JPS63274199A - Formation of multilayer interconnection - Google Patents

Formation of multilayer interconnection

Info

Publication number
JPS63274199A
JPS63274199A JP10898787A JP10898787A JPS63274199A JP S63274199 A JPS63274199 A JP S63274199A JP 10898787 A JP10898787 A JP 10898787A JP 10898787 A JP10898787 A JP 10898787A JP S63274199 A JPS63274199 A JP S63274199A
Authority
JP
Japan
Prior art keywords
wiring
film
multilayer
polyimide
multilayer interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10898787A
Other languages
Japanese (ja)
Inventor
Osamu Miura
修 三浦
Hiroshi Watanabe
宏 渡辺
Kunio Miyazaki
邦夫 宮崎
Yukio Ogoshi
大越 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10898787A priority Critical patent/JPS63274199A/en
Publication of JPS63274199A publication Critical patent/JPS63274199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To easily manufacture a multilayer interconnection wherein the width of a wiring is small and the number of laminated layers is great by integrally laminating, heating and fixing with pressure polyimide films wherein the wirings are formed. CONSTITUTION:A multilayer interconnection film 9 is formed by pressurizing by a load 5 a multilayer film 4 obtained by laminating wiring films 3 wherein a copper wiring 2 is formed in a polyimide resin 1 and by joining by heating by a heater 6 the copper wirings mutually 7 by diffusion bonding between metals and the polyimide resins mutually 8 by reactive bonding by making an imide. Further, the multilayer interconnection film 9 is mounted on a ceramic substrate 10, connected to an LSI 12 by soldering 11 and a multilayer interconnection substrate is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、配線用導体と絶縁性の耐熱性樹脂とにより基
板上にm成され、電子計算機のモジュール用などに応用
される多層配線の形成方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to multilayer wiring, which is formed on a substrate by a wiring conductor and an insulating heat-resistant resin, and is applied to computer modules. Regarding the forming method.

〔従来の技術〕[Conventional technology]

モジュール用の多層配線基板としては、金属とポリイミ
ドを用いた薄膜多層配線、及びセラミック多層配線が知
られている。ポリイミドを用いた薄膜多層配線では、第
一層目の配線を形成した後に、ポリイミドを塗布、キュ
アした後に第2層配線を形成するというように、下1f
jから順に上層を形成していく、いわゆる逐次積層法で
ある。薄膜多層配線では、配線導体のパターンニングに
ホトリングラフ技術を用いるために、配線幅10μmツ
クフィルムを積層し、圧力をかけ加熱することにより一
括積層する0加熱中にセラミック及び配線導体は焼結し
、その際に界面での接着が起る。
As multilayer wiring boards for modules, thin film multilayer wiring using metal and polyimide and ceramic multilayer wiring are known. In thin film multilayer wiring using polyimide, after forming the first layer wiring, polyimide is applied and cured, and then the second layer wiring is formed.
This is a so-called sequential lamination method in which upper layers are formed in order from j. In thin-film multilayer wiring, in order to use photolithography technology for patterning the wiring conductor, the wiring width 10 μm thick film is laminated, and the ceramic and wiring conductor are sintered during heating, which is laminated all at once by applying pressure and heating. At this time, adhesion occurs at the interface.

セラミックの焼結温度は1000℃程度と高いために配
線導体としてはWなどの高融点金属が用いられる。した
がって、パターニングにはホトリングラフ技術が使用で
きないために配線幅は100μm程度が限界となる。
Since the sintering temperature of ceramic is as high as about 1000° C., a high melting point metal such as W is used as the wiring conductor. Therefore, since photolithographic technology cannot be used for patterning, the wiring width is limited to about 100 μm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

モジュール基板用の多層配線では、配線幅の微細化と多
層化が求められている。
In multilayer wiring for module boards, miniaturization of wiring width and multilayering are required.

薄膜多層配線では、ホトリングラフ技術を用いるために
微細化はできるが、多層化した場合にはパターン精度が
悪くなり微細化は難しくなる。また、逐次積層のため、
歩留りを良くすることが難しい〇 一方、セラミック多層基板では、微細配線の形成が難し
く、また、配線導体として抵抗の高いWなどしか使用で
きないという欠点がある0本発明は、上記問題点を解決
することを基本的な目的として、配線幅が小さく、かつ
積層数の多い多層配線を容易かつ確実に行え、かつ作業
効率の良好な多層配線の形成方法を提供することにある
0 〔問題点を解決するための手段〕 本発明を概説すれば、本発明は多層配線の形成方法に関
する発明であって、配線用導体と絶縁性の耐熱性ポリイ
ミド樹脂からなる多層配線の形成方法において、配線形
成されたポリイミドフィルムを一括積層する工程、及び
積層体を加熱圧着する工程の各工程を包含することを特
徴とする。
Thin-film multilayer interconnects can be miniaturized using photolithography technology, but when multilayered, pattern accuracy deteriorates and miniaturization becomes difficult. In addition, because of sequential lamination,
It is difficult to improve the yield.On the other hand, ceramic multilayer substrates have the disadvantage that it is difficult to form fine wiring, and only high-resistance W or the like can be used as the wiring conductor.The present invention solves the above problems. The basic objective is to provide a method for forming multilayer wiring with a small wiring width and a large number of laminated layers easily and reliably, and with good work efficiency. Means for Solving the Problem] To summarize the present invention, the present invention relates to a method for forming a multilayer wiring, and is an invention that relates to a method for forming a multilayer wiring, which includes a wiring conductor and an insulating heat-resistant polyimide resin. The method is characterized in that it includes the steps of laminating polyimide films together and heat-pressing the laminate.

セラミック多層基板では、配線の形成された、薄いセラ
ミックシートを積層して多層にしたが、本発明では、配
線の形成されたポリイミドフィルムを積層することで多
層配線を形成する0ポリイミドフイルム上に配線を形成
したのでは、上下の配線の導通がとれないために、配線
はポリイミド内に形成されており、積層した時に、上下
配線の導通がとれるようになっている。積層界面の接着
は、加熱して圧力を加えて行うが、焼結するわけではな
いので、セラミック基板のような高温高圧は不要である
。ポリイミドは、加熱前は粘性のある液体であるが、高
温に加熱するにつれてイミド化反応が進行し、耐熱性樹
脂となる0ベ一ク温度が200℃程度のときは、ポリイ
ミドは固化しフィルムとなるがイミド化は、はとんど進
行していない。このような状態のフィルムを密着して4
00℃程度に加熱すると10(lイミド化し、高分子化
が完結する0ポリイミドフイルムは密着しているため界
面を介してもイミド化が起り、ポリイミド同士の界面は
強固に接着する。一方、配線導体同士の接着は拡散接合
によって行う。配線導体表面に化学反応しやすい金属を
薄くコーティングしておけば、界面における反応が促進
されて強い接合が形成されるので、より好ましい。
In ceramic multilayer boards, thin ceramic sheets with wiring formed thereon are laminated to form a multilayer. However, in the present invention, wiring is formed on a polyimide film that forms a multilayer wiring by laminating polyimide films on which wiring is formed. If the layers are formed, conduction between the upper and lower wires cannot be achieved, so the wires are formed in polyimide so that when stacked, the upper and lower wires can be electrically connected. Adhesion at the laminated interface is performed by heating and applying pressure, but since sintering is not performed, high temperature and high pressure like ceramic substrates are not required. Polyimide is a viscous liquid before heating, but as it is heated to a high temperature, the imidization reaction progresses, and when the zero bake temperature is about 200°C, which becomes a heat-resistant resin, the polyimide solidifies and becomes a film. However, imidization has hardly progressed. Hold the film in this condition closely and
When heated to about 00°C, 10(l) imidizes and completes polymerization.Since polyimide films are in close contact, imidization occurs even through the interface, and the interface between polyimides is strongly bonded.On the other hand, wiring The conductors are bonded to each other by diffusion bonding.It is more preferable to thinly coat the surface of the wiring conductor with a metal that easily reacts chemically, since this will promote the reaction at the interface and form a strong bond.

400℃程度で接合できるので、配線導体としては、銅
、アルミニウムなどの抵抗の低い配線材料を利用するこ
とができる0したがって、配線のパターニングは、ホト
リックラフ技術を使うことができるために10μm程度
の微細配線の形成が可能となる0また、加熱における収
縮も少ない次めに寸法のずれも、セラミック多層基板に
比較して少なく、精度の高い微細配線の形成が可能であ
る0 フィルム形成の方法はいろいろあるが例えば、ポリイミ
ドフィルムにドライエツチングによジ配線パターンを形
成したのちに、Cu選択めっきによって、配線を形成す
ることなどがある0このようにして、配線形成されたポ
リイミドフィルムを基板からはがし、真空吸着により平
坦化したのちに、位置合せをして、下のポリイミドフィ
ルム上に重ねる。軽く圧着して仮接着し次後、更に次の
フィルムを同様にして積層していく。すべてのフィルム
が積層し終わったら、加圧して400℃で加熱する。4
00℃でポリイミドは完全にイミド化し、同時に、界面
の接合も行われる。
Since bonding can be performed at approximately 400°C, low resistance wiring materials such as copper and aluminum can be used as wiring conductors. Therefore, wiring patterning can be performed using photo-rough technology, so fine patterns of around 10 μm can be used. It is possible to form wiring lines.In addition, there is less shrinkage when heated.Secondly, there is less dimensional deviation compared to ceramic multilayer substrates, and it is possible to form fine wiring lines with high precision.There are various methods of film formation. However, for example, after forming a wiring pattern on a polyimide film by dry etching, wiring may be formed by selective Cu plating. In this way, the polyimide film on which the wiring has been formed is peeled off from the substrate, After flattening it by vacuum suction, it is aligned and stacked on the polyimide film below. After applying light pressure and temporary adhesion, the next film is laminated in the same manner. After all the films have been laminated, pressure is applied and heated at 400°C. 4
At 00°C, the polyimide is completely imidized, and at the same time, the interface is bonded.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明蝶これら実施例に駆足されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not inspired by these examples.

実施例1 〔多層配線の形成〕 第1−1図に、本発明による多層配線の形成方法の1例
を概略工程図として示す。第1−2図は、その(′b)
工程における丸印で囲んだ部分の拡大断面図である。各
図において、符号1はポリイミド樹脂、2は銅配線、5
は配線フィルム、4は多層フィルム、5は加圧荷重、6
は高周波誘導加熱ヒーター、7は銅配線間の拡散接合、
8はポリイミド樹脂間のイミド化反応による接合、9は
多層配線フィルム、10はセラミック多層基板、11は
はんだ、12はLSIを意味する。
Example 1 [Formation of Multilayer Wiring] FIG. 1-1 shows a schematic process diagram of one example of a method for forming a multilayer wiring according to the present invention. Figure 1-2 shows its ('b)
It is an enlarged sectional view of the part surrounded by the circle mark in a process. In each figure, numeral 1 is polyimide resin, 2 is copper wiring, 5 is
is a wiring film, 4 is a multilayer film, 5 is a pressurized load, 6
is a high-frequency induction heater, 7 is a diffusion bond between copper wiring,
Reference numeral 8 indicates a bond formed by an imidization reaction between polyimide resins, 9 indicates a multilayer wiring film, 10 indicates a ceramic multilayer substrate, 11 indicates solder, and 12 indicates an LSI.

第1図に示すように、ポリイミド樹脂1中に、表面に金
薄膜が形成されている銅配ffM2が形成されている配
線フィルム3(膜厚20μm、10100X10Qvを
積層して得られる多層フィルム4を荷重5により加圧(
10klil)して、ヒーター6により加熱(350℃
×50分)することにより、銅配線と銅配線間±7は、
金属間の拡散接合で、またポリイミド同±8は、イミド
化による反応接置で結合させ、多層配線フィルム9を形
成する。
As shown in FIG. 1, a multilayer film 4 obtained by laminating a wiring film 3 (film thickness 20 μm, 10100×10Qv) in which a copper wiring ffM2 with a thin gold film on the surface is formed in a polyimide resin 1 is used. Pressurized by load 5 (
10 kli) and heated with heater 6 (350℃
×50 minutes), the distance between copper wirings is ±7.
The multilayer wiring film 9 is formed by diffusion bonding between metals and by bonding the polyimide layers by reaction bonding through imidization.

更にこの多層配線フィルム?t−セラミック基板10に
搭載し、はんだ11によりLSIf2と接続し、多層配
線基板を完成させる0 〔配線フィルムの作製〕 第2図に、上記で用いたポリイミド樹脂便用の配線フィ
ルムの作製方法の1例を概略工程図として示す。第2図
において、符号13はガラス基板、14は銅薄膜、15
はポリイミド樹脂薄膜、16はスルーホールパターン、
17は銅配線パターン、18は金配線パターン、19は
配線フィルム、20は真空吸着治具、21は2枚合せ配
線フィルムを意味する。
Furthermore, this multilayer wiring film? It is mounted on a T-ceramic substrate 10 and connected to LSIf2 using solder 11 to complete a multilayer wiring board. One example is shown as a schematic process diagram. In FIG. 2, reference numeral 13 is a glass substrate, 14 is a copper thin film, and 15 is a glass substrate.
is a polyimide resin thin film, 16 is a through-hole pattern,
17 is a copper wiring pattern, 18 is a gold wiring pattern, 19 is a wiring film, 20 is a vacuum suction jig, and 21 is a two-layer wiring film.

第2図に示すように、ガラス基板13(厚さ16m、1
00X100■)上に銅薄膜14(膜厚a1噛)を蒸着
した後、ポリイミド樹脂スを塗布し、200℃、1時間
の加熱処理を行い、ポリイミド樹脂薄膜15(膜厚20
μm)を形成する。
As shown in FIG. 2, a glass substrate 13 (16 m thick, 1
After depositing a copper thin film 14 (thickness A1) on a thin copper film 14 (film thickness A1), a polyimide resin was applied and heat-treated at 200°C for 1 hour to form a polyimide resin thin film 15 (thickness 20 cm).
μm).

次にポリイミド膜をホトエツチングにより、スルーホー
ルパターン16を形成する。続いて、このスルーホール
部に電解銅めっき法により、銅配線パターン17(膜厚
21μm)、金配線パターン18(膜厚α1μm)  
t−積層する。次に、ウェットエツチングにより、この
配線フィルム19を基板より分離する。同様のプロセス
で得られた2枚の配線フィルムを、真空吸着板に互いに
吸着させ、配線パターンの整合を行い、加圧し密着し、
2枚を組合せた配線フィルム21t−作製する。
Next, a through hole pattern 16 is formed by photoetching the polyimide film. Subsequently, a copper wiring pattern 17 (thickness: 21 μm) and a gold wiring pattern 18 (thickness α: 1 μm) were formed on this through-hole portion by electrolytic copper plating.
t-Layer. Next, this wiring film 19 is separated from the substrate by wet etching. Two wiring films obtained by the same process are adsorbed to each other on a vacuum suction plate, the wiring patterns are aligned, and pressure is applied to make them stick together.
A wiring film 21t is prepared by combining two sheets.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば配綜幅が小さく、
かつ積膚数の多い多層配線を比較的簡単なプロセスで形
成できる。各層の配線パターンを独立して形成できるた
め、逐次積層法に比較して不良の発生率を低減できる。
As explained above, according to the present invention, the heald width is small;
Moreover, multilayer wiring with a large number of layers can be formed by a relatively simple process. Since the wiring patterns for each layer can be formed independently, the incidence of defects can be reduced compared to the sequential lamination method.

また、配線のバターニングはホトリノグラフ技術を利用
することができるために、10μm程度の微細配線の形
成が可能である。更に、加熱圧着の温度は400℃程度
でよいため、銅、アルミニウムなどの抵抗の低い金l!
4を配線導体として用いることができる。本発明による
多層配線はLSI実装基板などに応用することがでさ、
電気信号の伝播速度の高速化に寄与することができる0
Further, since patterning of wiring can utilize photorinographic technology, it is possible to form fine wiring of about 10 μm. Furthermore, since the temperature of heat-compression bonding only needs to be around 400°C, low-resistance metals such as copper and aluminum can be used!
4 can be used as a wiring conductor. The multilayer wiring according to the present invention can be applied to LSI mounting boards, etc.
0 that can contribute to increasing the propagation speed of electrical signals

【図面の簡単な説明】[Brief explanation of the drawing]

第1−1図は本発明による多層配線の形成方法の19+
+を示す概略工程図、第1−2図は第1−1図の(切工
程における丸印で囲んだ部分の拡大断面図、第2図は本
発明方法で用いるポリイミド樹脂使用の配線フィルムの
作製方法の1例を示す概略工程図である。 1・・・ポリイミド樹脂、2・・・銅配線、3・・・配
線フィルム、4・・・多層フィルム、5・・・加圧荷重
、6・・・高周波誘導加熱ヒーター、7・・・銅配線間
の拡散接合、8・・・ポリイミド樹脂間のイミド化反応
による接合、9・・・多層配線フィルム、10・・・セ
ラミック多層基板、11・・・はんだ、12・・・LS
I、15・・・ガラス基板、14・・・銅薄膜、15・
・・ポリイミド樹脂薄膜、16−・・スルーホールパタ
ーン、17・・・銅配線パターン、18・・・金配線パ
ターン、19・・・配線フィルム、 20−・・真空吸
着治具、21・・・2枚合せ配線フィルム
Figure 1-1 shows 19+ of the method for forming multilayer wiring according to the present invention.
1-2 is an enlarged sectional view of the part surrounded by a circle in the cutting process of FIG. 1-1, and FIG. It is a schematic process diagram showing one example of a production method. 1... Polyimide resin, 2... Copper wiring, 3... Wiring film, 4... Multilayer film, 5... Pressure load, 6... ... High frequency induction heater, 7... Diffusion bonding between copper wiring, 8... Bonding by imidization reaction between polyimide resins, 9... Multilayer wiring film, 10... Ceramic multilayer board, 11 ...Solder, 12...LS
I, 15... Glass substrate, 14... Copper thin film, 15.
...Polyimide resin thin film, 16-...Through hole pattern, 17...Copper wiring pattern, 18...Gold wiring pattern, 19...Wiring film, 20-...Vacuum suction jig, 21... 2-ply wiring film

Claims (1)

【特許請求の範囲】 1、配線用導体と絶縁性の耐熱性ポリイミド樹脂からな
る多層配線の形成方法において、配線形成されたポリイ
ミドフィルムを一括積層する工程、及び積層体を加熱圧
着する工程の各工程を包含することを特徴とする多層配
線の形成方法。 2、該ポリイミドフィルムは、イミド化が完結しない状
態で該一括積層され、積層後の加熱により完全にイミド
化される特許請求の範囲第1項記載の多層配線の形成方
法。 3、該ポリイミドフィルム中に形成される配線導体の端
面には、金属同士の拡散反応を促進するために、配線導
体と異なる金属がコーティングされている特許請求の範
囲第1項又は第2項記載の多層配線の形成方法。
[Scope of Claims] 1. In a method for forming a multilayer wiring made of a wiring conductor and an insulating heat-resistant polyimide resin, each of the steps of laminating the polyimide films on which the wiring has been formed at once and heat-pressing the laminate 1. A method for forming a multilayer interconnection comprising steps. 2. The method for forming a multilayer wiring according to claim 1, wherein the polyimide films are laminated at once without completion of imidization, and are completely imidized by heating after lamination. 3. The end face of the wiring conductor formed in the polyimide film is coated with a metal different from that of the wiring conductor in order to promote a diffusion reaction between metals. A method for forming multilayer wiring.
JP10898787A 1987-05-06 1987-05-06 Formation of multilayer interconnection Pending JPS63274199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10898787A JPS63274199A (en) 1987-05-06 1987-05-06 Formation of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10898787A JPS63274199A (en) 1987-05-06 1987-05-06 Formation of multilayer interconnection

Publications (1)

Publication Number Publication Date
JPS63274199A true JPS63274199A (en) 1988-11-11

Family

ID=14498715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10898787A Pending JPS63274199A (en) 1987-05-06 1987-05-06 Formation of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPS63274199A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204994A (en) * 1989-10-03 1991-09-06 Nec Corp Manufacture of polyimide multilayer wiring board
US5274912A (en) * 1992-09-01 1994-01-04 Rogers Corporation Method of manufacturing a multilayer circuit board
US5440805A (en) * 1992-03-09 1995-08-15 Rogers Corporation Method of manufacturing a multilayer circuit
JP2001043961A (en) * 1999-07-28 2001-02-16 Keihin Sokki Kk Heater device for semiconductor wafer and its manufacture
US6274404B1 (en) 1998-09-25 2001-08-14 Nec Corporation Multilayered wiring structure and method of manufacturing the same
JP2004327948A (en) * 2003-04-24 2004-11-18 Sanei Kagaku Kk Multilayer circuit board and method of fabricating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204994A (en) * 1989-10-03 1991-09-06 Nec Corp Manufacture of polyimide multilayer wiring board
US5440805A (en) * 1992-03-09 1995-08-15 Rogers Corporation Method of manufacturing a multilayer circuit
US5274912A (en) * 1992-09-01 1994-01-04 Rogers Corporation Method of manufacturing a multilayer circuit board
US6274404B1 (en) 1998-09-25 2001-08-14 Nec Corporation Multilayered wiring structure and method of manufacturing the same
US6351026B2 (en) 1998-09-25 2002-02-26 Nec Corporation Multilayered wiring structure and method of manufacturing the same
JP2001043961A (en) * 1999-07-28 2001-02-16 Keihin Sokki Kk Heater device for semiconductor wafer and its manufacture
JP2004327948A (en) * 2003-04-24 2004-11-18 Sanei Kagaku Kk Multilayer circuit board and method of fabricating the same

Similar Documents

Publication Publication Date Title
US5891795A (en) High density interconnect substrate
US5321210A (en) Polyimide multilayer wiring board and method of producing same
WO2007052799A1 (en) Multilayer printed wiring board and process for producing the same
WO2007046459A1 (en) Multilayer printed wiring board and its manufacturing method
JPH0923065A (en) Thin film multilayered wiring board and its manufacture
JPH06310870A (en) Wiring board structure and its manufacture
KR20000006037A (en) Low-thermal expansion circuit board and multilayer circuitboard
JPH08148828A (en) Thin film multilayered circuit board and its manufacture
JP2881270B2 (en) Method for manufacturing multilayer wiring board
JP2536274B2 (en) Method for manufacturing polyimide multilayer wiring board
JPS63274199A (en) Formation of multilayer interconnection
JP2542794B2 (en) Wiring board manufacturing method
JP3016292B2 (en) Polyimide multilayer wiring board and method of manufacturing the same
JPS60216573A (en) Manufacture of flexible printed circuit board
JPH11163522A (en) Multilayer wiring boar and its manufacture
JPH0669652A (en) Polyimide multilayered wiring board and its manufacture
JPS63182886A (en) Printed wiring board and manufacture of the same
JP2973513B2 (en) Method for manufacturing multilayer wiring board
JP4200664B2 (en) Multilayer substrate and manufacturing method thereof
JP4742409B2 (en) Method for manufacturing printed wiring board
JP2000269642A (en) Multilayer interconnection board and manufacture thereof
JP2616588B2 (en) Polyimide multilayer wiring board and method of manufacturing the same
JPH0360097A (en) Manufacture of multilayer printed circuit board
JPH02178995A (en) Manufacture of multilayer printed board
JPH0964536A (en) Thin film wiring board and production thereof