JPS63270397A - Highly oriented lithium niobate thin film and production thereof - Google Patents

Highly oriented lithium niobate thin film and production thereof

Info

Publication number
JPS63270397A
JPS63270397A JP10242287A JP10242287A JPS63270397A JP S63270397 A JPS63270397 A JP S63270397A JP 10242287 A JP10242287 A JP 10242287A JP 10242287 A JP10242287 A JP 10242287A JP S63270397 A JPS63270397 A JP S63270397A
Authority
JP
Japan
Prior art keywords
lithium niobate
thin film
precursor
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10242287A
Other languages
Japanese (ja)
Other versions
JPH0375518B2 (en
Inventor
Shinichi Hirano
真一 平野
Junji Tabuchi
順次 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10242287A priority Critical patent/JPS63270397A/en
Publication of JPS63270397A publication Critical patent/JPS63270397A/en
Publication of JPH0375518B2 publication Critical patent/JPH0375518B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To enable production of the titled homogeneous thin film having a desired thickness, by applying a precursor solution of LiNbO3 obtained by partially hydrolyzing a complex alkoxide of Li with Nb onto a substrate and firing the resultant film. CONSTITUTION:Ethoxylithium and pentaethoxyniobium are mixed, dissolved in ethanol so as to provide 1:1 molar ratio of Li:Nb and refluxed to prepare a complex alkoxide. Decarbonated water diluted with ethanol is then dripped thereinto. The complex alkoxide is hydrolyzed and ethanol is evaporated to afford a concentrated solution of a precursor of lithium niobate LiNbO3. Steps for applying the precursor solution onto a sapphire single crystal substrate and firing the formed film while heating at >=400 deg.C are repeated once or more to form oriented lithium niobate having the composition formula of LiNbO3 in one layer or laminated into a multilayer film on the above-mentioned substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高純度で組成が化学量論比に制御された低温で
焼成できる、特に厚さが数100人ないし数μmの配向
したニオブ酸リチウム薄膜およびその製造方法に関する
ものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the production of oriented niobic acid having a high purity and a composition controlled to a stoichiometric ratio, which can be fired at a low temperature, and in particular has a thickness of several hundred to several μm. This invention relates to a lithium thin film and its manufacturing method.

(従来の技術) ニオブ酸リチウムは圧電性、焦電性をもつためその単結
晶はSAWデバイス、赤外線センサーとして応用されて
いる。ニオブ酸リチウムは化学量論組成付近に固溶領域
をもち、調和溶融液組成は化学量論組成と異なるため、
組成を制御した化学量論組成の均質なニオブ酸リチウム
単結晶の育成は困難であった。また、単結晶製造の際に
は、1000℃以上の高温が必要であるためその製造装
置は大型なものとなっていた。そのためニオブ酸リチウ
ムのち密で、不純物を含まない結晶性の高い焼結体の薄
膜を作成し、焼結の際に分極する等の方法によって単結
晶の代わりにSAWデバイスや赤外線センサーとして用
いる試みがなされてきた。
(Prior Art) Lithium niobate has piezoelectric and pyroelectric properties, so its single crystals are used as SAW devices and infrared sensors. Lithium niobate has a solid solution region near the stoichiometric composition, and the harmonic melt composition differs from the stoichiometric composition.
It has been difficult to grow a homogeneous lithium niobate single crystal with a controlled stoichiometric composition. Furthermore, since single crystal production requires high temperatures of 1000° C. or higher, the production equipment has been large. Therefore, attempts have been made to create a thin film of lithium niobate that is dense, highly crystalline sintered material that does not contain any impurities, and to use it as a SAW device or infrared sensor instead of a single crystal by polarizing it during sintering. It has been done.

その方法の一つとして、粉粒体状のニオブ酸リチウムを
均一に分散させた溶液を基板上に塗布し焼結する方法が
あるが、ち密でクラックやピンホールのない膜を作成す
ることは困難であり、焦電体、圧電体として望ましい厚
さ数μm以下の薄膜を製造することは、極めて困難であ
った。焼結を行うには1000℃以上の高温が必要なた
め基板の材料も限られ、製造装置も大型なものとなって
しまっていた。この他、ニオブ酸リチウム膜の製造方法
として、スパッタリング法、真空蒸着法、気相反応法等
が検討されているが、これらの方法においてはち密なも
のは得がたく、化学量論比の制御が極めて困難であるこ
とにより優れたニオブ酸リチウム薄膜は得られていない
One method is to apply a uniformly dispersed solution of powdered lithium niobate onto the substrate and sinter it, but it is difficult to create a dense film without cracks or pinholes. It has been extremely difficult to manufacture thin films with a thickness of several μm or less, which are desirable as pyroelectric and piezoelectric materials. Sintering requires a high temperature of 1,000°C or higher, which limits the materials available for the substrate and requires large manufacturing equipment. Other methods of producing lithium niobate films, such as sputtering, vacuum evaporation, and gas-phase reaction methods, are being considered, but these methods cannot produce dense films, and it is difficult to control the stoichiometric ratio. However, it is extremely difficult to obtain an excellent lithium niobate thin film.

ニオブ酸リチウム薄膜の製造方法は学会などで公表され
ている例はあるが、配向させたニオブ酸リチウム薄膜を
得る方法についてはまだ提案されていない。
Although methods for producing lithium niobate thin films have been published at academic conferences, no method for obtaining oriented lithium niobate thin films has yet been proposed.

(発明が解決しようとする問題点〉 従来の粉末塗布の後焼結する方法、スパッタリング法で
はいずれの方法においてもち密で不純物や第二相がなく
化学量論比に組成を制御された結晶性の高いニオブ酸リ
チウム膜を製造することは不可能であった。また、焦電
体、圧電体として必要な数100λ以上の膜厚を得るた
めには、スパッタリング法では膜の成長速度が遅くスパ
ッタリングの時間がかかり過ぎ、逆に粉末塗布の後焼結
する方法では圧電体、焦電体として望ましい数μm以下
の膜厚を得ることは困難であった。
(Problems to be solved by the invention) Both the conventional method of applying powder and then sintering, and the sputtering method produce crystallinity that is dense, free of impurities and secondary phases, and whose composition is controlled to a stoichiometric ratio. It has been impossible to manufacture a lithium niobate film with a high film thickness.In addition, in order to obtain a film thickness of several hundred λ or more, which is necessary for pyroelectric and piezoelectric materials, sputtering has a slow film growth rate, and sputtering is necessary. On the other hand, it was difficult to obtain a film thickness of several micrometers or less, which is desirable for piezoelectric materials and pyroelectric materials, by the method of applying powder and then sintering it.

また、ニオブ酸リチウム膜の製造には1000℃以上の
高温を発生することのできる電気炉が必要であり、また
基板の材質も限られたものしか使用できないといった問
題点があった。
In addition, manufacturing a lithium niobate film requires an electric furnace capable of generating a high temperature of 1000° C. or higher, and there are also problems in that only limited materials can be used for the substrate.

さらに、いずれの方法によっても配向した結晶性の薄膜
を得ることは不可能であった。
Furthermore, it was impossible to obtain an oriented crystalline thin film by any of the methods.

本発明の目的は、配向させる問題、膜のち密さの問題、
純度の問題、組成を制御する問題、膜厚の問題、熱処理
に高温が必要とされるといっな問題点を解決したニオブ
酸リチウム薄膜とその製造方法を提供することにある。
The purpose of the present invention is to solve the problem of orientation, film density,
The object of the present invention is to provide a lithium niobate thin film that solves problems such as purity, composition control, film thickness, and the need for high temperatures for heat treatment, and a method for producing the same.

(問題点を解決するための手段) 本発明は配向された組成式がLiNb09であるところ
のち密で結晶性の高いニオブ酸リチウム薄膜およびその
製造方法である0本発明においてその製造方法はエトキ
シリチウムとペンタエトキシニオブのモル比が1=1と
なるように混合、溶解し、還流を行い、複合アルコキシ
ドを作成し、この複合アルコキシドを部分加水分解し、
LiNbO3の前駆体を作成し、得られたLiNbO3
の前駆体を濃縮し、該前駆体溶液をサファイア単結晶基
板上に塗布して400℃以上の温度で加熱焼成する工程
を少なくとも1回以上繰り返し、当該基板上にニオブ酸
リチウム薄膜を多層に積層せしめることを特徴とするニ
オブ酸リチウム薄膜の製造方法である。
(Means for Solving the Problems) The present invention provides a dense and highly crystalline lithium niobate thin film having an oriented compositional formula of LiNb09, and a method for producing the same. and pentaethoxyniobium are mixed and dissolved so that the molar ratio is 1=1, reflux is performed to create a composite alkoxide, and this composite alkoxide is partially hydrolyzed,
Create a LiNbO3 precursor and obtain the LiNbO3
The process of concentrating the precursor, applying the precursor solution onto a sapphire single crystal substrate, and heating and firing it at a temperature of 400°C or higher is repeated at least once, and a multilayer lithium niobate thin film is laminated on the substrate. This is a method for producing a lithium niobate thin film, characterized by:

さらに詳しく述べると次のとおりである。出発原料とし
てリチウムのアルコキシドとニオブのアルコキシドを用
いこれらのモル比が1:1となるように脱水、精製した
アルコールに混合、溶解した。アルコールは常温で液体
であれば良く、好ましくはエタノールを用いる。この溶
液を22時間以上攪はん、還流しながら反応させること
によって複合アルコキシドを生成させる。これらの操作
は金属アルコキシドが空気中の水分で容易に加水分解す
るため、乾燥した窒素雰囲気中で行った。このように調
製された溶液に複合金属アルコキシドが加水分解するの
に必要なモル数以上の水を脱炭酸水の形で、好ましくは
溶媒のアルコールにて希釈した形で滴下する。この後、
攪はん、還流を続は反応を完結させ、LiNbO3の前
駆体が得られる。
More details are as follows. Lithium alkoxide and niobium alkoxide were used as starting materials and mixed and dissolved in dehydrated and purified alcohol so that the molar ratio thereof was 1:1. The alcohol only needs to be liquid at room temperature, and ethanol is preferably used. A composite alkoxide is produced by reacting this solution while stirring and refluxing the solution for 22 hours or more. These operations were performed in a dry nitrogen atmosphere because metal alkoxides are easily hydrolyzed by moisture in the air. Water in an amount equal to or greater than the number of moles required for hydrolysis of the composite metal alkoxide is added dropwise to the solution thus prepared in the form of decarbonated water, preferably diluted with alcohol as a solvent. After this,
After stirring and refluxing, the reaction is completed and a LiNbO3 precursor is obtained.

得られたLiNbO3の前駆体を濃縮しこの溶液に単結
晶基板を浸漬し、一定速度で引き上げることにより基板
表面にコーテイング膜を形成した。数分間乾燥させた後
、酸素と水蒸気の混合気流中で、ついで乾燥酸素気8流
中で加熱処理することによって配向したニオブ酸リチウ
ム単相の薄膜を得ることができる。この後、浸漬、引き
上げ、乾燥、加熱処理の工程を数回繰り返すことにより
、所望の厚さの配向したニオブ酸リチウム薄膜を得るこ
とができる。
The obtained LiNbO3 precursor was concentrated and a single crystal substrate was immersed in this solution and pulled up at a constant speed to form a coating film on the substrate surface. After drying for several minutes, a heat treatment is performed in a mixed flow of oxygen and water vapor, and then in 8 flows of dry oxygen to obtain an oriented single-phase lithium niobate thin film. Thereafter, by repeating the steps of dipping, pulling up, drying, and heat treatment several times, an oriented lithium niobate thin film with a desired thickness can be obtained.

(作用) 本発明で出発原料として用いているリチウムとニオブの
アルコキシドは蒸留等の方法によって精製することが可
能なため高純度なセラミックス薄膜の原料を提供するこ
とができる。また、不純物を含まないため正確に金属元
素のモル数が等しくなるように秤量することができる。
(Function) Since the lithium and niobium alkoxides used as starting materials in the present invention can be purified by methods such as distillation, they can provide raw materials for highly pure ceramic thin films. Furthermore, since it does not contain impurities, it can be weighed accurately so that the number of moles of metal elements is equal.

このため、最終的な生成物であるニオブ酸リチウムのニ
オブとリチウムのモル比を正確に1=1に制御すること
ができる。
Therefore, the molar ratio of niobium to lithium in the final product, lithium niobate, can be precisely controlled to 1=1.

さらに、本発明によれば最終的にニオブ酸リチウムを得
るのに必要な熱処理の温度を従来の方法のような1on
e℃以上の高温から1000℃未満、さらには300℃
程度の低温にすることが出来るため、簡便な加熱装置と
ガラス等の容器中でニオブ酸リチウム薄膜を製造するこ
とができる。さらには、本発明によって得られるニオブ
酸リチウム薄膜はその組成を均一にすることができるた
め、不純物としての第二相の生成を抑制できるだけでな
く、原料溶液中でニオブとリチウムの各原子が均一に混
合しているため結晶化しやすく結晶化度の高いニオブ酸
リチウム薄膜が得られる。また、配向されているため、
現在応用面で興味のある焦電性、圧電性が単結晶に近い
優れたものとなる。
Furthermore, according to the present invention, the temperature of the heat treatment necessary to finally obtain lithium niobate can be reduced to 1 on, unlike the conventional method.
High temperatures from e℃ and above to less than 1000℃ and even 300℃
Since the temperature can be kept at a low temperature of about 100 mL, a lithium niobate thin film can be produced in a simple heating device and a container made of glass or the like. Furthermore, since the lithium niobate thin film obtained by the present invention can have a uniform composition, not only can the formation of a second phase as an impurity be suppressed, but also the niobium and lithium atoms are uniformly distributed in the raw material solution. Because it is mixed with lithium niobate, it is easy to crystallize and a lithium niobate thin film with a high degree of crystallinity can be obtained. Also, because it is oriented,
The pyroelectricity and piezoelectricity, which are currently of interest in terms of applications, are excellent and are close to those of single crystals.

(実施例) 以下、本発明を実施例によりさらに詳細に説明する。た
だし、本発明の範囲は下記実施例により何等限定される
ものではない。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the scope of the present invention is not limited in any way by the following examples.

ニオブ及びリチウムの複合アルコキシド溶液の調製:エ
トキシリチウム: LiOC2H5とペンタエトキシニ
オブ: Nb<0C2)15)sとをLi : Nbの
比が1=1となる如くそれぞれ秤取し、脱水、精製した
エタノール中に混合、溶解した。この溶液を24時間攪
はん、還流した。これらの操作は、エトキシリチウムと
ペンタエトキシニオブが空気中の水分により容易に加水
分解されるため、乾燥した窒素雰囲気中で行った。得ら
れた生成物は、1)I−N14R及びIRのスペクトル
変化から複合アルコキシドであることが分かった。
Preparation of composite alkoxide solution of niobium and lithium: Ethoxylithium: LiOC2H5 and pentaethoxyniobium: Nb<0C2)15)s were weighed out so that the Li:Nb ratio was 1=1, and dehydrated and purified ethanol. mixed and dissolved in it. This solution was stirred and refluxed for 24 hours. These operations were performed in a dry nitrogen atmosphere because ethoxylithium and pentaethoxyniobium are easily hydrolyzed by moisture in the air. The obtained product was found to be a complex alkoxide from 1) changes in I-N14R and IR spectra.

還流の時間により複合アルコキシドの溶液中での配位状
態が変化していた。この溶液中の複合アルコキシドの配
位状態がその後のニオブ酸リチウム作成のための熱処理
の容易さを決定する。
The coordination state of the complex alkoxide in the solution changed depending on the reflux time. The coordination state of the complex alkoxide in this solution determines the ease of subsequent heat treatment for producing lithium niobate.

ニオブ酸リチウム前駆体の調製: 得られた複合アルコキシドにエタノールに希釈した脱炭
酸水を滴下して加水分解を行った。さらに、攪はん、還
流を24時間続は反応を完結させた。この後、エタノー
ルを蒸発させ、ニオブ酸リチウムの前駆体濃度が0.2
moL/fと0.6rnoj!、/4である2種類の溶
液を作成した。
Preparation of lithium niobate precursor: Decarbonated water diluted with ethanol was added dropwise to the obtained composite alkoxide to perform hydrolysis. Further, stirring and refluxing were continued for 24 hours to complete the reaction. After this, the ethanol was evaporated and the concentration of the lithium niobate precursor was 0.2.
moL/f and 0.6rnoj! , /4 were prepared.

ニオブ酸リチウム前駆体の基板への塗布および加熱処理
二 得られたニオブ酸リチウムの前駆体濃度が0.2rno
JL/Aの濃縮溶液にa −A Q 203(0001
)基板を浸漬し一定の速度で引き上げ塗布を行い、乾燥
させた。この後得られたニオブ酸リチウムの前駆体のコ
ーテイング膜を250℃で酸素と水蒸気の混合雰囲気中
にて1時間半、ついで乾燥酸素中で1時間保持し加熱処
理した。この後、ニオブ酸リチウムの前駆体濃度が0.
6rnoi/fの濃縮溶液に浸漬し一定の速度で引き上
げ塗布を行い、乾燥させた。ついで、350℃、400
℃、500℃の3種類の温度条件下で酸素と水蒸気の混
合雰囲気中にて1時間半、ついで乾燥酸素中で1時間保
持し加熱処理した。この浸漬、引き上げ、乾燥、加熱処
理(350℃、400℃、500℃)の工程を繰り返し
て、ち密なC軸配向した結晶性のLiNbO5薄膜を合
成することができた。これら得られた薄膜を粉末X線回
折法により調べた結果、350℃加熱処理では結晶化は
見られなかったものの、400℃加熱処理で(006)
配向結晶化が見られ、500℃加熱処理ではほぼ完全に
近い配向膜となっていることが確認された。   ′ 第1図は実施例にて加熱処理温度を変えて最終的に得ら
れた薄膜のX線回折図を示したものである。第1図の図
中において○印をつけたものはLiNbO5薄膜の(0
06)回折線のピークを、Δ印をつけたものは基板のα
−^Q 203(006)回折線のピークをそれぞれ示
すものである。
Application of lithium niobate precursor to substrate and heat treatment 2. Precursor concentration of lithium niobate obtained is 0.2rno
a-A Q 203 (0001
) The substrate was dipped, pulled up at a constant speed, applied, and dried. The coating film of the lithium niobate precursor thus obtained was heated at 250° C. by being held in a mixed atmosphere of oxygen and water vapor for 1.5 hours and then in dry oxygen for 1 hour. After this, the concentration of the lithium niobate precursor was reduced to 0.
It was immersed in a concentrated solution of 6 rnoi/f, pulled up at a constant speed, applied, and dried. Then, 350℃, 400℃
The sample was heat-treated under three temperature conditions of 500°C and 1.5 hours in a mixed atmosphere of oxygen and water vapor, and then held in dry oxygen for 1 hour. By repeating this process of dipping, pulling, drying, and heat treatment (350°C, 400°C, 500°C), a dense C-axis oriented crystalline LiNbO5 thin film could be synthesized. As a result of examining these obtained thin films by powder X-ray diffraction, it was found that no crystallization was observed in the heat treatment at 350°C, but (006) was observed in the heat treatment at 400°C.
Oriented crystallization was observed, and it was confirmed that the 500° C. heat treatment resulted in a nearly perfectly oriented film. ' Figure 1 shows the X-ray diffraction patterns of the thin films finally obtained by changing the heat treatment temperature in Examples. In the diagram of Fig. 1, the parts marked with a circle are (0) of the LiNbO5 thin film.
06) The peak of the diffraction line marked with Δ is the α of the substrate.
-^Q The peaks of the 203 (006) diffraction line are shown.

(発明の効果) このように、本方法によれば配向した結晶性の高いニオ
ブ酸リチウム薄膜を従来の方法に比べて極めて低温にて
製造することができる。
(Effects of the Invention) As described above, according to the present method, an oriented lithium niobate thin film with high crystallinity can be produced at a much lower temperature than conventional methods.

この発明はこのようにち密な配向した結晶性のニオブ酸
リチウム薄膜の低温焼成を可能にしたものでありニオブ
酸リチウムを用いた圧電素子、焦電素子等の種々の応用
にその活用が期待されるものである。
This invention enables low-temperature firing of a tightly oriented crystalline lithium niobate thin film, and is expected to be used in various applications such as piezoelectric elements and pyroelectric elements using lithium niobate. It is something that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例において最終的に得られたLiNbO3
薄膜のX線回折図である。 第1 口 ○ 400’C ○ CuKa2θ
Figure 1 shows the LiNbO3 finally obtained in the example.
It is an X-ray diffraction diagram of a thin film. 1st mouth ○ 400'C ○ CuKa2θ

Claims (1)

【特許請求の範囲】 1、組成式がLiNbO_3であるところの配向したニ
オブ酸リチウムをサファイア単結晶基板上に単層または
多層に積層せしめてなることを特徴とする高配向ニオブ
酸リチウム薄膜。 2、エトキシリチウムとペンタエトキシニオブのモル比
が1:1となるように混合、溶解し、還流を行い、複合
アルコキシドを作成し、この複合アルコキシドを部分加
水分解し、LiNbO_3の前駆体を作成し、得られた
LiNbO_3の前駆体を濃縮し、該前駆体溶液をサフ
ァイア単結晶基板上に塗布して400℃以上の温度で加
熱焼成する工程を少なくとも1回以上繰り返し、当該基
板上にニオブ酸リチウム薄膜を多層に積層せしめること
を特徴とする高配向ニオブ酸リチウム薄膜の製造方法。
[Claims] 1. A highly oriented lithium niobate thin film, characterized in that it is formed by laminating oriented lithium niobate having the composition formula LiNbO_3 in a single layer or in multiple layers on a sapphire single crystal substrate. 2. Mix and dissolve ethoxylithium and pentaethoxyniobium in a molar ratio of 1:1, reflux to create a composite alkoxide, and partially hydrolyze this composite alkoxide to create a precursor of LiNbO_3. The process of concentrating the obtained LiNbO_3 precursor, applying the precursor solution onto a sapphire single crystal substrate, and heating and firing it at a temperature of 400°C or higher is repeated at least once, and lithium niobate is deposited on the substrate. A method for producing a highly oriented lithium niobate thin film, which comprises laminating multiple thin films.
JP10242287A 1987-04-24 1987-04-24 Highly oriented lithium niobate thin film and production thereof Granted JPS63270397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10242287A JPS63270397A (en) 1987-04-24 1987-04-24 Highly oriented lithium niobate thin film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10242287A JPS63270397A (en) 1987-04-24 1987-04-24 Highly oriented lithium niobate thin film and production thereof

Publications (2)

Publication Number Publication Date
JPS63270397A true JPS63270397A (en) 1988-11-08
JPH0375518B2 JPH0375518B2 (en) 1991-12-02

Family

ID=14327014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10242287A Granted JPS63270397A (en) 1987-04-24 1987-04-24 Highly oriented lithium niobate thin film and production thereof

Country Status (1)

Country Link
JP (1) JPS63270397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051280A (en) * 1990-10-01 1991-09-24 Eastman Kodak Company Low temperature synthesis of alkali metal niobates and tantalates
JPH08212830A (en) * 1994-11-11 1996-08-20 Fuji Xerox Co Ltd Orienting ferroelectric thin film element and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051280A (en) * 1990-10-01 1991-09-24 Eastman Kodak Company Low temperature synthesis of alkali metal niobates and tantalates
JPH08212830A (en) * 1994-11-11 1996-08-20 Fuji Xerox Co Ltd Orienting ferroelectric thin film element and its manufacture

Also Published As

Publication number Publication date
JPH0375518B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
Hirano et al. Preparation of potassium tantalate niobate by sol–gel method
JPH04259380A (en) Method for controlling crystalline orientation property of pzt ferroelectric body thin film
Nashimoto et al. Microstructure development of sol-gel derived epitaxial LiNbO3 thin films
Swartz et al. Ferroelectric thin films by sol-gel processing
Lu et al. Preparation of potassium tantalate niobate through sol–gel processing
Xu et al. Sol-gel processing of strontium-barium niobate ferroelectric thin film
Kuang et al. Preparation of KTa0. 65Nb0. 35O3 thin films by a sol-gel process
WO2004085718A1 (en) Ferroelectric film
JPS63270397A (en) Highly oriented lithium niobate thin film and production thereof
Hirano et al. Processing of β-BaB2O4 powders and thin films through metal alkoxide
JP3164849B2 (en) Method for producing lead zirconate titanate thin film
JP3985887B2 (en) Metal oxide precursor solution
Sakamoto et al. Synthesis of Lead Barium Niobate Powders and Thin Films by the Sol‐Gel Method
JPH05897A (en) Composite crystal body having oriented film of linbo3 and its production
Hirano et al. Chemical processing of ferroelectric niobates epitaxial films
JPH049873B2 (en)
Yogo et al. Processing of β-BaB 2 O 4 thin films through metal organics
JP3026871B2 (en) Method for producing potassium niobate tantalate thin film
JPH04202018A (en) Production of thin lithium niobate film
Prasadarao et al. Fabrication of La2Ti2O7 thin films by a sol-gel technique
JPH0193425A (en) Production of lithium niobate powder
Sakamoto et al. Preparation and properties of K (Sr0. 75Ba0. 25) 2Nb5O15 thin films by chemical solution deposition method
Yogo et al. Synthesis of Ba2NaNb5O15 powders and thin films using metal alkoxides
JPH053439B2 (en)
Ono et al. Processing of highly oriented lithium tantalate films by chemical solution deposition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071202

Year of fee payment: 16