性
を知ることができる。即ち理想的な導電性基材の場合は
、標準線13と測定線14が一致することになる。
When the measurement line 14 is above the standard line 13, the resistance is larger than the theoretical value, and when it is below it is smaller. Measurement line 1
4 is parallel to the standard line 13, the surface resistance distribution is uniform in the X-axis direction, and the distribution in the Y-axis direction can be determined by comparing the deviation of each measurement line on a line parallel to the Y-axis. It is possible to know the uniformity of That is, in the case of an ideal conductive base material, the standard line 13 and the measurement line 14 will match.

第3図の場合、各測定線は、標準線の上側に位置してお
9全面にわたって表面抵抗が高いことを表している。X
軸方向の表面抵抗はEF−GWコIJ間に於ては、変動
がやや大きく、特に中央部付近の値が高い。一方、KL
XMNX 02間に於ては変動が、小さく特に、02間
の抵抗は高目であるがほぼ均一となっている。即ち、全
体的に表面抵抗は高目であり分布は、中央部より上側で
特に高い傾向にあり、他の部分はほぼ均一となっている
ことが判る。
In the case of FIG. 3, each measurement line is located above the standard line, indicating that the surface resistance is high over the entire surface. X
The surface resistance in the axial direction fluctuates somewhat between EF and GW and IJ, and the value near the center is particularly high. On the other hand, K.L.
The variation between XMNX 02 is small, and in particular, the resistance between 02 and 02 is high, but almost uniform. That is, it can be seen that the surface resistance is high overall, and the distribution tends to be particularly high above the center, and is almost uniform in other parts.

〔発明の効果〕〔Effect of the invention〕

本発明の表面抵抗分布測定装置によれば測定者は、導電
性基材を記録パネルに固定するのみで自動的に測定でき
るので、素人でも誤差の少ない結果が短時間で得られ労
務も削減できる。
According to the surface resistance distribution measuring device of the present invention, the measurer can automatically measure by simply fixing the conductive substrate to the recording panel, so even an amateur can obtain results with few errors in a short time and reduce labor. .

更に通電端子からの出力をデジタ)v変換し、演算処理
することにより、偏差値、平均値及びY軸方向の分布線
図等多数の情報を得ることができる。
Further, by digitally converting the output from the current-carrying terminal and performing arithmetic processing, a large amount of information such as a deviation value, an average value, and a distribution diagram in the Y-axis direction can be obtained.

このように本発明によれば、従来高度な熟練を要し、か
つ長時間を必要とした測定が短時間に精度高く効率的に
行なうことができその効果は極めて大きいものである。
As described above, according to the present invention, measurements that conventionally required a high level of skill and took a long time can be carried out in a short time, accurately and efficiently, and the effect is extremely large.

(clはそれぞれ通電端子を例示する拡大図である。(cl is an enlarged view illustrating a current-carrying terminal, respectively.

第3図は、第1図の装置を用いて測定して得られた結果
の測定線の一例である。又、第4図は従来実施されてい
た装置の一例である。
FIG. 3 is an example of a measurement line obtained by measuring using the apparatus shown in FIG. 1. Further, FIG. 4 shows an example of a conventional device.

l・・・記録パネル、2・・・ペン駆動枠、3・・・ベ
ンキャリッジ、4・・・通電端子、41・・・通電端子
の本体、42・・・接触子、5・・・X−Yプロッター
の作動制御装置、6・・・導電性基材、7 、7’・・
・ペースト、8・・・定電圧電源、9・・・A/Dコン
、5−ター、1o・・・演算処理装置、10′・・・表
示装置、11・・・電圧計、12・・・導電性基材(外
形線)、13・・・標應線、14・・・測定線。
l...Recording panel, 2...Pen drive frame, 3...Ben carriage, 4...Electricity terminal, 41...Main body of the electricity supply terminal, 42...Contact, 5...X -Y plotter operation control device, 6... conductive base material, 7, 7'...
・Paste, 8... Constant voltage power supply, 9... A/D converter, 5-ter, 1o... Arithmetic processing unit, 10'... Display device, 11... Voltmeter, 12... - Conductive base material (outline line), 13... Marking line, 14... Measurement line.

第1区 第2図 (a)      (b)          (C)
第3図 )′
District 1, Figure 2 (a) (b) (C)
Figure 3)'

Claims (1)

【特許請求の範囲】 1、定電圧又は定電流電源と、X−Y軸駆動装置と、X
−Y軸駆動装置のペン固定治具に固定された通電端子と
、該通電端子からの出力に基づいて導電性皮膜の表面抵
抗を測定する手段とを有することを特徴とする表面抵抗
分布測定装置。 2、X−Y軸駆動装置が、X−Yプロッターである特許
請求の範囲第1項記載の表面抵抗分布測定装置。 3、通電端子の材質が、導電性ゴムである特許請求の範
囲第1項記載の表面抵抗分布測定装置。 4、導電性皮膜の表面抵抗を測定する手段が、A/Dコ
ンバーターと演算処理装置と表示装置との組み合わせで
ある特許請求の範囲第1項記載の表面抵抗分布測定装置
[Claims] 1. Constant voltage or constant current power source, X-Y axis drive device,
- A surface resistance distribution measuring device characterized by having a current-carrying terminal fixed to a pen fixing jig of a Y-axis drive device, and means for measuring the surface resistance of a conductive film based on the output from the current-carrying terminal. . 2. The surface resistance distribution measuring device according to claim 1, wherein the X-Y axis drive device is an X-Y plotter. 3. The surface resistance distribution measuring device according to claim 1, wherein the material of the current-carrying terminal is conductive rubber. 4. The surface resistance distribution measuring device according to claim 1, wherein the means for measuring the surface resistance of the conductive film is a combination of an A/D converter, an arithmetic processing device, and a display device.
JP62116955A 1987-05-15 1987-05-15 Surface resistance distribution measuring device Expired - Fee Related JPH0697240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116955A JPH0697240B2 (en) 1987-05-15 1987-05-15 Surface resistance distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116955A JPH0697240B2 (en) 1987-05-15 1987-05-15 Surface resistance distribution measuring device

Publications (2)

Publication Number Publication Date
JPS63282668A true JPS63282668A (en) 1988-11-18
JPH0697240B2 JPH0697240B2 (en) 1994-11-30

Family

ID=14699871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116955A Expired - Fee Related JPH0697240B2 (en) 1987-05-15 1987-05-15 Surface resistance distribution measuring device

Country Status (1)

Country Link
JP (1) JPH0697240B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256145A (en) * 2009-04-24 2010-11-11 Hioki Ee Corp Apparatus and method for measuring sheet resistance
JP2018184625A (en) * 2017-04-25 2018-11-22 名古屋メッキ工業株式会社 Metallic roller, electric resistance measuring means, and plating apparatus
CN114019241A (en) * 2021-11-11 2022-02-08 江苏科技大学 Method and device for determining resistance value of resistor in power device driving circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4431404Y1 (en) * 1967-01-20 1969-12-24
JPS5214464A (en) * 1975-07-23 1977-02-03 Minolta Camera Co Ltd Surface resistance measuring device
JPS57154069A (en) * 1981-03-19 1982-09-22 Matsushita Electric Ind Co Ltd Measuring device for electric resistance
JPS6244271U (en) * 1985-09-06 1987-03-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4431404Y1 (en) * 1967-01-20 1969-12-24
JPS5214464A (en) * 1975-07-23 1977-02-03 Minolta Camera Co Ltd Surface resistance measuring device
JPS57154069A (en) * 1981-03-19 1982-09-22 Matsushita Electric Ind Co Ltd Measuring device for electric resistance
JPS6244271U (en) * 1985-09-06 1987-03-17

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256145A (en) * 2009-04-24 2010-11-11 Hioki Ee Corp Apparatus and method for measuring sheet resistance
JP2018184625A (en) * 2017-04-25 2018-11-22 名古屋メッキ工業株式会社 Metallic roller, electric resistance measuring means, and plating apparatus
CN114019241A (en) * 2021-11-11 2022-02-08 江苏科技大学 Method and device for determining resistance value of resistor in power device driving circuit

Also Published As

Publication number Publication date
JPH0697240B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
Isaacs The effect of height on the current distribution measured with a vibrating electrode probe
EP1972931B1 (en) Method of measuring critical electric current value of superconducting wire
US3331021A (en) A. c. corrosion-rate meter and method
Einstein Factors limiting the accuracy of the electrolytic plotting tanks
US8018239B2 (en) Method and device for measuring powder properties
US20180275178A1 (en) Testing method for sheet resistance and contact resistance of connecting point of sheet material
JPH10239260A (en) Method and device for measuring critical current value of superconductive wire
JP2009115747A (en) Method and device for measuring conductive performance of paste
US4695360A (en) Device for electrochemical-etching determination of corrosion resistance of metals
JPS63282668A (en) Apparatus for measuring surface resistance distribution
US3061773A (en) Apparatus for cathodic protection
JP3984670B2 (en) Coordinate detection device
Moron et al. The possibility of employing a calculable four-electrode conductance cell to substitute for the secondary standards of electrolytic conductivity
US2896159A (en) Method and apparatus for measuring electrical resistance
CN204963772U (en) Thickness tester
JPH0545141B2 (en)
US4133722A (en) Process for determining properties of materials
JP2638283B2 (en) Electroless plating deposition rate measuring device
JP3062732B2 (en) Electrolytic processing method and electrolytic processing apparatus
JP4007484B2 (en) Resistivity measuring method and resistivity meter
JP3360682B2 (en) Apparatus for measuring critical current value of superconducting wire
JPH11108608A (en) Method and instrument for measuring film thickness of dielectric substance
US4123335A (en) Voltage measurement with spaced reference electrode
US3101547A (en) Apparatus for determining the coordinates of a point
JP2833623B2 (en) Method and apparatus for measuring resistivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees