JPS63274338A - Built-up construction of bearing with shaft - Google Patents

Built-up construction of bearing with shaft

Info

Publication number
JPS63274338A
JPS63274338A JP10598887A JP10598887A JPS63274338A JP S63274338 A JPS63274338 A JP S63274338A JP 10598887 A JP10598887 A JP 10598887A JP 10598887 A JP10598887 A JP 10598887A JP S63274338 A JPS63274338 A JP S63274338A
Authority
JP
Japan
Prior art keywords
bearing
shaft
fitting
housing
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10598887A
Other languages
Japanese (ja)
Inventor
Suezo Yuzawa
湯沢 末蔵
Masabumi Yamakawa
正文 山川
Takao Shibayama
孝男 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Precision Inc
Original Assignee
Canon Inc
Canon Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Precision Inc filed Critical Canon Inc
Priority to JP10598887A priority Critical patent/JPS63274338A/en
Publication of JPS63274338A publication Critical patent/JPS63274338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)

Abstract

PURPOSE:To build up a bearing with a shaft easily and accurately with respect to a housing by forming a small-diameter bearing section through shrinkage fit to the housing and a large-diameter bearing section through press fit in built-up construction in which each bearing section is fixed. CONSTITUTION:A bearing 12 with a shaft is fastened to bearing fitting sections 11A, 11B for a motor housing 10 and an outer race 16A on the small diameter side to the fitting section 11A through shrinkage fit, and an outer race 16B on the large diameter side is fixed to the fitting section 11B through press fit. According to such structure, the shaft 13 is assembled under the state in which it is not deflect ed or made to fall to the motor housing 10, and a motor, which can rotate and drive a member fixed or fitted to the shaft 13 such as a polygon mirror 35 under the state, in which the member is not deflected or made to fall, and has high accuracy, is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軸付き軸受をハウジングに対して固定する際の
組立て構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an assembly structure for fixing a shaft bearing to a housing.

〔従来の技術〕[Conventional technology]

モータシャフトや各種スピンドルを回転自在に軸支する
軸受としてボールベアリングやローラベアリングなどが
使用されており、これらの軸受はインナーレースとアウ
ターレースとの間にボールまたはローラを挿入した構造
をしており、通常アウターレースをハウジング等に圧入
して使用されている。
Ball bearings and roller bearings are used as bearings to rotatably support motor shafts and various spindles, and these bearings have a structure in which balls or rollers are inserted between an inner race and an outer race. , the outer race is usually press-fitted into a housing, etc.

しかし、このような従来の軸受にあっては、軸とインナ
ーレースとの嵌合部およびインナーレースとアウターレ
ースとの間に隙間があるため、軸の倒れや振れを完全に
除去することができず、光学系のスキャナモータやスピ
ンドルモータなどの楕v!i機器で使用する場合の難点
になっていた。
However, in such conventional bearings, there is a gap between the fitting part of the shaft and the inner race and between the inner race and the outer race, so it is not possible to completely eliminate tilting and runout of the shaft. The oval of optical system scanner motors, spindle motors, etc. This was a problem when using it with i-devices.

もっとも、軸受間隔を大きくしたり選択嵌合で特定の軸
と組合せ使用すれば倒れや振れの問題を解決することも
可能であるが、軸受構造が大型になったり工数が増大す
るという問題が生しる。
However, it is possible to solve the problems of tilting and runout by increasing the spacing between the bearings or using them in combination with a specific shaft through selective fitting, but this creates the problem of a larger bearing structure and increased man-hours. Sign.

そこで、ガタのない軸受構造として軸付き軸受が使用さ
れている。
Therefore, a bearing with a shaft is used as a bearing structure without backlash.

この軸付き軸受は軸自体をインナーレースとして利用し
、軸上の2ケ所にボールベアリング等の軸受部を形成す
るとともに両軸受部のアウターレース間にガタ除去用の
圧縮スプリングを組込んだ構造をしている。
This shaft bearing uses the shaft itself as an inner race, and has a structure in which bearing parts such as ball bearings are formed at two places on the shaft, and a compression spring is installed between the outer races of both bearing parts to remove backlash. are doing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来、この種の軸付き軸受をハウジングに固
定する方法としては、2個の軸受部の双方を圧入するこ
とが不可能であることから、次のような方法が採用され
ていた。
By the way, conventionally, as a method for fixing this type of shaft bearing to a housing, since it is impossible to press fit both of the two bearing parts, the following method has been adopted.

(i)2IrMの軸受部を両方とも焼嵌めする方法。(i) A method of shrink fitting both 2IrM bearing parts.

(i:)片側の軸受部のみを焼嵌めし、他方は接着する
方法。
(i:) A method in which only one side of the bearing is shrink-fitted and the other is glued.

(iii )両方の軸受部を接着する方法。(iii) A method of bonding both bearing parts.

(iv)片方のみ圧入し、他方はルーズにしておく方法
(iv) A method of press-fitting only one side and leaving the other side loose.

しかし、このような従来の組付は方法では次のような問
題があった。
However, this conventional assembly method has the following problems.

(i)両方を焼嵌めする方法では、ハウジング形状がパ
イプのように均一断面形状でないかぎり、冷却速度や締
め代の差などにより焼嵌め時に軸受部が軸方向に移動し
、組立て精度が得られない。
(i) In the method of shrink-fitting both, unless the housing shape is a uniform cross-sectional shape like a pipe, the bearing part moves in the axial direction during shrink-fitting due to differences in cooling rate and interference, making it difficult to achieve assembly accuracy. do not have.

また、焼嵌め代の管理や温度管理が難しい。In addition, it is difficult to manage the shrinkage fit and temperature.

(11)片側のみ焼嵌めし他方を接着する方法では、焼
嵌め固定完了まで軸受部を固定しておく必要があり、固
定しておかないと冷却途中で径が締まって来た時軸受部
が軸方向に移動し浮き上がる。
(11) In the method of shrink-fitting only one side and gluing the other, it is necessary to fix the bearing part until the shrink-fitting is completed. If the bearing part is not fixed, when the diameter tightens during cooling, the bearing part will It moves in the axial direction and floats up.

(iii )両方とも接着の場合は両軸受部の同軸度を
確保することができず、軸振れや倒れの原因になる。
(iii) If both bearings are bonded, coaxiality of both bearings cannot be ensured, which may cause shaft vibration or collapse.

(iv>片側のみ圧入し他方をルーズにする場合も両軸
受部の同軸度を確保することができず、軸振れや倒れが
生じる。
(iv> Even if only one side is press-fitted and the other side is left loose, coaxiality of both bearing parts cannot be ensured, resulting in shaft run-out or collapse.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来技術に鑑みなされたものであり、組立
て工数を低減できかつ組付は後の精度が維持される軸付
き軸受の組立て構造を提供することを目的とする。
The present invention has been made in view of the above-mentioned prior art, and it is an object of the present invention to provide a shaft bearing assembly structure that can reduce assembly man-hours and maintain accuracy after assembly.

本発明は、異なる外径の軸受部を有する軸付き軸受にお
いて、ハウジングに対し小径軸受部は焼嵌めにより、大
径軸受部は圧入によりそれぞれを固定する組立て構造に
より、上記目的を達成するものである。
The present invention achieves the above object by using an assembly structure in a shaft bearing having bearing parts of different outer diameters, in which the small diameter bearing part is fixed to the housing by shrink fitting, and the large diameter bearing part is fixed to the housing by press fitting. be.

〔実施例〕〔Example〕

以下図面を参照して本発明を具体的に説明する。 The present invention will be specifically described below with reference to the drawings.

第1図は本発明よる軸付き受の組立て構造を実施するの
に好適な精密小形モータ(スキャナモータ)の縦断面図
である。
FIG. 1 is a longitudinal cross-sectional view of a small precision motor (scanner motor) suitable for implementing the assembly structure of a bearing with a shaft according to the present invention.

第1図において、モータハウジングlOのボス部には軸
受を組付けるための嵌合部11A、11Bが形成され、
これらの嵌合部11A、IIBに軸付き軸受12が組込
まれている。
In FIG. 1, fitting portions 11A and 11B for assembling bearings are formed in the boss portion of the motor housing IO, and
A shaft bearing 12 is incorporated into these fitting portions 11A and IIB.

第2図は前記軸付き軸受12の詳細を示す。FIG. 2 shows details of the shaft bearing 12. As shown in FIG.

第2図において、軸付き軸受12は、軸13自体をイン
ナーレースとして利用し、該軸13上の2ケ所に形成し
た円周溝14.14のそれぞれに複数個のボール15を
着座させ、それらの外周に7ウターレース16A、16
Bを装着して一対の軸受部17A、17Bを構成すると
ともに両アウターレース16A、16B間にガタ除去用
の圧縮スプリング18を組込んだ構造をしている。
In FIG. 2, the shaft bearing 12 utilizes the shaft 13 itself as an inner race, and a plurality of balls 15 are seated in each of circumferential grooves 14 and 14 formed at two locations on the shaft 13. 7 outer laces 16A, 16 on the outer circumference of
B is attached to form a pair of bearing parts 17A, 17B, and a compression spring 18 for removing backlash is incorporated between both outer races 16A, 16B.

谷溝14.14の円弧断面はボール15の外径より大き
な円弧で形成されている。
The arc cross section of the valley groove 14.14 is formed by an arc larger than the outer diameter of the ball 15.

また、図示の例では、スプリング18の両端面はスライ
ドピース19.19を介してアウターレース16A、1
6Bを互いに離反させる方向に押圧している。
In the illustrated example, both end surfaces of the spring 18 are connected to the outer races 16A and 1 through slide pieces 19 and 19.
6B are pressed in the direction of separating them from each other.

各アウターレース16A、16BのP[−面に形成され
た円周溝20.20もボール15の外径より大きな円弧
断面を有している。
The circumferential grooves 20 and 20 formed on the P[- face of each outer race 16A and 16B also have a circular arc cross section larger than the outer diameter of the ball 15.

第2図の軸付き軸受12においては、スプリング18の
押圧力により、谷溝14.14(軸13)に対するボー
ル15および各′?llI20.20 (アウターレー
ス16A、16B)の軸方向位置は、それらの形状およ
び寸法により一定の箇所に決定され、軸方向および半径
方向のガタとも完全に除去される構造になっている。
In the bearing 12 with a shaft shown in FIG. 2, the pressing force of the spring 18 causes the balls 15 and each '? The axial position of the llI20.20 (outer races 16A, 16B) is determined at a fixed location depending on their shape and dimensions, and the structure is such that play in both the axial and radial directions is completely eliminated.

また、上記軸付き軸受12は、モータハウジング10に
組付は固定した後でも組付は前と同様スプリング18の
予圧でガタ除去の状態に保持されるよう、所定の方法で
挿入固定される。
Further, even after the shaft bearing 12 is assembled and fixed to the motor housing 10, it is inserted and fixed in a predetermined manner so that the assembly is maintained in a state in which play is removed by the preload of the spring 18 as before.

一般に、一対の軸支用軸受を使用する場合、軸受をハウ
ジングに組漬ける時の作業性を考慮して、一方の軸受の
外径(嵌合径)を他方の軸受の外径より太き((または
小さく)シて異径にすることが行われている。
Generally, when using a pair of bearings for shaft support, the outer diameter (fitting diameter) of one bearing is set to be larger ( (or smaller) to create a different diameter.

第2図の軸付き軸受12においては、軸受部17Aでは
アウターレース16Aの肉厚を小さくすることにより外
径が小さくされ、軸受部17Bではアウターレース16
Bの肉厚が大きく外径が大きくなっている。
In the bearing 12 with a shaft shown in FIG. 2, the outer diameter of the bearing portion 17A is reduced by reducing the wall thickness of the outer race 16A, and the outer diameter of the outer race 16A of the bearing portion 17B is reduced.
The wall thickness of B is large and the outer diameter is large.

而して、本発明によれば、軸付き軸受12は、モータハ
ウジング10の軸受嵌合部11A、11Bに対し、小径
側のアウターレースL6Aば嵌合部11Aと焼去めによ
り固定されており、大径側のアウターレース16Bは嵌
合部11Bと圧入により固定されている。
According to the present invention, the shaft bearing 12 is fixed to the bearing fitting parts 11A and 11B of the motor housing 10 by burning out the outer race L6A on the small diameter side and the fitting part 11A. The outer race 16B on the larger diameter side is fixed to the fitting portion 11B by press fitting.

この場合の軸付き軸受12の組付は手順については第3
図を参照して後で説明する。
In this case, the procedure for assembling the shaft bearing 12 is described in Section 3.
This will be explained later with reference to the figures.

第1図において、モータハウジング10のフランジ部2
2の対向面(第1図中の右側面)には、複数の励磁コイ
ル(空芯コイル)23が環状に配列されて取付けられて
おり、さらに半径方向外側に電機回路基板24が取付け
られている。
In FIG. 1, the flange portion 2 of the motor housing 10 is
A plurality of excitation coils (air-core coils) 23 are arranged in an annular manner and attached to the opposing surface of the coil 2 (the right side in FIG. There is.

前記モータハウジング10は各励磁コイル23のバック
ヨーク(磁束通路)すなわちステータヨーりをも兼ねる
ものであり、少な(とも各励磁コイル23の近傍領域は
磁性材混入型のプラスチックで形成されている。
The motor housing 10 also serves as a back yoke (magnetic flux path) for each excitation coil 23, that is, a stator yaw, and the area near each excitation coil 23 is made of plastic mixed with a magnetic material.

一方、前記軸13の右側突出部には、前記励磁コイル2
3に対面する回転子すなわちロータマグネット31およ
びロータステータ32から成る回転部材が取付けられて
いる。
On the other hand, the excitation coil 2 is attached to the right side protrusion of the shaft 13.
A rotating member consisting of a rotor, that is, a rotor magnet 31 and a rotor stator 32 facing each other is attached.

図示の例では、軸13の突出部にフランジ付きのカラー
33が圧入等で固定され、該カラー33に止め輪34等
でロータヨーク32の内径部が固定され、該ロータヨー
ク32にロータマグネット31が固着されている。この
ロータマグネット31には円周方向に所定数のN極、S
極が交互に形成されている。
In the illustrated example, a collar 33 with a flange is fixed to the protrusion of the shaft 13 by press-fitting or the like, the inner diameter part of the rotor yoke 32 is fixed to the collar 33 with a retaining ring 34, etc., and the rotor magnet 31 is fixed to the rotor yoke 32. has been done. This rotor magnet 31 has a predetermined number of N poles and S poles in the circumferential direction.
The poles are formed alternately.

第1図のモータは面対向偏平形構造をしたブラシレスD
Cモータの場合を示し、この種のモータは例えばスキャ
ナモータやスピンドルモータなど精密小形モータとして
好適な形式のものである。
The motor shown in Figure 1 is a brushless D motor with a flat surface facing structure.
The case of a C motor is shown, and this type of motor is suitable as a small precision motor such as a scanner motor or a spindle motor.

レーザープリンタなどにおいて感光体面上に光ビームを
走査するスキャナモータとして使用する場合は、軸13
上の二点鎖線35で示す位置にポリゴンミラー(回転多
面鏡)が圧入等で固定される。
When used as a scanner motor that scans a light beam on a photoreceptor surface in a laser printer, etc., the shaft 13
A polygon mirror (rotating polygon mirror) is fixed by press-fitting or the like at the position indicated by the two-dot chain line 35 above.

次に、軸付き軸受12をモータハウジング10に組付け
る手順を、第3図を参照して説明する。
Next, the procedure for assembling the shaft bearing 12 to the motor housing 10 will be explained with reference to FIG. 3.

まず、モータハウジング10の軸受嵌合部11A、II
Bのうち小径側の軸受嵌合部(焼去め側)IIAを加熱
して内径を拡大しておき、軸付き軸受12を矢印A方向
から挿入する。
First, the bearing fitting portions 11A and II of the motor housing 10
The bearing fitting part (burned-out side) IIA on the smaller diameter side of B is heated to enlarge its inner diameter, and the shafted bearing 12 is inserted from the direction of arrow A.

この場合、小径側は上記加熱によりルーズ嵌合になって
おり、大径側11Bは圧入代があるので、大径側のアウ
ターレース16Bがストップする。
In this case, the small diameter side is a loose fit due to the heating, and the large diameter side 11B has a press-fitting allowance, so the outer race 16B on the large diameter side stops.

そこで、大径側のアウターレース16Bを矢印Bで示す
方向から押圧して嵌合部11B内へ圧入する。
Therefore, the outer race 16B on the larger diameter side is pressed in the direction shown by arrow B to press fit into the fitting portion 11B.

この圧入によって軸付き軸受12の軸方向位置も正確に
決められる。
This press fitting also allows the axial position of the shaft bearing 12 to be determined accurately.

小径側のアウターレース16Aは圧入時は未だルーズで
あり、スプリング18によってガタのない軸13にの所
定位置に保持されている。
The outer race 16A on the small diameter side is still loose when it is press-fitted, and is held in a predetermined position on the shaft 13 without play by the spring 18.

そのままの状態で嵌合部11Aが冷却され温度が下がる
と、該嵌合部11Aはアウターレース16Aの外径に徐
々に圧着されそのまま緊締状態になっていく。
When the fitting part 11A is cooled in this state and its temperature drops, the fitting part 11A is gradually pressed against the outer diameter of the outer race 16A and becomes in a tightened state.

こうして、2つの軸受部17A、17Bは、スプリング
18の予圧によるガタ除去の状態のまま、モータハウジ
ング10に嵌合固定される。
In this way, the two bearing parts 17A and 17B are fitted and fixed to the motor housing 10 while the play is removed by the preload of the spring 18.

したがって、軸13はモータハウジング10に対して振
れや倒れのない状態で組立てられ、前述のポリゴンミラ
ー35(第1図)など軸13に固定または嵌合される部
材を振れや倒れのない状態で回転駆動しうる高い精度の
モータが得られた。
Therefore, the shaft 13 can be assembled with respect to the motor housing 10 without wobbling or falling, and members fixed or fitted to the shaft 13, such as the aforementioned polygon mirror 35 (FIG. 1), can be assembled without wobbling or falling. A highly accurate motor capable of rotational driving was obtained.

なお、以上の実施例では本発明の軸付き軸受の組立て構
造を面対向偏平形構造のモータで実施したが、本発明は
これに限られるものではな(、一般のモータに広く通用
できる他、例えばロータリーエンコンダーなどモータ以
外の各種回転機器においても同様に通用することができ
る。
In the above embodiments, the assembly structure of the shaft bearing of the present invention was implemented using a motor with a flat face-to-face structure, but the present invention is not limited to this. For example, it can be similarly applied to various rotating devices other than motors, such as rotary encoders.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなごとく、本発明によれば、異な
る外径の軸受部を有する軸付き軸受において、ハウジン
グに対し小径軸受部は焼去めにより、大径軸受部は圧入
によりそれぞれを固定する組立て構造にしたので、軸付
き軸受をハウジングに対し容易にしかも正確に組立てる
ことができ、組立て後においても軸を振れや倒れのない
状態で正確に軸支しうる軸付き軸受の組立て構造が得ら
れる。
As is clear from the above description, according to the present invention, in a shafted bearing having bearing parts of different outer diameters, the small diameter bearing part is fixed to the housing by burning out, and the large diameter bearing part is fixed to the housing by press fitting. The assembled structure allows the shaft bearing to be assembled into the housing easily and accurately, and even after assembly, the shaft bearing assembly structure allows the shaft to be accurately supported without wobbling or falling. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による軸付き軸受の組立て構造を実施し
たモータの縦断面図、第2図は第1図中の軸付き軸受の
縦断面図、第3図は第1図のモータにおいて軸付き軸受
をハウジングに組付ける状態を示す模式的縦断面図であ
る。 10−・−・−ハウジング、12−・−・・−軸付き軸
受、13・・・−・−・・・・−軸(モータ軸) 、1
7 A−−−−−−−−・・小径軸受部、17 B−・
・−・大径軸受部。 代理人 弁理士  大 音 康 毅 第1図
FIG. 1 is a vertical cross-sectional view of a motor in which the assembly structure of a shaft bearing according to the present invention is implemented, FIG. 2 is a vertical cross-sectional view of the shaft bearing in FIG. 1, and FIG. FIG. 3 is a schematic longitudinal cross-sectional view showing a state in which the bearing is assembled to the housing. 10--- Housing, 12-- Bearing with shaft, 13-- Axis (motor shaft), 1
7 A------------ Small diameter bearing part, 17 B-・
・−・Large diameter bearing part. Agent Patent Attorney Yasushi Ooto Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)異なる外径の軸受部を有する軸付き軸受において
、ハウジングに対し小径軸受部は焼嵌めにより、大径軸
受部は圧入によりそれぞれを固定することを特徴とする
軸付き軸受の組立て構造。
(1) An assembly structure for a shafted bearing having bearing parts with different outer diameters, characterized in that the small diameter bearing part is fixed to the housing by shrink fitting, and the large diameter bearing part is fixed to the housing by press fitting.
JP10598887A 1987-04-28 1987-04-28 Built-up construction of bearing with shaft Pending JPS63274338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10598887A JPS63274338A (en) 1987-04-28 1987-04-28 Built-up construction of bearing with shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10598887A JPS63274338A (en) 1987-04-28 1987-04-28 Built-up construction of bearing with shaft

Publications (1)

Publication Number Publication Date
JPS63274338A true JPS63274338A (en) 1988-11-11

Family

ID=14422110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10598887A Pending JPS63274338A (en) 1987-04-28 1987-04-28 Built-up construction of bearing with shaft

Country Status (1)

Country Link
JP (1) JPS63274338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115213A (en) * 1995-03-17 2000-09-05 Hitachi, Ltd. Bearing assembly having compact thickness, spindle motor and actuator using the same bearing assembly, and magnetic disk drive
US6687092B2 (en) * 2001-05-10 2004-02-03 Hitachi Global Storage Technologies Netherland B.V. Pivot bearing assembly for compensating for disk drive actuator tilt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115213A (en) * 1995-03-17 2000-09-05 Hitachi, Ltd. Bearing assembly having compact thickness, spindle motor and actuator using the same bearing assembly, and magnetic disk drive
US6687092B2 (en) * 2001-05-10 2004-02-03 Hitachi Global Storage Technologies Netherland B.V. Pivot bearing assembly for compensating for disk drive actuator tilt

Similar Documents

Publication Publication Date Title
JP2890158B2 (en) Composite ball bearing with integrated motor parts for OA equipment
JP2002027721A (en) High-speed rotation spindle motor
JP2002233100A (en) Spindle motor and bearing assembly
JP2004092910A (en) Fluid bearing system
US5841210A (en) Electric drive motor with a compound bearing assembly
US5808388A (en) Electric drive motor with a compound bearing assembly
JPS63274338A (en) Built-up construction of bearing with shaft
EP0770998B1 (en) Hard disc drive with a compound bearing assembly
US5666219A (en) Rotary polygon mirror type light deflecting system
JP2004312984A (en) Axial-gap type motor
WO2018066109A1 (en) Outer rotor-type dynamo-electric machine
JP3142124B2 (en) Motor, motor manufacturing method, and rotating body device
JPH09112546A (en) Hard disk driving device furnished with complex bearing device
JPS63274339A (en) Preventive device for scattering of grease for bearing with shaft
JPS63148846A (en) Bearing mechanism for motor
JPS63209446A (en) Bearing mechanism for motor
JP2004293685A (en) Dynamic pressure bearing unit, and motor using the same
JP2010226924A (en) Air core stepping motor and pivotally supporting structure
JP2005212593A (en) Electric power steering device
JP2004266968A (en) Axial gap motor
JP2005341653A (en) Electric motor
JPH1118357A (en) Rotating electric machine
JPS63129827A (en) Toroidal motor
JPH0715337Y2 (en) Motor
CN117321889A (en) Motor, blower using the same, and casing for motor