JPS63270379A - Production of compound semiconductor single crystal and apparatus therefor - Google Patents

Production of compound semiconductor single crystal and apparatus therefor

Info

Publication number
JPS63270379A
JPS63270379A JP10311587A JP10311587A JPS63270379A JP S63270379 A JPS63270379 A JP S63270379A JP 10311587 A JP10311587 A JP 10311587A JP 10311587 A JP10311587 A JP 10311587A JP S63270379 A JPS63270379 A JP S63270379A
Authority
JP
Japan
Prior art keywords
crucible
melt
compound semiconductor
seed crystal
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311587A
Other languages
Japanese (ja)
Inventor
Shoichi Ozawa
小沢 章一
Katsumi Azuma
我妻 勝美
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10311587A priority Critical patent/JPS63270379A/en
Priority to US07/185,476 priority patent/US4904336A/en
Priority to GB8809809A priority patent/GB2205087B/en
Priority to DE3814259A priority patent/DE3814259A1/en
Publication of JPS63270379A publication Critical patent/JPS63270379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To contrive prevention of impurities from mixing in, by carrying out synthesis, seeding and single crystal growth of a compound semiconductor in the same apparatus using vertical coaxial arrangement of a cylindrical crucible having a slender tubular part at the bottom in an integrated process in a growth vessel by a vertical solidifying method. CONSTITUTION:A liquid stopping plug 51 and a seed crystal 53 are inserted into a tubular part (15a) at the bottom of a crucible so as to place the former in the upper part. A group III element 55 is simultaneously placed in a crucible 15 and a group V element 57 is placed in the lower vessel 25. The residual oxygen in a pressure vessel 11 is removed and replaced with an inert gas to adjust the interior of the pressure vessel 11 to a given pressure. Heating heaters 35 and 41 are then heated to advance synthetic reaction of a compound semiconductor of the group element 55 and group V element 57. The upper axis part 23 is then slowly lowered and the liquid stopping plug 51 is pulled from the tubular part (15a) and released into a melt 59. Since the liquid stopping plug has a lower specific gravity than that of the melt 59, it floats on the liquid surface to provide contact of the melt 59 with the seed crystal 53. The temperature of the contact part is then increased to remelt and make part of the seed crystal 53 compatible with the melt 59. Thereby a single crystal is grown by a vertical solidifying method.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、垂直凝固法による化合物半導体単結晶の製造
方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method and apparatus for manufacturing a compound semiconductor single crystal by a vertical solidification method.

〔従来技術とその問題点〕[Prior art and its problems]

従来の垂直凝固法による化合物半導体単結晶の製造方法
は垂直温度勾配付き徐冷法によるものである (Jou
rnal of CrystaI Growth 74
(1986) 491〜506)。この方法は、原料と
して既に合成された多結晶を用い、それをルツボに入れ
て溶融させた後、融液をルツボ下端に配置した種子結晶
と接触させて種子付けを行い、下端より徐々に冷却して
上方に向かって化合物半導体単結晶を成長させていくと
いうものである。この方法では、原料の溶融、種子付け
の際、■族元素の事態による飛散を防止するため、ルツ
ボを収納した成長容器の下部低温帯に■族元素を配置し
、これを加熱して■族元素の蒸気圧を単離圧以上となる
ように調節しており、またこれにより融液組成のずれを
防止している。
The conventional manufacturing method for compound semiconductor single crystals using the vertical solidification method is based on a slow cooling method with a vertical temperature gradient.
rnal of Crystal Growth 74
(1986) 491-506). This method uses polycrystals that have already been synthesized as raw materials, puts them in a crucible, melts them, and then seeds the melt by bringing it into contact with seed crystals placed at the bottom of the crucible, and gradually cools it from the bottom. The process involves growing a compound semiconductor single crystal upward. In this method, when melting raw materials and seeding, in order to prevent group Ⅰ elements from scattering due to situations, group Ⅰ elements are placed in the lower low temperature zone of the growth container that houses the crucible, and this is heated to prevent group Ⅰ elements from scattering. The vapor pressure of the elements is adjusted to be higher than the isolation pressure, and this also prevents deviations in the melt composition.

しかし従来の垂直凝固法による単結晶の製造方法は、原
料として化合物半導体多結晶を用いるものであるため、
多結晶を他の方法、例えば水平ブリッジマン法とか、高
圧容器内で液体封止剤を用いて直接合成する方法などに
より予め製造しておく必要がある。したがって単結晶を
得るには、別な装置で多結晶製造と単結晶製造の2段階
の工程を経なければならず、製造工程が煩雑で、不純物
混入の機会が増加する等の欠点がある。またこのため製
造コストが高くなる欠点がある。
However, the conventional method for manufacturing single crystals using the vertical solidification method uses compound semiconductor polycrystals as raw materials, so
The polycrystals must be prepared in advance by other methods, such as the horizontal Bridgman method or direct synthesis using a liquid sealant in a high-pressure vessel. Therefore, in order to obtain a single crystal, it is necessary to go through a two-step process of polycrystal production and single crystal production using separate equipment, which has drawbacks such as a complicated manufacturing process and an increased chance of contamination with impurities. This also has the disadvantage of increasing manufacturing costs.

〔問題点の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような従来技術の問題点を解決した垂
直凝固法による化合物半導体単結晶の製造方法を提供す
るもので、その方法は、垂直配置された成長容器内に、
下部に細い管状部を有する筒形のルツボを同軸配置し、
上記管状部に液止め栓と種子結晶を前者を上にして挿入
した状態で、上記ルツボ内で化合物半導体融液を合成し
、その後、上記種子結晶を下から押し上げ、液止め栓を
上記融液内に放出して融液面に浮上させることにより上
記種子結晶と融液を接触させ、種子付けを行った後、下
端より化合物半導体の単結晶を成長させることを特徴と
するものである。
The present invention provides a method for manufacturing a compound semiconductor single crystal by a vertical solidification method that solves the problems of the prior art as described above.
A cylindrical crucible with a thin tubular part at the bottom is coaxially arranged,
A compound semiconductor melt is synthesized in the crucible with the liquid stopper and the seed crystal inserted into the tubular part with the former facing upward, and then the seed crystal is pushed up from below and the liquid stopper is inserted into the melt. The method is characterized in that the seed crystal is brought into contact with the melt by being ejected into the melt surface and floated on the surface of the melt, and after seeding, a single crystal of compound semiconductor is grown from the lower end.

液止め栓は、耐熱性があり、化合物半導体融液より比重
の小さいBNまたはPBNなどの材料で作られる。この
ような液止め栓をルツボ下部の管状部に挿入することに
より液漏れを防止し、ルツボ内で化合物半導体融液の合
成を行えるようにする。融液合成後は、上記液止め栓を
その下部に挿入した種子結晶で融液中に押し出すと、液
止め栓が浮上し、種子結晶と融液が接触するから、種子
付けおよび結晶成長が行えることになる。
The liquid stopper is made of a material such as BN or PBN that is heat resistant and has a lower specific gravity than the compound semiconductor melt. By inserting such a liquid stopper into the tubular portion at the lower part of the crucible, liquid leakage is prevented and a compound semiconductor melt can be synthesized within the crucible. After melt synthesis, when the liquid stopper is pushed into the melt using a seed crystal inserted under the liquid stopper, the liquid stopper floats up and the seed crystal comes into contact with the melt, allowing seeding and crystal growth. It turns out.

本発明はまた、上記製造方法の実施に好適な化合物半導
体単結晶の製造装置を提供するもので、その構成は、圧
力容器内に垂直配置された成長容器と、下部に液止め栓
および種子結晶が挿入される細い管状部を有する筒形の
ルツボと、このルツボを上記成長容器内の上部に垂直に
、かつ成長容器に対して相対的に上下動可能に支持する
支持体と、上記成長容器内の下部に垂直に設置され、上
端が上記ルツボの管状部に挿入される押し上げ棒とを備
え、上記ルツボを成長容器に対して相対的に下降させる
と、上記押し上げ棒が上記管状部内の液止め栓および種
子結晶を押し上げるようになっていることを特徴とする
ものである。
The present invention also provides an apparatus for producing a compound semiconductor single crystal suitable for carrying out the above production method, and is composed of a growth vessel arranged vertically within a pressure vessel, a liquid stopper at the bottom, and a seed crystal. a cylindrical crucible having a thin tubular portion into which the crucible is inserted; a support that supports the crucible vertically in the upper part of the growth container and movable up and down relative to the growth container; and the growth container. A push-up rod is installed vertically in the lower part of the growth container and has an upper end inserted into the tubular part of the crucible, and when the crucible is lowered relative to the growth container, the push-up bar pushes up the liquid in the tubular part. It is characterized by a stopper and a device that pushes up the seed crystals.

この装置は、ルツボ下部の管状部に液止め栓および種子
結晶を挿入した状態で、化合物半導体融液の合成を行い
、その後、成長容器を静止させたままルツボを支持体と
共に下降させるか、またはその逆にルツボを支持体によ
って静止させたまま成長容器を上昇させると、押し上げ
棒により液止め栓が融液内に押し出され、種子結晶と融
液が接触するようになるので、この状態で種子付け、結
晶成長を行えるものである。
This device synthesizes a compound semiconductor melt with a liquid stopper and a seed crystal inserted into the tubular part at the bottom of the crucible, and then lowers the crucible together with the support while keeping the growth container stationary, or Conversely, if the growth container is raised while the crucible is held stationary by the support, the liquid stopper will be pushed out into the melt by the push-up rod, and the seed crystals will come into contact with the melt. It is possible to attach and grow crystals.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図および第2図は本発明の一実施例を示す。1 and 2 show one embodiment of the invention.

図において、11は圧力容器、13はその中心に垂直に
配置された成長容器、15はその中に同軸配置された筒
形のルツボである。ルツボ15はPBN製で、その下部
は細い管状部15aとなっている。
In the figure, 11 is a pressure vessel, 13 is a growth vessel arranged vertically at the center thereof, and 15 is a cylindrical crucible arranged coaxially therein. The crucible 15 is made of PBN, and its lower part is a thin tubular part 15a.

また17は成長容器13の上端開口部に擦り合わせ嵌合
された気密蓋、19は成長容器13の中間部に擦り合わ
せ嵌合されたルツボ支持台、21はfi17にルツボ支
持台19を吊り下げる吊り具である。吊り具21はルツ
ボ15のまわりに周方向に間隔をあけて多数設けられて
いる。ルツボ支持台19は断熱材よりなるが、ポーラス
な材料で作るか、上下方向に穴をあける等して、上下方
向に通気性を持たせである。蓋17は圧力容器11の天
板を貫通する上部軸23に支持されて上下動および回転
可能になっている。
Further, 17 is an airtight lid that is fitted to the upper end opening of the growth container 13, 19 is a crucible support that is fitted to the middle part of the growth container 13, and 21 is a crucible support 19 suspended from the fi 17. It is a hanging device. A large number of hanging tools 21 are provided around the crucible 15 at intervals in the circumferential direction. The crucible support base 19 is made of a heat insulating material, but it is made of a porous material or has holes in the vertical direction to provide ventilation in the vertical direction. The lid 17 is supported by an upper shaft 23 passing through the top plate of the pressure vessel 11, and is vertically movable and rotatable.

また25は成長容器13内の底部に設置されたV族元素
収納用の下部容器、27は下部容器25の中心に垂直に
立設された押し上げ棒である。押し上げ棒27の上端は
ルツボの管状部15aに挿入されるようになる。29は
成長容器支持台で、これは圧力容器11の底板を貫通す
る下部軸31に支持されて上下動および回転可能になっ
ている。成長容器支持台29の中には測温用のサーモカ
ンプル33が設置されている。
Further, 25 is a lower container for storing group V elements installed at the bottom of the growth container 13, and 27 is a push-up rod vertically installed in the center of the lower container 25. The upper end of the push-up rod 27 is inserted into the tubular portion 15a of the crucible. Reference numeral 29 denotes a growth vessel support stand, which is supported by a lower shaft 31 passing through the bottom plate of the pressure vessel 11 and is movable up and down and rotatable. A thermocample 33 for temperature measurement is installed inside the growth container support 29.

また35は成長容器13の外でルツボ15を包囲するよ
うに設置された主加熱ヒーター、37はその端子、39
は給電用導体、41は成長容器13の外で下部容器25
を包囲するように設置された副加りさヒーター、43は
その端子、45は給電用4体である。さらに47は断熱
材、49は圧力容器内面に配にした冷却管である。
Further, 35 is a main heater installed outside the growth container 13 so as to surround the crucible 15, 37 is its terminal, and 39
41 is the power supply conductor, and 41 is the lower container 25 outside the growth container 13.
43 is a terminal thereof, and 45 is four units for power supply. Furthermore, 47 is a heat insulating material, and 49 is a cooling pipe arranged on the inner surface of the pressure vessel.

上記構成の装置による化合物半導体単結晶の製造は次の
ようにして行われる。まずルツボ下部の管状部15aに
液止め栓51および種子結晶53を前者が上になるよう
に挿入すると共に、ルツボ15内に■族元素(GaAs
の場合はGa) 55を入れる。
Manufacture of a compound semiconductor single crystal using the apparatus having the above configuration is performed as follows. First, the liquid stopper 51 and the seed crystal 53 are inserted into the tubular part 15a at the bottom of the crucible with the former facing upward, and the group
If , enter Ga) 55.

また下部容器25内に■族元素(GaAsの場合はAs
)57を入れ、る。
In addition, in the lower container 25, group Ⅰ elements (in the case of GaAs, As
) 57 and ru.

ルツボ15内および圧力容器ll内の残留酸素を取り除
くため、上部軸23を上昇させ、成長容器13から蓋1
7を引き抜いた状態で、圧力容器11内を真空引きする
。その後、不活性ガス(アルゴンまたは窒素)を充填し
、圧力容器11内を3〜100Kg/cm”の圧力にす
る0次いで上部軸23を下降させ、第1図のように成長
容器13に1i17を嵌合すると共に、種子結晶53の
下端に押し上げ棒27の上端が突き当たるようにする。
In order to remove residual oxygen in the crucible 15 and pressure vessel 11, the upper shaft 23 is raised and the lid 1 is removed from the growth vessel 13.
7 is pulled out, the inside of the pressure vessel 11 is evacuated. After that, the inside of the pressure vessel 11 is filled with inert gas (argon or nitrogen) and the pressure is set to 3 to 100 kg/cm''.Then, the upper shaft 23 is lowered, and the growth vessel 13 is filled with 1i17 as shown in FIG. At the same time, the upper end of the push-up rod 27 is brought into contact with the lower end of the seed crystal 53.

次に、主加熱ヒーター35を加熱し、■族元素55を溶
融させ、GaAs合成の場合であれば約1238℃に保
つ。また副加熱ヒーター41も加熱し、V族元素57を
約617℃にして、成長容器13内のV族元素の蒸気圧
を1気圧以上にする。この状態で化合物半導体の合成反
応を進行させる。
Next, the main heater 35 is heated to melt the group Ⅰ element 55, and in the case of GaAs synthesis, the temperature is maintained at about 1238°C. The auxiliary heater 41 is also heated to bring the V group element 57 to about 617° C., and the vapor pressure of the V group element in the growth container 13 to 1 atm or more. In this state, the compound semiconductor synthesis reaction is allowed to proceed.

化合物半導体の合成が終了したら、上部軸23を徐々に
下降させる。すると、ルツボ15が下降し、相対的に押
し上げ棒27が種子結晶53と液止め栓51を押し上げ
るから、液止め栓51が管状部15aから抜は出し、化
合物半導体融液中に放出される。液止め栓51は化合物
半導体融液より比重が小さいので、第2図に示すように
液止め栓51は化合物半導体融液59の液面に浮上し、
融液59と種子結晶53の接触が得られることになる。
When the synthesis of the compound semiconductor is completed, the upper shaft 23 is gradually lowered. Then, the crucible 15 descends and the push-up rod 27 relatively pushes up the seed crystal 53 and liquid stopper 51, so that the liquid stopper 51 is pulled out from the tubular portion 15a and discharged into the compound semiconductor melt. Since the liquid stopper 51 has a smaller specific gravity than the compound semiconductor melt, the liquid stopper 51 floats on the surface of the compound semiconductor melt 59 as shown in FIG.
Contact between the melt 59 and the seed crystal 53 is obtained.

このときの温度分布は、種子結晶53と融液59の接触
部で化合物半導体の融点となるようにし、それより上に
行くに従って徐々に高い温度となるようにしである。
The temperature distribution at this time is such that the contact area between the seed crystal 53 and the melt 59 reaches the melting point of the compound semiconductor, and the temperature gradually increases as it goes above that point.

次に種子付けを行うため、上記接触部の温度を約10℃
上げ、種子結晶53の一部を再溶融させて融液59にな
じませる。その後は、従来の垂直凝固法と同様で、上方
に向かって徐々に温度を低下させて行き、単結晶を成長
させる。冷却速度は3〜20’C/hrの範囲で制御さ
れる。成長方向の温度勾配は、種子結晶と融液の接触部
で20〜b肩部で20〜100℃/cm %胴部で2〜
bるようにする。
Next, in order to set seeds, the temperature of the above contact area is set to about 10℃.
Then, a part of the seed crystal 53 is remelted and blended into the melt 59. After that, the temperature is gradually lowered upwards to grow a single crystal, similar to the conventional vertical solidification method. The cooling rate is controlled in the range of 3-20'C/hr. The temperature gradient in the growth direction is 20°C/cm at the contact area between the seed crystal and the melt, 20°C/cm at the shoulder, and 2°C/cm at the body.
b.

以上のようにして本発明によれば、化合物半導体融液の
合成から単結晶の成長までを同一ルツボ内で行うことが
できる。なお上記の方法では単結晶成長の際、主加熱ヒ
ーターの温度分布を変化させたが、主加熱ヒーターの温
度分布は一定とし、ルツボ15を成長容器13と共に下
降させて行く方法も採用できる。
As described above, according to the present invention, everything from synthesis of a compound semiconductor melt to growth of a single crystal can be performed in the same crucible. In the above method, the temperature distribution of the main heater is changed during single crystal growth, but a method may also be adopted in which the temperature distribution of the main heater is kept constant and the crucible 15 is lowered together with the growth container 13.

第3図は本発明の他の実施例を示す、同図において第1
図と同一部分には同一符号を付しである。
FIG. 3 shows another embodiment of the present invention.
The same parts as in the figures are given the same reference numerals.

この実施例は、ルツボ15内に■族元素55と■族元素
57を入れ、ルツボ15内で直接合成反応により化合物
半導体多結晶原料を合成してから化合物半導体融液を作
るものである。
In this embodiment, a group (1) element 55 and a group (2) element 57 are placed in a crucible 15, a compound semiconductor polycrystalline raw material is synthesized by a direct synthesis reaction in the crucible 15, and then a compound semiconductor melt is produced.

図示のようにルツボ15内に■族元素55とV族元素5
7を入れてから、内部の残留酸素を取り除くため前記実
施例と同様に真空引きしたあと、不活性ガスで置換し、
100気圧程度に加圧する。
As shown in the figure, in the crucible 15, a group II element 55 and a group V element 5 are placed.
7 and then evacuated in the same manner as in the previous example to remove residual oxygen inside, and then replaced with inert gas.
Pressurize to about 100 atmospheres.

まず始めに成長容器13を1i17を嵌合させたまま下
降させ、ルツボ15が主加熱ヒーター35より下に位置
するようにする。この状態で主加熱ヒーター35を加熱
し、GaAsの場合であれば817〜1238℃の範囲
内の一定の温度に保つ。その後、成長容器13を上昇さ
せ、ルツボ15を急速に主加熱ヒーター35内に挿入す
る。これによってルツボ15内の■族元素55とV族元
素57の反応が起こり、直接合成が進行する。このとき
未反応の■族元素が蒸散するのを抑えるため、下部容器
25内に入れた■族元素57を副加熱ヒーター41によ
り加熱しくGaAsの場合は617℃以上)、V族元素
の蒸気圧を保つようにする。直接合成反応は急激に行わ
せる。これによりルツボ15内に化合物半導体多結晶が
生成される。その後、この多結晶原料を溶融するため、
融点+10℃程度の温度に加熱し、化合物半導体融液を
作成する。
First, the growth container 13 is lowered with the 1i 17 fitted therein so that the crucible 15 is located below the main heater 35. In this state, the main heater 35 is heated and kept at a constant temperature within the range of 817 to 1238° C. in the case of GaAs. Thereafter, the growth container 13 is raised and the crucible 15 is rapidly inserted into the main heater 35. As a result, a reaction occurs between the Group I element 55 and the Group V element 57 in the crucible 15, and direct synthesis proceeds. At this time, in order to suppress the evaporation of the unreacted Group III element, the Group III element 57 placed in the lower container 25 is heated by the auxiliary heater 41 (617°C or higher in the case of GaAs), and the vapor pressure of the Group V element is heated. Try to keep it. Direct synthesis reactions are performed rapidly. As a result, a compound semiconductor polycrystal is produced within the crucible 15. Then, in order to melt this polycrystalline raw material,
It is heated to a temperature of about 10° C. above the melting point to create a compound semiconductor melt.

このあとはルツボ15を下降させ、液止め栓51を融液
中に押し出して種子付けを行うことになるが、これ以降
の工程は前記実施例と同じであるので説明を省略する。
After this, the crucible 15 is lowered and the liquid stopper 51 is pushed out into the melt to perform seeding, but since the subsequent steps are the same as in the previous embodiment, the explanation will be omitted.

第4図は本発明のさらに他の実施例を示す。この実施例
は、化合物半導体融液59と種子結晶53を接触させた
後、単結晶の成長を行う際に、融液59に垂直方向の磁
界を印加するようにしたものである。このため圧力容器
11の外に同軸状に円筒コイル61を設置し、ルツボ1
5内に垂直磁場を発生させる。なお圧力容器11はステ
ンレス製とし、主加熱ヒーター35は二重スパイラル巻
きの無誘導型として、垂直磁場を乱さないようにする。
FIG. 4 shows yet another embodiment of the invention. In this embodiment, after bringing the compound semiconductor melt 59 into contact with the seed crystal 53, a vertical magnetic field is applied to the melt 59 when growing a single crystal. For this purpose, a cylindrical coil 61 is installed coaxially outside the pressure vessel 11, and the crucible 1
A vertical magnetic field is generated within 5. The pressure vessel 11 is made of stainless steel, and the main heater 35 is of a non-inductive type with double spiral winding so as not to disturb the vertical magnetic field.

磁界の強さは500〜5000Gauss程度とする。The strength of the magnetic field is approximately 500 to 5000 Gauss.

垂直磁界を印加すると、融液59の流れは、磁界にクロ
スする方向つまり径方向の流れがローレンツ力により抑
制されるため、垂直方向の流れだけとなる。その結果、
熱移動は、径方向には熱伝導のみとなり、垂直方向には
熱対流による移動が存在するため、下方の低温部へ向け
ての熱移動が生じ易くなり、下端から熱が奪い去られる
ことになる。このため径方向の温度分布は、第5図に示
すようにA−A’線の断面でみると、ヒーター35に近
い外周面で温度が高く、中心に行くほど温度が低(なる
形となる。その結果、固液界面63の形状は融液59に
対して若干凸形となり、熱歪を抑制した状態で、低欠陥
高純度の化合物半導体単結晶を成長させることができる
。また融液の熱振動も抑制されるため、温度の揺らぎに
起因する成長縞の発生も抑制することができる。
When a perpendicular magnetic field is applied, the melt 59 flows only in the vertical direction because the flow in the direction crossing the magnetic field, that is, the flow in the radial direction is suppressed by the Lorentz force. the result,
Heat transfer occurs only through conduction in the radial direction, and in the vertical direction there is movement due to thermal convection, so heat transfer tends to occur toward the lower low-temperature area, and heat is removed from the bottom end. Become. Therefore, the temperature distribution in the radial direction, when viewed in cross section along the line A-A' as shown in Figure 5, shows that the temperature is high on the outer peripheral surface near the heater 35, and the temperature is low as it goes toward the center. As a result, the shape of the solid-liquid interface 63 becomes slightly convex with respect to the melt 59, and it is possible to grow a compound semiconductor single crystal with low defects and high purity while suppressing thermal distortion. Since thermal vibrations are also suppressed, the occurrence of growth streaks caused by temperature fluctuations can also be suppressed.

なお上記各実施例では、種子結晶をルツボの管状部に裸
で挿入したが、種子結晶を押し上げ棒で押し上げる際、
種子結晶にキズが付かないようにするため、第6図に示
すように種子結晶53は例えばPBN製の保護ケース7
1に入れた状態で管状部15aに挿入するとよい。
In each of the above examples, the seed crystal was inserted naked into the tubular part of the crucible, but when pushing up the seed crystal with a push-up rod,
In order to prevent the seed crystal from being scratched, the seed crystal 53 is covered with a protective case 7 made of PBN, for example, as shown in FIG.
1 and insert it into the tubular part 15a.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、化合物半導体の合
成、種子付け、単結晶成長を同一装置内で一貫したプロ
セスで行うことができるから、工程が短縮され、生産性
が向上すると共に、不純物混入の機会が減り、高純度、
高品質の化合物半導体単結晶を製造できる利点がある。
As explained above, according to the present invention, compound semiconductor synthesis, seeding, and single crystal growth can be performed in the same device in an integrated process, which shortens the process, improves productivity, and eliminates impurities. Reduced chance of contamination, high purity,
It has the advantage of producing high-quality compound semiconductor single crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る化合物半導体製造装置
を示す断面図、第2図は同装置で種子付けを行う状態を
示す要部断面図、第3図および第4図はそれぞれ本発明
の他の実施例を示す断面図第5図は第4図の装置で化合
物半導体単結晶を成長させる過程を示す説明図、第6図
は種子結晶の挿入方法の一例を示す断面図である。 11〜圧力容器、13〜成長容器、15〜ルツボ、15
8〜管状部、17〜蓋、19〜ルツボ支持台、21〜吊
り具、25〜下部容器、27〜押し上げ棒、29〜成長
容器支持台、35〜主加熱ヒーター、41〜副加熱ヒー
ター、51〜液止め栓、53〜種子結晶、55〜蓋族元
素、57〜■族元素、59〜化合物半導体融液、61第
2図 第4図 第5図 第6図 手続主甫正書(自発) 昭和63年 1月潟日
FIG. 1 is a cross-sectional view showing a compound semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of essential parts showing a state in which seeds are set in the same apparatus, and FIGS. 3 and 4 are in accordance with this invention. FIG. 5 is a cross-sectional view showing another embodiment of the invention. FIG. 5 is an explanatory view showing the process of growing a compound semiconductor single crystal using the apparatus shown in FIG. 4. FIG. 6 is a cross-sectional view showing an example of a method of inserting a seed crystal. . 11-pressure vessel, 13-growth container, 15-crucible, 15
8-tubular part, 17-lid, 19-crucible support stand, 21-hanger, 25-lower container, 27-push-up rod, 29-growth container support stand, 35-main heating heater, 41-sub-heating heater, 51 ~ Liquid stopper, 53 ~ Seed crystal, 55 ~ Lid group element, 57 ~ Group ■ element, 59 ~ Compound semiconductor melt, 61 Figure 2 Figure 4 Figure 5 Figure 6 Procedure master book (self-proposal) January Lagoon, 1986

Claims (4)

【特許請求の範囲】[Claims] (1)垂直配置された成長容器内に、下部に細い管状部
を有する筒形のルツボを同軸配置し、上記管状部に液止
め栓と種子結晶を前者を上にして挿入した状態で、上記
ルツボ内で化合物半導体融液を合成し、その後、上記種
子結晶を下から押し上げ、液止め栓を上記融液内に放出
して融液面に浮上させることにより上記種子結晶と融液
を接触させ、種子付けを行った後、下端より化合物半導
体の単結晶を成長させることを特徴とする化合物半導体
単結晶の製造方法。
(1) A cylindrical crucible with a thin tubular part at the bottom is coaxially arranged in a vertically arranged growth container, and a liquid stopper and a seed crystal are inserted into the tubular part with the former facing upward. A compound semiconductor melt is synthesized in a crucible, and then the seed crystal is pushed up from below, and a liquid stopper is released into the melt to float on the surface of the melt, thereby bringing the seed crystal into contact with the melt. . A method for producing a compound semiconductor single crystal, which comprises growing a compound semiconductor single crystal from the lower end after seeding.
(2)特許請求の範囲第1項記載の方法であって、化合
物半導体融液の合成は、ルツボ内にIII族元素を入れ、
成長容器下部にV族元素を配置して、ルツボ内で溶融し
たIII族元素に気化したV族元素を反応させることによ
り行うもの。
(2) The method according to claim 1, in which the compound semiconductor melt is synthesized by placing a group III element in a crucible;
This is done by placing a group V element at the bottom of the growth container and causing the vaporized group V element to react with the group III element melted in the crucible.
(3)特許請求の範囲第1項記載の方法であって、化合
物半導体融液の合成は、ルツボ内にIII族元素とV族元
素を入れ、加熱加圧して直接合成反応により化合物半導
体多結晶原料を作成し、その後、その多結晶原料を溶融
させることにより行うもの。
(3) The method according to claim 1, in which the compound semiconductor melt is synthesized by placing a group III element and a group V element in a crucible, heating and pressurizing the compound semiconductor polycrystal through a direct synthesis reaction. This is done by creating a raw material and then melting the polycrystalline raw material.
(4)圧力容器内に垂直配置された成長容器と、下部に
液止め栓および種子結晶が挿入される細い管状部を有す
る筒形のルツボと、このルツボを上記成長容器内の上部
に垂直に、かつ成長容器に対して相対的に上下動可能に
支持する支持体と、上記成長容器内の下部に垂直に設置
され、上端が上記ルツボの管状部に挿入される押し上げ
棒とを備え、上記ルツボを成長容器に対して相対的に下
降させると、上記押し上げ棒が上記管状部内の液止め栓
および種子結晶を押し上げるようになっていることを特
徴とする化合物半導体単結晶の製造装置。
(4) A growth container arranged vertically within a pressure vessel, a cylindrical crucible having a thin tubular part in the lower part into which a liquid stopper and a seed crystal are inserted, and this crucible arranged vertically in the upper part of the growth container. , and a support member that supports the growth container so as to be movable up and down relative to the growth container; and a push-up rod that is installed vertically in the lower part of the growth container and whose upper end is inserted into the tubular part of the crucible, An apparatus for manufacturing a compound semiconductor single crystal, characterized in that when the crucible is lowered relative to the growth container, the push-up rod pushes up a liquid stopper and a seed crystal in the tubular part.
JP10311587A 1987-04-28 1987-04-28 Production of compound semiconductor single crystal and apparatus therefor Pending JPS63270379A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10311587A JPS63270379A (en) 1987-04-28 1987-04-28 Production of compound semiconductor single crystal and apparatus therefor
US07/185,476 US4904336A (en) 1987-04-28 1988-04-25 Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
GB8809809A GB2205087B (en) 1987-04-28 1988-04-26 Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
DE3814259A DE3814259A1 (en) 1987-04-28 1988-04-27 METHOD AND DEVICE FOR PRODUCING A SINGLE CRYSTAL OF A CONNECTION SEMICONDUCTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311587A JPS63270379A (en) 1987-04-28 1987-04-28 Production of compound semiconductor single crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS63270379A true JPS63270379A (en) 1988-11-08

Family

ID=14345596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311587A Pending JPS63270379A (en) 1987-04-28 1987-04-28 Production of compound semiconductor single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS63270379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278490A (en) * 1988-04-28 1989-11-08 Nippon Telegr & Teleph Corp <Ntt> Growth of crystal and crucible therefor
JPH0380181A (en) * 1989-08-24 1991-04-04 Mitsubishi Monsanto Chem Co Device for producing single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374990A (en) * 1986-09-16 1988-04-05 Nippon Telegr & Teleph Corp <Ntt> Production of single crystal of compound semiconductor and production device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374990A (en) * 1986-09-16 1988-04-05 Nippon Telegr & Teleph Corp <Ntt> Production of single crystal of compound semiconductor and production device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278490A (en) * 1988-04-28 1989-11-08 Nippon Telegr & Teleph Corp <Ntt> Growth of crystal and crucible therefor
JPH0380181A (en) * 1989-08-24 1991-04-04 Mitsubishi Monsanto Chem Co Device for producing single crystal

Similar Documents

Publication Publication Date Title
EP0068021B1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound
JP4810346B2 (en) Method for producing sapphire single crystal
EP1571240B1 (en) Method for producing compound semiconductor single crystal
US3173765A (en) Method of making crystalline silicon semiconductor material
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
CN111809229A (en) Preparation method and device of indium antimonide single crystal
US5047113A (en) Method for directional solidification of single crystals
JPS63270379A (en) Production of compound semiconductor single crystal and apparatus therefor
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JPS63285183A (en) Production of compound semiconductor single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JPS63270378A (en) Production of single crystal of compound semiconductor
JPS63274684A (en) Production of compound semiconductor single crystal
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
CN217922421U (en) Crystal pulling device
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH08119784A (en) Production of compound single crystal and production device therefor
JPH02229791A (en) Apparatus for producing compound semiconductor single crystal
JP2022146327A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP3654314B2 (en) Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor
JPH08104591A (en) Apparatus for growing single crystal
JPH061692A (en) Device for producing compound semiconductor single crystal
JPS60122793A (en) Device for growing single crystal of compound semiconductor
JPS60122791A (en) Pulling up method of crystal under liquid sealing