JPS63269710A - Active suspension for automobile - Google Patents

Active suspension for automobile

Info

Publication number
JPS63269710A
JPS63269710A JP10150887A JP10150887A JPS63269710A JP S63269710 A JPS63269710 A JP S63269710A JP 10150887 A JP10150887 A JP 10150887A JP 10150887 A JP10150887 A JP 10150887A JP S63269710 A JPS63269710 A JP S63269710A
Authority
JP
Japan
Prior art keywords
air
suspension
relative displacement
signal
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10150887A
Other languages
Japanese (ja)
Inventor
Katsumi Kamimura
勝美 上村
Saiichiro Oshita
宰一郎 大下
Atsushi Mine
美禰 篤
Minoru Hiwatari
穣 樋渡
Toshihiro Konno
稔浩 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP10150887A priority Critical patent/JPS63269710A/en
Priority to GB8809310A priority patent/GB2205285B/en
Priority to DE3813695A priority patent/DE3813695A1/en
Publication of JPS63269710A publication Critical patent/JPS63269710A/en
Priority to US07/490,497 priority patent/US5071159A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To reduce the consumption of working fluid by installing a low-pass filter, cutting a high-frequency constituent, in an input circuit for signals out of each sensor detecting various sorts of displacement in a suspension, and stopping any control of the suspension to vibration in a high frequency area. CONSTITUTION:A vertical acceleration signal of a car body detected by a sensor 5 is multiplied by a gain G1 after cutting the specified high frequency area with a low-pass filter LPF1, thereby converting it into an indicated flow rate. And, a vertical relative displacement signal between the car body and the wheel detected by a sensor 4 subtracts a reference position signal to be outputted from a circuit 13a by a level-control switch 13, converting it into an actual relative displacement signal, and after cutting the high frequency area other than the specified value with a low-pass filter LPF2, it is branched off into a signal passing through a differentiation circuit 4a and a signal as it is, then each is multiplied by respective gains G2 and G3, converted into each indicated flow rate. And, each flow rate is added at a circuit 14 and then generates a control signal to a control valve 7 for the working fluid from a circuit 15.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車のアクティブサスペンション装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an active suspension system for a motor vehicle.

従来の技術 自動車において、車輪軸と車体との上下方向の相対変位
(相対変位量)と該相対変位の時間変化率(上下方向相
対変位速度)とにより、気液流体ばねを用いたサスペン
ションの該気液流体ばねによる減衰力特性を可変的に制
御するようにしたアクティブ・サスペンションが従来よ
り開発され、既に特開昭59−213510号公報にて
公開されている。
Conventional technology In automobiles, the relative displacement (amount of relative displacement) in the vertical direction between the wheel axle and the vehicle body and the time rate of change of this relative displacement (relative displacement speed in the vertical direction) are used to determine the relative displacement of a suspension using a gas-liquid fluid spring. An active suspension in which the damping force characteristics of a gas-liquid fluid spring are variably controlled has been developed and has already been disclosed in Japanese Patent Application Laid-Open No. 59-213510.

発明が解決しようとする問題点 上記のようなアクティブサスペンションにおいて、ばね
上とばね下との相対変位を検知するセンサ等車両の走行
時及び停止時のサスペンションの種々の挙動を検知する
センサ類とそれらセンサ類からの信号に基づき流量制御
弁の弁開閉を指示するコントローラを組合せサスペンシ
ョンへの流体の出し入れ制御を行なうようにすると、車
両の種々の情況に応じてダンパ特性、ばね特性等サスペ
ンションの諸特性を可変的に制御すると共に車の姿勢制
御をも行い得るアクティブサスペンション装置を得るこ
とができる。
Problems to be Solved by the Invention In the active suspension as described above, sensors that detect various behaviors of the suspension when the vehicle is running and when the vehicle is stopped, such as a sensor that detects the relative displacement between the sprung mass and the unsprung mass, and those sensors. By combining a controller that instructs the opening and closing of the flow control valve based on signals from sensors to control the flow of fluid into and out of the suspension, various characteristics of the suspension, such as damper characteristics and spring characteristics, can be adjusted according to various vehicle conditions. It is possible to obtain an active suspension device that can variably control the vehicle and also control the attitude of the vehicle.

上記のようなアクティブサスペンション装置においては
、上下加速度センサや相対変位セン”す等のセンサ類に
て検出する振動荷重に対しサスペンションの流体の出し
入れを的確に行って制振するものであるから、高周波振
動に対しては流体の消費量が著るしく多くなり、コンプ
レッサやオイルポンプ等を大能力のものとしなければと
うてい対応できず、コストアップ及び使用エネルギーの
増大をまねくと言う問題を有している。
In the active suspension device described above, the vibration load detected by sensors such as vertical acceleration sensors and relative displacement sensors is damped by accurately moving fluid in and out of the suspension. Vibrations significantly increase fluid consumption, which can only be dealt with by using high-capacity compressors, oil pumps, etc., which leads to increased costs and increased energy usage. There is.

問題点を解決するための手段 本発明は、上記のような自動車のアクティブサスペンシ
ョン装置において、サスペンションに低減衰率の補助ダ
ンパを設けると共に、各センサ類からの信号入力回路に
高周波成分をカットするローパスフィルタを設け、高周
波域の振動に対するサスペンションの流体の出し入れ制
御は行わない構造としたことを特徴とするものである。
Means for Solving the Problems The present invention provides an active suspension system for an automobile as described above, in which an auxiliary damper with a low damping rate is provided in the suspension, and a low-pass filter is provided in the signal input circuit from each sensor to cut high frequency components. The structure is characterized in that a filter is provided and the suspension fluid is not controlled in response to vibrations in a high frequency range.

作   用 上記により、例えば4〜5Hz程度以上の高周波域の振
動は補助ダンパとサスペンションの流体ばねにて減衰吸
収すると共に、車体の固有振動数近傍の低周波域の振動
に対してはコントローラの指令に基づくサスペンション
の流体の出し入れ制御にて制振を行い、少ない消費流体
量にて全周波数域にわたり乗心地の良いサスペンション
性能を得ることができるものである。
As described above, vibrations in the high frequency range of, for example, 4 to 5 Hz or higher are damped and absorbed by the auxiliary damper and the fluid spring of the suspension, and vibrations in the low frequency range near the natural frequency of the vehicle body are damped and absorbed by the controller's command. Vibration is damped by controlling fluid in and out of the suspension based on the above, and it is possible to obtain suspension performance with good riding comfort over the entire frequency range with a small amount of fluid consumption.

実施例 以下本発明の一実施例を附図を参照して説明する。Example An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例を示すシステム図であり、1
は車体側部材2と車輪軸支持部材3との間に設けられた
エアサスペンションユニットであり、該エアサスペンシ
ョンユニー2ト1は例えば、下端部を車輪軸支持部材3
に取付けられたシリンダ部材と、該シリンダ部材に軸方
向摺動可能なるよう嵌装され上端部を車体側部材に弾性
体を介して取付けたピストンロッドとからなる補助ダン
パ1aをもち該補助ダンパlaのシリンダ部材とピスト
ンロッドとの間に形成したエアチャンバに空気を封入す
ることにより、車輪の上下振動のうちの高周波分(例え
ば4〜5Hz程度以上)は低減衰率の上記補助ダンパl
aにて減衰し且つエアチャンバ内に封入された空気の容
積弾性によって車体側の下向き荷重をばね支持するよう
になっており、該エアチャンバ内に空気を注入したりエ
アチャンバ内の空気を排出したりすることにより車輪軸
に対する車体側部材2の高さ即ち車高を変え且つばね定
数を変えることができるようになっている。
FIG. 1 is a system diagram showing one embodiment of the present invention.
is an air suspension unit provided between the vehicle body side member 2 and the wheel axle support member 3;
The auxiliary damper 1a has an auxiliary damper 1a consisting of a cylinder member attached to the cylinder member, and a piston rod that is fitted into the cylinder member so as to be slidable in the axial direction and whose upper end is attached to the vehicle body side member via an elastic body. By sealing air in the air chamber formed between the cylinder member and the piston rod, the high frequency component (for example, about 4 to 5 Hz or more) of the vertical vibration of the wheel is absorbed by the auxiliary damper l with a low damping rate.
The downward load on the vehicle body is attenuated at point a and the volume elasticity of the air sealed in the air chamber is used to support the downward load on the vehicle body. By doing this, the height of the vehicle body side member 2 relative to the wheel axle, that is, the vehicle height, and the spring constant can be changed.

上記のエアサスペンションユニット1は前後左右のすべ
てのサスペンションにそれぞれ設けられており、前後左
右の各サスペンション部には車輪側部材即ちばね下部材
と車体側部材即ちばね上部材との上下方向の相対変位を
検出する相対変位センサ4と、車体即ちばね上の上下加
速度を検出する上下加速度センサ5とがそれぞれ設けら
れ、相対変位センサ4と上下加速度センサ5の各信号は
後述するコントローラ6にインプットされるようになっ
ているが、第1図では説明を簡略化する為に前後左右の
各サスペンションのうちの1個のみを図示し他は省略し
ている。
The above-mentioned air suspension unit 1 is provided in each of the front, rear, left and right suspensions, and each of the front, rear, left and right suspension parts has a relative displacement in the vertical direction between the wheel side member, that is, the unsprung member, and the vehicle body side member, that is, the sprung member. A relative displacement sensor 4 that detects vertical acceleration on the vehicle body, that is, a spring, and a vertical acceleration sensor 5 that detects vertical acceleration on the vehicle body, that is, a spring, are respectively provided, and signals from the relative displacement sensor 4 and the vertical acceleration sensor 5 are input to a controller 6, which will be described later. However, in order to simplify the explanation, only one of the front, rear, left, and right suspensions is shown in FIG. 1, and the others are omitted.

7はエアサスペンションユニット1のエアチャンバへの
給排気を制御する空気の流量制御弁であり、該流量制御
弁7は注入弁、排出弁を1組としてこれを4組備えてお
り、前後左右の各エアサスペンションユニットの空気の
注、排気は該流量制御弁7にてそれぞれ独立して制御さ
れるようになっている。
Reference numeral 7 denotes an air flow rate control valve that controls air supply and exhaust to and from the air chamber of the air suspension unit 1. The flow rate control valve 7 includes four sets of an injection valve and a discharge valve. Air injection and exhaust from each air suspension unit are independently controlled by the flow rate control valve 7.

8は高圧エアタンク、9は低圧エアタンクであり、高圧
エアタンク8内は上記流量制御弁7の注入弁が開いたと
きエアサスペンションユニット1のエアチャンバ内にた
だちに空気を供給することができるようエアサスペンシ
ョンユニット1のエアチャンバ内空気圧より充分高い空
気圧に設定され、低圧エアタンク9内は流量制御弁7の
排出弁が開いたときエアサスペンションユニット1のエ
アチャンバ内空気が直ちに低圧エアタンク9内に流入す
るようエアチャンバ内空気圧より充分低い空気圧に設定
されている。
8 is a high pressure air tank, 9 is a low pressure air tank, and inside the high pressure air tank 8 is an air suspension unit so that air can be immediately supplied into the air chamber of the air suspension unit 1 when the injection valve of the flow rate control valve 7 is opened. The air pressure in the low pressure air tank 9 is set to be sufficiently higher than the air pressure in the air chamber of the air suspension unit 1, and the air pressure in the low pressure air tank 9 is set so that when the discharge valve of the flow control valve 7 opens, the air in the air chamber of the air suspension unit 1 immediately flows into the low pressure air tank 9. The air pressure is set to be sufficiently lower than the air pressure inside the chamber.

高圧エアタンク8と低圧エアタンク9の内圧は図に示し
ていない圧力センサの信号を使って例えば以下のように
ニアコンプレッサの作動を制御して所定の圧範囲内にお
さまるよう管理される。
The internal pressures of the high-pressure air tank 8 and the low-pressure air tank 9 are managed so as to fall within a predetermined pressure range by controlling the operation of the near compressor, for example, as follows using signals from a pressure sensor (not shown).

低圧エアタンク9の内圧が最高設定値以上になると、ニ
アコンプレッサ10を作動させて低圧エアタンク9内の
空気を吸込み加圧して高圧エアタンク8内に供給し、低
圧エアタンク9内圧が所定値以下になるとニアコンプレ
ッサ10を止めるように制御する。
When the internal pressure of the low-pressure air tank 9 exceeds the maximum set value, the near compressor 10 is activated to suck in and pressurize the air in the low-pressure air tank 9 and supply it to the high-pressure air tank 8. When the internal pressure of the low-pressure air tank 9 becomes below the predetermined value, the near The compressor 10 is controlled to stop.

又高圧エアタンク8の内圧が最低設定値以下になった場
合にもニアコンプレッサ10を作動させて高圧エアタン
ク8の内圧が最高設定値になったらニアコンプレッサ1
0を停止させるように制御する。この時低圧エアタンク
9か所定圧以下になった場合には低圧側にもうけたチェ
ックバルブLが開きニアコンプレッサlOは低圧エアタ
ンク9内のエアでなく、大気を導入するようにコントロ
ールされる。通常は高圧エアタンク8.低圧エアタンク
9とも所定圧範囲でおさまるようにバランスしているの
でチェックバルブLは閉じており、空気の閉回路を形成
しているが、イニシャルの空気を導入する時などはチェ
ックバルブLが開き高圧エアタンク8内圧、低圧エアタ
ンク9内圧がバランスするまで大気を吸い込むよう作用
する。
Also, when the internal pressure of the high-pressure air tank 8 falls below the minimum setting value, the near compressor 10 is operated, and when the internal pressure of the high-pressure air tank 8 reaches the maximum setting value, the near compressor 1 is activated.
0 is controlled to stop. At this time, if the pressure in the low-pressure air tank 9 falls below a predetermined pressure, a check valve L provided on the low-pressure side opens and the near compressor IO is controlled to introduce atmospheric air instead of the air in the low-pressure air tank 9. Usually high pressure air tank 8. Since the low pressure air tank 9 is balanced so that the pressure is within a predetermined range, the check valve L is closed, forming a closed air circuit. However, when introducing the initial air, the check valve L opens and high pressure is maintained. Air is sucked in until the internal pressure of the air tank 8 and the internal pressure of the low-pressure air tank 9 are balanced.

ニアコンプレッサ10で加圧された空気はドライヤJを
介して高圧エアタンク8に供給されるが、上記エアタン
ク内圧制御において低圧エアタンク9の圧条件でニアコ
ンプレッサ10が作動し、高圧エアタンク8の内圧が最
高設定圧以上になった場合には高圧エアタンク8側のチ
ェックバルブKが開き高圧空気をドライヤJ、サイレン
サを経由して大気へ放出し、ドライヤJ内の例えばシリ
カゲルなどの除湿材を再生しながら高圧エアタンク8内
を減圧するものである。
The air pressurized by the near compressor 10 is supplied to the high pressure air tank 8 via the dryer J. In the air tank internal pressure control described above, the near compressor 10 operates under the pressure conditions of the low pressure air tank 9, and the internal pressure of the high pressure air tank 8 is the highest. When the pressure exceeds the set pressure, the check valve K on the side of the high-pressure air tank 8 opens and releases high-pressure air to the atmosphere via the dryer J and silencer, regenerating the dehumidifying material such as silica gel in the dryer J while increasing the high pressure. This is to reduce the pressure inside the air tank 8.

尚第1図において11はオイルタンク、12はオイルセ
パレータであり、ニアコンプレッサ10の潤滑オイルが
オイルタンク11より吸入空気に混入してニアコンプレ
ッサ10に供給されオイルセパレータ12にて高圧空気
中より潤滑オイルが分離されオイルタンク11にもどる
ようになっているが、潤滑オイルの供給を必要としない
形式のニアコンプレッサを用いた場合はこれらオイルタ
ンク11.オイルセパレータ12よりなる潤滑オイルの
循環回路は不要テする。又ニアコンプレッサ10の駆動
源として自動車のエンジンを用いた場合は該ニアコンプ
レッサ10の駆動は例えば電磁クラッチ等の動力伝達接
断乎段によってオン、オフ的に制御されるが、ニアコン
プレッサ10の駆動源としては自動車のエンジン以外例
えば電動モータ等を用いることが可能である。
In FIG. 1, 11 is an oil tank and 12 is an oil separator. Lubricating oil from the near compressor 10 is mixed into the intake air from the oil tank 11 and supplied to the near compressor 10, where it is lubricated by the oil separator 12 from high-pressure air. The oil is separated and returned to the oil tank 11, but if a type of near compressor that does not require lubricating oil supply is used, these oil tanks 11. A lubricating oil circulation circuit consisting of the oil separator 12 is unnecessary. Further, when an automobile engine is used as the drive source of the near compressor 10, the drive of the near compressor 10 is controlled on and off by a power transmission disconnection stage such as an electromagnetic clutch, but the drive source of the near compressor 10 is For example, it is possible to use an electric motor or the like other than an automobile engine.

次にコントローラ6による制御態様について第2図を参
照して説明する。
Next, the control mode by the controller 6 will be explained with reference to FIG. 2.

第2図は前後左右の4つのサスペンションのうちの1つ
の制御回路を示しており、コントローラ6にはこの第2
図に示すような制御回路が4組装備されそれぞれのサス
ペンション部に設けられている上下加速度センサ5及び
相対変位センサ4の各信号と車高調整スイッチ13で決
められるサスベンジせンの基準高さ位置信号ニヨって各
サスペンションは独立して以下に記載するような制御を
行う。
FIG. 2 shows a control circuit for one of the four suspensions on the front, rear, left and right sides, and the controller 6 has this second control circuit.
Four sets of control circuits are installed as shown in the figure, and the reference height position of the suspension is determined by the signals of the vertical acceleration sensor 5 and relative displacement sensor 4 provided in each suspension part and the vehicle height adjustment switch 13. Depending on the signal, each suspension independently performs control as described below.

即ち、車体の上下加速度を上下加速度センサ5で検出し
、その上下加速度信号Xは、/\イパスフィルタHPF
にて低周波域(例えば0.1 H’z近傍以下の範囲)
をカットされ、更にローパスフィルタLPF1にて4〜
5Hz程度以上の高周波域をカットされ、ゲインG1が
乗算されて指示流量Q1に変換される。
That is, the vertical acceleration of the vehicle body is detected by the vertical acceleration sensor 5, and the vertical acceleration signal
In the low frequency range (for example, the range below around 0.1 Hz)
is cut, and then further filtered by low pass filter LPF1.
A high frequency range of about 5 Hz or more is cut off, multiplied by a gain G1, and converted into a command flow rate Q1.

車体と車輪との上下方向相対変位を検出しその相対変位
に応じた相対変位信号を発する相対変位センサ4の相対
変位信号Vは、後述する車高調整スイッチ13の選択に
より基準位置指令回路13aを経て出力された基準位置
信号’Vo を引き算されることにより、基準位置から
の実相対変位信号りとなり、ローパスフィルタLPF2
にて例えば4〜5Hz程度以上の高周波域をカットされ
た後、微分回路4aを通った実相対変位速度信号りと、
そのままの実相対変位信号りとの2通りに分かれ、それ
ぞれゲインG2.G3が乗算されて指示流量Q2.Q3
が算出される。
The relative displacement signal V of the relative displacement sensor 4, which detects the vertical relative displacement between the vehicle body and the wheels and generates a relative displacement signal according to the relative displacement, is sent to the reference position command circuit 13a by selection of the vehicle height adjustment switch 13, which will be described later. By subtracting the reference position signal 'Vo outputted through
After the high frequency range of, for example, 4 to 5 Hz or more is cut off, the actual relative displacement speed signal passes through the differentiating circuit 4a.
It is divided into two types, the actual relative displacement signal as it is, and the gain G2. G3 is multiplied to obtain the indicated flow rate Q2. Q3
is calculated.

又相対変位に載る高周波成分は現実的にはオーダが小さ
くなるので、ローパスフィルタLPF2が無くても可能
である。
Furthermore, since the high frequency component appearing in the relative displacement is actually of a small order, it is possible to do it without the low pass filter LPF2.

車高調整スイッチ13は、例えばノーマル車高からハイ
車高に切変える切換スイッチであり、該車高調整スイッ
チ13をノーマルからハイに切換えるとエアサスペンシ
ョンユニー/ トlのエアチャンバに空気が供給されて
車高を所定値だけ高くしその高さを基準車高とし、上記
車高調整スイッチ13をハイからノーマルに切換えると
エアチャンバ内の空気を排出し車高をもとの低いノーマ
ル基準車高とするものである。
The vehicle height adjustment switch 13 is, for example, a switch for switching from normal vehicle height to high vehicle height, and when the vehicle height adjustment switch 13 is switched from normal to high, air is supplied to the air chamber of the air suspension unit. When the vehicle height is raised by a predetermined value and that height is set as the standard vehicle height, and the vehicle height adjustment switch 13 is switched from high to normal, the air in the air chamber is exhausted and the vehicle height is returned to the original low standard vehicle height. That is.

従って相対変位センサ4を、ノーマル基準車高を基準位
置としてその基準位置からの相対変位を検出するよう設
定しておくと、上記車高調整スイッチ13をハイに切換
えた場合、相対変位センサ4が検出した相対変位から、
ノーマル基準車高とハイ基準車高との差だけ引き算した
値がハイ基準車高を基準位置とした実相対変位となるの
である。
Therefore, if the relative displacement sensor 4 is set to detect the relative displacement from the normal reference vehicle height as a reference position, when the vehicle height adjustment switch 13 is switched to high, the relative displacement sensor 4 will be detected. From the detected relative displacement,
The value obtained by subtracting the difference between the normal reference vehicle height and the high reference vehicle height becomes the actual relative displacement with the high reference vehicle height as the reference position.

尚上記のような車高調整はマニアルスイッチ以外に車速
等の信号による自動切換えとする場合もある。
In addition to the manual switch, the above-mentioned vehicle height adjustment may also be performed automatically using signals such as vehicle speed.

但し上記車高調整スイッチ13等による車高調整機構を
もたない自動車であれば、常に相対変位センサ4の相対
変位信号Vが実相対変位信号りと等しくなることは言う
までもない。
However, it goes without saying that if the vehicle does not have a vehicle height adjustment mechanism such as the vehicle height adjustment switch 13, the relative displacement signal V of the relative displacement sensor 4 will always be equal to the actual relative displacement signal.

上記のようにして得られた指示空気流量Q1.Q2及び
G3は加算回路14にて加算されて総指示空気流量Qと
なり、弁制御信号発生回路15から制御弁7に出力が発
せられ、制御弁7の注入弁又は排出弁のいずれか一方が
開となり、前記総指示流量Qに見合うエアチャンバの注
気又は排気が行われるようになっている。
Indicated air flow rate Q1 obtained as above. Q2 and G3 are added in the addition circuit 14 to obtain the total commanded air flow rate Q, and an output is issued from the valve control signal generation circuit 15 to the control valve 7, and either the injection valve or the discharge valve of the control valve 7 is opened. Therefore, the air chamber is inflated or evacuated according to the total instructed flow rate Q.

本発明においては、基本的には各車輪のサスペンション
毎に、車体の上下加速度が上向きであるとエアサスペン
ションユニー2ト1のエアチャンバー内の空気を排出し
下向きであるとエアチャンバーに空気を注入する制御を
行い、車体の上下振動を制振する方向に働らく。即ち路
面からの入力に対してはエアサスペンションユニット1
は柔らかくなり車体側に振動を伝えない方向に制御され
、旋回時や急加減速時の荷重移動に対しては車体のロー
ルやピッチングを抑制する方向(見かけ上エアサスペン
ションユニット1の剛性アップ方向)に働らく。
In the present invention, basically, for each wheel suspension, when the vertical acceleration of the vehicle body is upward, the air in the air chamber of the air suspension unit 2 and 1 is exhausted, and when it is downward, air is injected into the air chamber. It works to dampen the vertical vibrations of the vehicle body. In other words, air suspension unit 1 responds to input from the road surface.
is controlled in a direction that softens and does not transmit vibration to the vehicle body, and in a direction that suppresses roll and pitching of the vehicle body in response to load transfer during turns and sudden acceleration/deceleration (apparently increases the rigidity of the air suspension unit 1) Work at.

サスペンションの上下相対変位速度、上下相対変位は、
エアサスペンションユニット1の伸び方向であればエア
チャンバ内の空気を排出し縮み方向であれば空気をエア
チャンバ内に注入することでサスペンションの相対変位
を基準位置に戻す方向に働ら〈。
The vertical relative displacement speed and vertical relative displacement of the suspension are
If the air suspension unit 1 is in the direction of extension, the air in the air chamber is exhausted, and if it is in the direction of contraction, air is injected into the air chamber, thereby working to return the relative displacement of the suspension to the reference position.

荷重移動等車体側の入力に対しては、上記上下加速度セ
ンサ5と相対変位センサ4の各信号を用いた制御は共に
同方向に働らき、車体を常に水平状態に保つ制御が容易
となる。
For inputs from the vehicle body, such as load movement, control using signals from the vertical acceleration sensor 5 and relative displacement sensor 4 both work in the same direction, making it easy to maintain the vehicle body in a horizontal state at all times.

上記のように上下加速度が上向きのときはエアサスペン
ションの空気を排出し下向きのときはエアサスペンショ
ンに空気を注入する制御を行うようにすると、例えば登
板路にさしかかって上向きの加速度が発生したとき空気
を排出し続け、降板路では空気を注入し続けたりするこ
とになり極めて不都合である。そこで坂路走行時の路面
の傾斜によって発生する上下加速度の周波数は凹凸路面
での上下加速度周波数に比し極低周波であるので、上下
加速度センサ5の信号回路にバイパスフィルタHPFを
介在させ極低周波信号をカットする構成とすることによ
り、上記のような不都合は解消される。    ・前記
したような上下加速度センサ5及び相対変位センサ4の
各信号に基づき車体を制振する制御及び車体姿勢を正し
くする制御を行う場合、上記各信号に高周波成分が存在
すると、高周波振動を制振しようとする作動により多量
の空気を消費し、高い能力のニアコンプレッサを必要と
すると言う問題が生じる。
As described above, if the air suspension is controlled to exhaust the air when the vertical acceleration is upward, and to inject air into the air suspension when the vertical acceleration is downward, for example, when the vertical acceleration occurs and the upward acceleration occurs, the air is This is extremely inconvenient as air continues to be pumped out and air continues to be injected into the exit path. Therefore, since the frequency of the vertical acceleration generated by the inclination of the road surface when driving on a slope is extremely low frequency compared to the vertical acceleration frequency on an uneven road surface, a bypass filter HPF is interposed in the signal circuit of the vertical acceleration sensor 5, and the frequency is extremely low. By adopting a configuration that cuts the signal, the above-mentioned disadvantages can be solved. - When performing control to damp the vehicle body vibration and control to correct the vehicle body posture based on the signals of the vertical acceleration sensor 5 and relative displacement sensor 4 as described above, if high frequency components are present in each of the above signals, high frequency vibrations may be suppressed. The problem is that the shaking operation consumes a large amount of air and requires a high capacity near compressor.

そこで本発明では、上下加速度センサ5及び相対変位セ
ンサ4の各信号の高周波成分をカットするローパスフィ
ルタLPFI及びLPF2 を設けると共に、エアサス
ペンションユニット1に低減衰率の補助ダンパ1aを設
けることにより、4〜5Hz程度以上の高周波振動に対
する空気の出し入れの制御をやめ、この高周波域の振動
は低減衰率の補助ダンパ1aと振動伝達率の低いエアサ
スペンションユニット1の空気ばね特性にて減衰し、ば
ね上の固有振動数附近の低周波数域の振動に対しては上
記のようなコントローラ6の指令によるエアサスペンシ
ョンの空気の出し入れ制御によって制振を行うことによ
り例えば1〜2Hz近傍で生じるバウシングやピッチン
グ、ローリングの低減及びそれに伴なうふわふわ感防止
をはかり、全体として乗心地の著しい改善をはかったも
のである。
Therefore, in the present invention, low-pass filters LPFI and LPF2 are provided to cut high frequency components of each signal of the vertical acceleration sensor 5 and relative displacement sensor 4, and an auxiliary damper 1a with a low damping rate is provided in the air suspension unit 1. Control of air intake/extraction for high frequency vibrations of ~5 Hz or more is stopped, and vibrations in this high frequency range are attenuated by the air spring characteristics of the auxiliary damper 1a with a low damping rate and the air suspension unit 1 with a low vibration transmission rate, and For vibrations in the low frequency range near the natural frequency of the controller 6, the vibrations can be suppressed by controlling the air in and out of the air suspension according to commands from the controller 6, thereby eliminating bouncing, pitching, and rolling that occur around 1 to 2 Hz, for example. The aim is to reduce this and prevent the resulting fluffy feeling, resulting in a significant improvement in ride comfort as a whole.

高周波数域の振動に対するエアサスペンションの空気の
出し入れ制御をやめたことで、空気の消費が大幅に少く
なり、小能力のニアコンプレッサで充分対応することが
でき、コスト及び使用エネルギーの著しい低減をはかり
得ることは言うまでもない。
By eliminating air suspension air intake/extraction control for vibrations in the high frequency range, air consumption is significantly reduced, and a small-capacity near compressor can adequately handle the problem, resulting in significant reductions in cost and energy usage. Needless to say.

尚上記実施例では空気をばねとして用いたエアサスペン
ションに本発明を適用した例を示しているが、空気の閉
回路において注入と排出のバランスが充分に保持され該
閉回路への空気の補給或は排出をほとんど行なわなくて
すむような構成とすれば、空気の代わりに空気以外の任
意の気体を採用することができ、又上記実施例では流体
制御弁を用いた例を示しているが、流量制御弁以外に圧
力制御弁を設け、コントローラが上下加速度信号、上下
相対変位速度信号及び上下相対変位信号から注入又は排
出すべき気体の指示量を算出しその指示量に見合う気体
量を注入又は排出させるべく上記圧力制御弁の圧力設定
値を可変制御する信号を発する構成としても良い。
Although the above embodiment shows an example in which the present invention is applied to an air suspension using air as a spring, it is possible to maintain a sufficient balance between injection and discharge in a closed air circuit, and to supply or remove air to the closed circuit. If the configuration is such that almost no discharge is required, any gas other than air can be used instead of air, and although the above embodiment shows an example using a fluid control valve, A pressure control valve is provided in addition to the flow rate control valve, and the controller calculates the indicated amount of gas to be injected or discharged from the vertical acceleration signal, vertical relative displacement speed signal, and vertical relative displacement signal, and injects or discharges the amount of gas corresponding to the indicated amount. It may be configured to issue a signal to variably control the pressure setting value of the pressure control valve to discharge the gas.

更に又本発明は、ハイドロニューマチックサスペンショ
ンを用いた自動車にも適用可能であり、この場合はコン
トローラからの弁開閉信号によって流量制御弁の注入弁
又は排出弁を開とすることにより、オイルポンプにてア
キュムレータ内に所定圧にて蓄圧されているオイルがサ
スペンションのオイルシルンダ内に注入されたり又はサ
スペンションのオイルシルンダ内のオイルがリザーバ内
にドレーンされたりする制御となる。この場合もコント
ローラによる注入及び排出の指示流量の算出及びそれに
基づく流量制御弁の開閉制御、その制御によって得られ
る機能等は前記エアサスペンションの場合と同じである
Furthermore, the present invention can also be applied to automobiles using hydropneumatic suspension. In this case, the oil pump can be operated by opening the injection valve or the discharge valve of the flow control valve in response to a valve opening/closing signal from the controller. The oil stored in the accumulator at a predetermined pressure is injected into the oil sill of the suspension, or the oil in the oil sill of the suspension is drained into the reservoir. In this case as well, calculation of the instructed flow rates for injection and discharge by the controller, opening/closing control of the flow rate control valve based on the calculated flow rate, functions obtained by the control, etc. are the same as in the case of the air suspension.

発明の効果 上記のように本発明によれば、流体の出し入れ可能な流
体サスペンションと、該流体の出し入れを制御する制御
弁を有すると共に、前後左右の各車輪のサスペンション
取付部の車体側の上下加速度をそれぞれ検出する上下加
速度センサと、各サスペンションの上下方向の相対変位
をそれぞれ検出する相対変位センサとを備え、該上下加
速度センサ及び相対変位センサからの各信号に基づきコ
ントローラが上記制御弁を開閉作動させるべき弁開閉信
号を発し、サスペンションへの流体の注入及びサスペン
ション内流体の排出を行うようにした自動車のアクティ
ブサスペンションにおいて、上記サスペンションに低減
衰率の補助ダンパを設けると共に、上記上下加速度セン
サ及び相対変位センサの信号の例えば4〜5Hz程度以
上の高周波成分をカットするローパスフィルタを設け、
上記振動の高周波成分は上記低減衰率の補助ダンパとサ
スペンションの流体ばね特性にて減衰吸収し、車体の固
有振動数附近の低周波数域の振動を上記コントローラの
指示によるサスペンションの流体の出し入れにより制振
するようにしたもので、これにより全周波数域で振動伝
達性が低く乗心地の良い特性を得ることができると共に
、低周波数域で生じるバウシング、ピッチング、ローリ
ング等が機能良く減衰低減されて所謂ふわふわ感がなく
なり、理想的なるサスペンション特性を得ることができ
るもので、高周波数域の振動に対する流体の出し入れ制
御を行わないことで消費流体量の著しい低減をはかるこ
とができ小能力のコンプレッサやオイルポンプ等で充分
所期の機能を果すことができ、コスト及び使用エネルギ
ーの著しい低減をはかり得ることと相俟って実用上多大
の効果をもたらし得るものである。
Effects of the Invention As described above, the present invention has a fluid suspension that allows fluid to be taken in and taken out, and a control valve that controls the fluid to be taken in and out. and a relative displacement sensor that detects the relative displacement of each suspension in the vertical direction. Based on the signals from the vertical acceleration sensor and the relative displacement sensor, the controller opens and closes the control valve. In an active suspension for an automobile, the suspension is equipped with an auxiliary damper with a low damping rate, and the vertical acceleration sensor and the relative A low-pass filter is provided to cut high frequency components of, for example, 4 to 5 Hz or higher in the displacement sensor signal,
The high-frequency components of the vibrations mentioned above are damped and absorbed by the auxiliary damper with a low damping rate and the fluid spring characteristics of the suspension, and the vibrations in the low frequency range near the natural frequency of the vehicle body are controlled by the fluid intake and removal of the suspension according to instructions from the controller. As a result, it is possible to obtain characteristics with low vibration transmission and good riding comfort in the entire frequency range, as well as effectively damping and reducing bouncing, pitching, rolling, etc. that occur in the low frequency range. This eliminates the fluffy feeling and provides ideal suspension characteristics, and by not controlling fluid intake and withdrawal against vibrations in the high frequency range, the amount of fluid consumed can be significantly reduced, making it ideal for small capacity compressors and oil Pumps and the like can fully perform their intended functions, and together with the fact that costs and energy consumption can be significantly reduced, this can bring about great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

右図は本発明の一実施例を示すもので、第1図はエアサ
スペンションの空気注入及び排出系統を示す空気制御系
統説明図、第2図は第1図におけるコントローラの制御
回路の一例を示すブロック図である。 1・・・エアサスペンションユニット、1a・・・補助
ダンパ、4・・・相対変位センサ、5・・・上下加速度
センサ、6・・・コントローラ、7・・・流量制御弁、
8・・・高圧エアタンク、9・・・低圧エアタンク、1
0・・・ニアコンプレッサ、LPFI  。 LPF2・・・ローパスフィルタ。 以   上
The figure on the right shows one embodiment of the present invention. Figure 1 is an explanatory diagram of the air control system showing the air injection and exhaust system of the air suspension. Figure 2 shows an example of the control circuit of the controller in Figure 1. It is a block diagram. DESCRIPTION OF SYMBOLS 1... Air suspension unit, 1a... Auxiliary damper, 4... Relative displacement sensor, 5... Vertical acceleration sensor, 6... Controller, 7... Flow control valve,
8...High pressure air tank, 9...Low pressure air tank, 1
0... Near compressor, LPFI. LPF2...Low pass filter. that's all

Claims (1)

【特許請求の範囲】[Claims] 流体の出し入れの可能な流体サスペンションと該流体の
出し入れを制御する制御弁を有すると共に、ばね上の上
下加速度を検出する上下加速度センサと、ばね上とばね
下の相対変位を検出する相対変位センサを各輪に有し、
該各センサの信号に基づきコントローラが上記制御弁の
弁開閉信号を発して流体サスペンションの流体の出し入
れを行なうようにした自動車のアクティブサスペンショ
ン装置において、上記流体サスペンションに低減衰率の
補助ダンパを設けると共に、上記各センサの信号回路に
高周波成分をカットするローパスフィルタを設け、高周
波数域の振動は補助ダンパと流体サスペンションのばね
にて減衰吸収し、車体の固有振動数附近の低周波数域の
振動を上記流体サスペンションの流体の出し入れ制御に
て制振するよう構成したことを特徴とする自動車のアク
ティブサスペンション装置。
It has a fluid suspension that allows fluid to be taken in and out, and a control valve that controls the fluid in and out, as well as a vertical acceleration sensor that detects the vertical acceleration on the spring and a relative displacement sensor that detects the relative displacement between the sprung mass and the unsprung mass. Each ring has
In the active suspension system for an automobile, the controller issues valve opening/closing signals of the control valve based on the signals of the respective sensors to take fluid in and out of the fluid suspension. A low-pass filter is installed in the signal circuit of each of the above sensors to cut high frequency components, and vibrations in the high frequency range are damped and absorbed by the auxiliary damper and the spring of the fluid suspension. An active suspension device for an automobile, characterized in that it is configured to damp vibration by controlling fluid in and out of the fluid suspension.
JP10150887A 1987-04-24 1987-04-24 Active suspension for automobile Pending JPS63269710A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10150887A JPS63269710A (en) 1987-04-24 1987-04-24 Active suspension for automobile
GB8809310A GB2205285B (en) 1987-04-24 1988-04-20 Active suspension system of vehicle
DE3813695A DE3813695A1 (en) 1987-04-24 1988-04-22 ACTIVE SUSPENSION
US07/490,497 US5071159A (en) 1987-04-24 1990-02-28 Active suspension system of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10150887A JPS63269710A (en) 1987-04-24 1987-04-24 Active suspension for automobile

Publications (1)

Publication Number Publication Date
JPS63269710A true JPS63269710A (en) 1988-11-08

Family

ID=14302530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10150887A Pending JPS63269710A (en) 1987-04-24 1987-04-24 Active suspension for automobile

Country Status (1)

Country Link
JP (1) JPS63269710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486509U (en) * 1990-11-30 1992-07-28

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248417A (en) * 1984-05-21 1985-12-09 Toyota Central Res & Dev Lab Inc Active suspension apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248417A (en) * 1984-05-21 1985-12-09 Toyota Central Res & Dev Lab Inc Active suspension apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486509U (en) * 1990-11-30 1992-07-28

Similar Documents

Publication Publication Date Title
US4934731A (en) Control device for an active fluid suspension system of motor vehicles
US5071159A (en) Active suspension system of vehicle
US4695074A (en) Vehicle suspension apparatus
JP5830379B2 (en) Multi-point hydraulic suspension system for land vehicles
JPH0662052B2 (en) Spring mechanism for wheel suspension
JPH01115717A (en) Active type suspension device
JPS62139709A (en) Active suspension system for automobile
US4673193A (en) Vehicle suspension apparatus
JP2502372B2 (en) Vehicle fluid pressure supply device
JPH0443111A (en) Suspension device for vehicle
JP3160032B2 (en) System for controlling a spring cylinder of a traveling mechanism
JPH02286416A (en) Active type suspension
JPS63269710A (en) Active suspension for automobile
JP3337322B2 (en) Active suspension for tracked vehicles
JPS63279915A (en) Active suspension device for automobile
JPS63269709A (en) Active suspension for automobile
JPS63279914A (en) Control method for active suspension device for automobile
JPS63275413A (en) Active suspension for automobile
JPS63305015A (en) Active suspension device for automobile
JPS63275412A (en) Active suspension for automobile
JPH02306816A (en) Active type suspension device
JPS59124419A (en) Shock absorber for car
KR0166183B1 (en) Hydraulic circuit for vehicle active suspension system
JP2503240B2 (en) Active suspension
JP2874477B2 (en) Operation control method of fluid active suspension