JPS63273506A - Shape control method for multistage rolling mill - Google Patents

Shape control method for multistage rolling mill

Info

Publication number
JPS63273506A
JPS63273506A JP62109246A JP10924687A JPS63273506A JP S63273506 A JPS63273506 A JP S63273506A JP 62109246 A JP62109246 A JP 62109246A JP 10924687 A JP10924687 A JP 10924687A JP S63273506 A JPS63273506 A JP S63273506A
Authority
JP
Japan
Prior art keywords
shape
control
gain
output gain
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62109246A
Other languages
Japanese (ja)
Other versions
JPH0724850B2 (en
Inventor
Yasushi Maeda
恭志 前田
Shigeo Hattori
重夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62109246A priority Critical patent/JPH0724850B2/en
Publication of JPS63273506A publication Critical patent/JPS63273506A/en
Publication of JPH0724850B2 publication Critical patent/JPH0724850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To stably control by correcting an effecting coefficient through an output gain after deciding the effecting coefficient theoretically or experimentally. CONSTITUTION:At a first step, the effecting coefficient stored previously is read in a control device. At a second step, the values of an input gain Wi and the output gain (g) are read out. At a third step, a control matrix in an equation is calculated. At a forth step, measured elongation difference percentage epsiloniob from each sensor of shape detectors is read in. At a fifth step, an assumed increment deltaj of controlled variable is calculated from the equation I. At a sixth step, the output gain gj is decided through a shape appreciation value sigma shown by the equation II. At a seventh step, an increment DELTAxj of the controlled variable is calculated and a control signal corresponding to this value is inputted to the driving means of rolling mill to control the plate shape. At an eight-th step, the correction of the input gain Wi is performed. Then, returning to the second step, after that time, similar controls are repeated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば12段あるいは20段圧延機等による
薄板圧延において、板形状の自動制御を行う多段圧延機
における形状制御法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a shape control method in a multi-high rolling mill that automatically controls the shape of a plate during rolling of a thin plate using, for example, a 12-high or 20-high rolling mill. .

(従来技術とその問題点) 従来、4段圧延機や6段圧延機においては、ワークロー
ルが大径であることから、ワークロールのたわみ量は小
さく、圧延材の板形状は2次式あるいは4次式で十分近
似できるようになっている。
(Prior art and its problems) Conventionally, in a 4-high rolling mill or a 6-high rolling mill, the work roll has a large diameter, so the amount of deflection of the work roll is small, and the plate shape of the rolled material is quadratic or It can be sufficiently approximated by a quartic equation.

このため、板形状の良否を表わすパラメータは少なく、
形状制御における影響係数も少なくて済む。
For this reason, there are few parameters that indicate the quality of the plate shape.
The influence coefficient in shape control can also be reduced.

したがって、影響係数を計算あるいは実験により簡単に
求めることができる(特開昭55−42143号公報、
特開昭55−42164号公報参照)。
Therefore, the influence coefficient can be easily determined by calculation or experiment (Japanese Unexamined Patent Publication No. 55-42143,
(See Japanese Patent Application Laid-Open No. 55-42164).

しかし、多段圧延機においては、ワークロールが小径で
あるため、ロールのたわみ量は無視できず、板形状は板
幅方向で複雑に変化し、板形状を正しく評価するために
は、多数のセンサーからなる形状検出器を用いて、板幅
方向の全般にわたって板形状について検出する必要があ
る。しかも、それだけではなく板形状を制御する多くの
機構(テーパーロールシフト機構、バックアップロール
押し込み機構)があり、それらは互いに干渉し合うため
、同時にかつ適切な作動が要求される。
However, in multi-high rolling mills, the work rolls have small diameters, so the amount of deflection of the rolls cannot be ignored, and the plate shape changes complexly in the width direction. It is necessary to detect the board shape throughout the board width direction using a shape detector consisting of: In addition, there are many mechanisms (taper roll shift mechanism, backup roll push mechanism) that control the plate shape, and since they interfere with each other, they are required to operate simultaneously and appropriately.

このように、複雑な変形を生じ、かつ各制御機構が互い
に干渉し合う場合には、その形状制御における影響係数
を適切に決めることは困難であり、このため、ロール変
形に対応した迅速な制御、安定した制御が行えないとい
う問題があった。
In this way, when complex deformation occurs and each control mechanism interferes with each other, it is difficult to appropriately determine the influence coefficient for shape control. , there was a problem that stable control could not be performed.

(発明の目的) 本発明は、上記従来の問題点に鑑みてなされたもので、
影響係数が多数あっても、その修正を容易に行い、形状
制御の収束性を向上させ、安定した形状制御を可能とし
た多段圧延機における形状制御法を提供しようとするも
のである。
(Object of the invention) The present invention has been made in view of the above-mentioned conventional problems.
The present invention aims to provide a shape control method for a multi-high rolling mill that allows for easy modification of a large number of influence coefficients, improves the convergence of shape control, and enables stable shape control.

(発明の構成) 上記目的を達成するために、本発明は、板形状を検出す
るn個のセンサーからなる形状検出器と、板形状を変化
させる形状制御用駆動手段と、上記形状検出器からの信
号に基いて上記駆動手段を制御する制御装置とを備えた
多段圧延機における形状制御法において、予め計算ある
いは実験により求めた影響係数aijと、適宜初期値を
定め、その後上記各センサーによる測定信号に基いて、
目標値との差を小さくするように変化させる入力ゲイン
Wi、出力ゲインgjとを用いて仮想制御量増分δjを
次式 %式%] [] ただし g ob : y番目のセンサー位置での測定伸び差率
[δ3]:m行のベクトル [εsb ]: n行のベクトル により算出し、次式 %式%) ただし ε?、番目のセンサー位置での目標伸び差率で表わされ
る形状評価値σより、改めて出力ゲインgjを決定し直
し、次式 %式% より制御量増分△xjを算出し、この値に基いて上記駆
動手段を制御し、以後、入カゲインwi、出力ゲインg
jを更新しつつ上記演算、制御を繰返すことを特徴とす
る多段圧延機における形状制御法。
(Structure of the Invention) In order to achieve the above object, the present invention includes a shape detector consisting of n sensors for detecting the shape of a plate, a shape control drive means for changing the shape of the plate, and a shape detector configured from the shape detector. In the shape control method for a multi-high rolling mill equipped with a control device that controls the drive means based on the signal of Based on the signal
Using the input gain Wi and output gain gj that are changed to reduce the difference from the target value, the virtual control amount increment δj is calculated using the following formula (%) [] [] where g ob is the measured growth at the y-th sensor position. Difference rate [δ3]: Vector of m rows [εsb]: Calculated using vector of n rows, using the following formula (% formula %) However, ε? , the output gain gj is determined again from the shape evaluation value σ expressed by the target expansion difference rate at the th sensor position, and the control amount increment △xj is calculated from the following formula % formula %. Based on this value, the above After controlling the driving means, input gain wi and output gain g
A shape control method in a multi-high rolling mill characterized by repeating the above calculation and control while updating j.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

本発明は、板形状を検出するn個のセンサーからなる形
状検出器と、板形状を変化させる形状制御用駆動手段と
、上記形状検出器からの信号に基いて上記駆動手段を制
御する制御装置とを備えた多段圧延機に適用される。 
   。
The present invention provides a shape detector comprising n sensors for detecting the shape of a plate, a shape control drive means for changing the shape of the plate, and a control device for controlling the drive means based on a signal from the shape detector. Applicable to multi-high rolling mills equipped with
.

はじめに、本発明に係る制御法の理論的背景について説
明する。
First, the theoretical background of the control method according to the present invention will be explained.

まず、形状検出器より出力された信号を基にして、圧延
材の板形状を評価する値に対応させるための形状評価関
数φを次の上うに定義する。
First, based on the signal output from the shape detector, a shape evaluation function φ is defined as shown below to correspond to a value for evaluating the plate shape of the rolled material.

φ=(Σ(εi−ε↑)”・wr    ・・・(1)
1=ま ただし εi:i番目のセンサー位置での伸び差率ε1・i番目
のセンサー位置での目標伸び差率ビ Wi:i番目のセンサー位置での入力ゲイン値n:形状
制御に用いるセンサーの個数(既述)とする。
φ=(Σ(εi−ε↑)”・wr...(1)
1 = Mathematica εi: Elongation difference rate at the i-th sensor position ε1 ・Target elongation difference rate at the i-th sensor position BiWi: Input gain value at the i-th sensor position n: Value of the sensor used for shape control The number of pieces (as mentioned above).

また、伸び差率εiを次のように近似する。Further, the elongation difference rate εi is approximated as follows.

ただし ε?b : を番目のセンサー位置での測定伸び差率a
ij:j番目のセンサー位置におけるj番目の制御量に
よる伸び差率への影響係数(計算あるいは、実験により
求める) δj :j番目の仮想制御量増分 m :形状制御の用いる制御アクチュエータの個数(既
述) とする。
However, ε? b: Measured elongation difference rate a at the th sensor position
ij: Influence coefficient of the j-th controlled variable at the j-th sensor position on the elongation difference rate (calculated or determined by experiment) δj: j-th virtual controlled variable increment m: Number of control actuators used for shape control (already determined) ).

そこで、形状評価関数φを最小とする仮想制御量増分δ
j(j=1〜鴎)を求めると、aφ/aδj=0なる条
件から、次式が得られ、 ・・・(3) マトリックスを用いて、次式のように表わすことができ
る。
Therefore, the virtual control amount increment δ that minimizes the shape evaluation function φ
When determining j (j=1 to seagull), the following equation is obtained from the condition that aφ/aδj=0, and (3) can be expressed as the following equation using a matrix.

[a kI2・J ] ・[6?b]   −(4)た
だし [δj]:m行のベクトル [εc!b]:n行のベクトル ここで、右辺の −〔Σaij−aik−W4 ]−’ ・caka #
 Wl ]z=1 ([]”は血マトリックスを表わす。)を制御マトリッ
クスと呼ぶ。
[a kI2・J] ・[6? b] − (4) where [δj]: m-row vector [εc! b]: n-line vector Here, the right side -[Σaij-aik-W4]-' ・caka #
Wl]z=1 ([]'' represents the blood matrix) is called the control matrix.

ついで、上記のようにして求めた仮想制御量増分δjか
ら上記制御装置による上記駆動手段の制御量増分Δxj
を、出力ゲインgjなる値を導入して、次のように表わ
す。
Next, from the virtual control amount increment δj obtained as described above, the control amount increment Δxj of the drive means by the control device is calculated.
is expressed as follows by introducing a value called output gain gj.

△x、=g 、・δ、       ・・・(5)ココ
コ この出力ゲインgjは、制御量増分Δxjを変化させる
目安を反映させるものであるため、板形状が悪い場合に
は形状検出信号の収束を速くするために大きくし、板形
状が良い場合には制御を安定させるために小さくする必
要がある。
△x, = g , · δ, ... (5) Here and there This output gain gj reflects the standard for changing the control amount increment Δxj, so if the plate shape is bad, the shape detection signal will not converge. It is necessary to make it large to make it faster, and to make it smaller to stabilize control if the plate shape is good.

このため、形状評価値σを次のように表わし、この形状
評価値σの関数として出力ゲインgKσ)を表わし、あ
るいは形状評価値σの大きさに応じて、例えば5段階に
区分し、その区分毎に出力ゲインgを予め定めておけば
よい。
For this reason, the shape evaluation value σ is expressed as follows, and the output gain gKσ) is expressed as a function of this shape evaluation value σ, or the shape evaluation value σ is divided into, for example, five stages according to the size of the shape evaluation value σ. The output gain g may be determined in advance for each case.

次に、本発明に係る制御法を第1図に示すフローチャー
トにしたがって説明する。
Next, the control method according to the present invention will be explained according to the flowchart shown in FIG.

まず、第1ステツプ(#1)で制御装置に予め記憶させ
ておいた影響係数aijを読み込む。
First, in the first step (#1), the influence coefficient aij stored in the control device in advance is read.

第2ステツプ(#2)で、入力ゲインWiおよび出力ゲ
インgjの値を読み込む。
In the second step (#2), the values of input gain Wi and output gain gj are read.

ただし、最初は入力ゲインWi(i= 1 =n) 、
出力ゲインgj(j=1〜m)の全てを1.0とする。
However, initially the input gain Wi (i = 1 = n),
It is assumed that all output gains gj (j=1 to m) are 1.0.

第3ステツプ(#3)で、上記第4式中の制御マトリッ
クスを計算する。
In the third step (#3), the control matrix in the fourth equation above is calculated.

第4ステツプ(#4)で、形状検出器の各センサーから
の測定伸び差率εiobを読み込む。
In the fourth step (#4), the measured elongation difference ratio εiob from each sensor of the shape detector is read.

第5ステツプ(#5)で、上記第4式により仮想制御量
増分δjを計算する。
In the fifth step (#5), the virtual control amount increment δj is calculated using the above-mentioned fourth equation.

第6ステツプ(#6)で、第6式で示す形状評価値σよ
り出力ゲインgjを決定する。
In the sixth step (#6), the output gain gj is determined from the shape evaluation value σ shown in the sixth equation.

第7ステツプ(#7)で、第5式により制御量増分Δx
jを算出し、この値に対応する制御信号を圧延機の上記
駆動手段に出力して板形状の制御を行う。
In the seventh step (#7), the control amount increment Δx is determined by the fifth equation.
j is calculated, and a control signal corresponding to this value is output to the driving means of the rolling mill to control the plate shape.

第8ステツプ(#8)で、入力ゲインWiの修正を行う
In the eighth step (#8), the input gain Wi is corrected.

すなわち、板幅方向の伸び差率分布が目標値と大きく異
なっている位置のセンサーについての入力ゲインWiの
みを1.0より大きくする。
That is, only the input gain Wi for the sensor at the position where the elongation difference distribution in the sheet width direction is significantly different from the target value is made larger than 1.0.

そして、その後、再度第2ステツプ(#2)に戻り、以
後上記同様の制御を繰り返す。
Thereafter, the process returns to the second step (#2) and the same control as described above is repeated.

次に、入力ゲインWi、出力ゲインgjによる制御特性
の変化例を第2図、第3図(横軸:圧延時間t1縦軸:
形形状値値σ)に示す。
Next, examples of changes in control characteristics due to input gain Wi and output gain gj are shown in Figs. 2 and 3 (horizontal axis: rolling time t1, vertical axis:
Shape value value σ).

第2図は、出力ゲイン(gi=1.0)を一定とし、入
力ゲイン(Wi)により、圧延時間により形状評価値σ
の変化を示すものである。これより、入力ゲインの調整
によって、形状の収束性は向上するが、ハンチングを起
こし安定性が悪化することが示されている。
Figure 2 shows the shape evaluation value σ depending on the rolling time with the output gain (gi = 1.0) constant and the input gain (Wi)
It shows the change in This shows that adjusting the input gain improves shape convergence, but causes hunting and deteriorates stability.

また、第3図は、入出力ゲインを固定させた場合(実線
)と入出力ゲインを調整した場合(破線)を比較した図
であり、これより入出力ゲインを調整することにより収
束性を向上させしかも安定な制御が行なわれていること
が示されている。
In addition, Figure 3 is a diagram comparing the case where the input/output gain is fixed (solid line) and the case where the input/output gain is adjusted (broken line), and it shows that convergence can be improved by adjusting the input/output gain. It has been shown that the control is both fast and stable.

(発明の乃果) 以上の説明より明らかなように、本発明によれば、影響
係数を理論的あるいは実験的に決定した後、入出力ゲイ
ンにより影響係数を修正するようにしである。
(Achievements of the Invention) As is clear from the above description, according to the present invention, after determining the influence coefficient theoretically or experimentally, the influence coefficient is modified by the input/output gain.

このため、精度良く決めることが困難な影響係数の精度
が低下しても、入出力ゲインを調整することにより形状
検出信号の収束性を良くし、かつ安定した制御が可能と
なり、この結果影響係数の決定も簡単化できる。
Therefore, even if the accuracy of the influence coefficient, which is difficult to determine accurately, decreases, adjusting the input/output gain improves the convergence of the shape detection signal and enables stable control, resulting in the influence coefficient The decision can also be simplified.

また、非線形制御に比べて影響係数の個数が非常に少な
くなり、−回の制御量を算出する迄に要する時間を短縮
し、制御装置の負荷を軽減することができる。
Furthermore, the number of influence coefficients is significantly smaller than in nonlinear control, and the time required to calculate the -times control amount can be shortened, and the load on the control device can be reduced.

さらに、非線形制御に比べて、影響係数が少なくなり、
圧延材の材質、板厚等の各パススケジュールに対して、
影響係数を含まなくても、個々のスケジュールに対して
入出力ゲインのみを含めば良いので、必要な変数が少な
くなり制御を簡単化できる等の効果を奏する。
Furthermore, compared to nonlinear control, the influence coefficient is smaller;
For each pass schedule such as the material and thickness of the rolled material,
Even if the influence coefficient is not included, it is sufficient to include only the input/output gain for each schedule, which has the effect of reducing the number of necessary variables and simplifying control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る制御法の手順を示すフローチャー
ト、第2図、第3図は入出力ゲインによる制御特性の変
化例を示す図である。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  青白 葆 ほか2名形状11’lテ殖σ
FIG. 1 is a flowchart showing the procedure of the control method according to the present invention, and FIGS. 2 and 3 are diagrams showing examples of changes in control characteristics due to input/output gain. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Aohiro Ao and 2 others Shape 11'L

Claims (1)

【特許請求の範囲】[Claims] (1)板形状を検出するn個のセンサーからなる形状検
出器と、板形状を変化させる形状制御用駆動手段と、上
記形状検出器からの信号に基いて上記駆動手段を制御す
る制御装置とを備えた多段圧延機における形状制御法に
おいて、予め計算あるいは実験により求めた影響係数a
ijと、適宜初期値を定め、その後上記各センサーによ
る測定信号に基いて、目標値との差を小さくするように
変化させる入力ゲインWi、出力ゲインgjとを用いて
仮想制御量増分δjを次式 [δ_j]=−[Σ^n_i_=_1aij・aik・
W_i^2]^−^1・[a_k_l・W^2_k]・
[ε^o^b_l]ただし ε^o^b_l:l番目のセンサー位置での測定伸び差
率[δ_j]:m行のベクトル [ε^o^b_l]:n行のベクトル により算出し、次式 σ={■^n_i_=_1(ε^o^b_i−ε^*_
i)^2/n}^1^/^2ただし ε^*_i:i番目のセンサー位置での目標伸び差率で
表わされる形状評価値σより、改めて出力ゲインgjを
決定し直し、次式 Δx_j=g_j・δ_j より制御量増分Δxjを算出し、この値に基いて上記駆
動手段を制御し、以後、入力ゲインWi、出力ゲインg
jを更新しつつ上記演算、制御を繰返すことを特徴とす
る多段圧延機における形状制御法。
(1) A shape detector consisting of n sensors that detects the shape of the plate, a shape control drive means that changes the shape of the plate, and a control device that controls the drive means based on a signal from the shape detector. In the shape control method for a multi-high rolling mill equipped with
The virtual control amount increment δj is determined as follows using ij, an input gain Wi, and an output gain gj, which are set as appropriate initial values, and are then changed to reduce the difference from the target value based on the measurement signals from the above-mentioned sensors. Formula [δ_j]=-[Σ^n_i_=_1aij・aik・
W_i^2]^-^1・[a_k_l・W^2_k]・
[ε^o^b_l] However, ε^o^b_l: Measured elongation difference rate at the l-th sensor position [δ_j]: Vector of m rows [ε^o^b_l]: Calculated from the vector of n rows, and then Formula σ={■^n_i_=_1(ε^o^b_i−ε^*_
i)^2/n^1^/^2 However, ε^*_i: The output gain gj is determined again from the shape evaluation value σ expressed by the target elongation difference rate at the i-th sensor position, and the output gain gj is determined by the following formula. The control amount increment Δxj is calculated from Δx_j=g_j・δ_j, the driving means is controlled based on this value, and thereafter, the input gain Wi and the output gain g
A shape control method in a multi-high rolling mill characterized by repeating the above calculation and control while updating j.
JP62109246A 1987-05-01 1987-05-01 Shape control method in multi-high rolling mill Expired - Lifetime JPH0724850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109246A JPH0724850B2 (en) 1987-05-01 1987-05-01 Shape control method in multi-high rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109246A JPH0724850B2 (en) 1987-05-01 1987-05-01 Shape control method in multi-high rolling mill

Publications (2)

Publication Number Publication Date
JPS63273506A true JPS63273506A (en) 1988-11-10
JPH0724850B2 JPH0724850B2 (en) 1995-03-22

Family

ID=14505317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109246A Expired - Lifetime JPH0724850B2 (en) 1987-05-01 1987-05-01 Shape control method in multi-high rolling mill

Country Status (1)

Country Link
JP (1) JPH0724850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176858A (en) * 2013-03-13 2014-09-25 Nisshin Steel Co Ltd Shape control method in cold rolling and shape control method
CN112893480A (en) * 2021-01-18 2021-06-04 燕山大学 Optimization method of non-square plate-shaped control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176858A (en) * 2013-03-13 2014-09-25 Nisshin Steel Co Ltd Shape control method in cold rolling and shape control method
CN112893480A (en) * 2021-01-18 2021-06-04 燕山大学 Optimization method of non-square plate-shaped control system

Also Published As

Publication number Publication date
JPH0724850B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JPS641208B2 (en)
US6161405A (en) Apparatus for controlling a rolling mill based on a strip crown of a strip and the same
JPS63273506A (en) Shape control method for multistage rolling mill
JP2001269706A (en) Method for controlling shape at continuous cold rolling
US3802236A (en) Gauge control method and apparatus including workpiece gauge deviation correction for metal rolling mills
JPS6111127B2 (en)
JPH038843B2 (en)
JP3067879B2 (en) Shape control method in strip rolling
JPS6111123B2 (en)
JP2588233B2 (en) Rolled material flatness control device
JP3347572B2 (en) Meandering control method for tandem rolling mill
JPH07102380B2 (en) Shape control method of rolled material in multi-high rolling mill
JP3327236B2 (en) Cluster rolling mill and plate shape control method
KR102314633B1 (en) Cold rolled steel sheet rolling apparatus capable of shape control and control method therefor
JP2706342B2 (en) Meandering control method for rolled material
JP4086119B2 (en) Shape control method in cold rolling of hot rolled steel strip before pickling
JPH09155420A (en) Method for learning setup model of rolling mill
JPH0734930B2 (en) Plate shape control method in rolling mill
JPH06259107A (en) Learning control method for process line
JP3396774B2 (en) Shape control method
JP3539311B2 (en) Method and apparatus for controlling tension between stands of tandem rolling mill
JP3496327B2 (en) Shape control method of rolled material in rolling mill
JP2562011B2 (en) Shape control method for continuous rolling mill
JP3300202B2 (en) Rolling force control method in temper rolling of steel strip
JPS6323849B2 (en)