JPS6326852B2 - - Google Patents

Info

Publication number
JPS6326852B2
JPS6326852B2 JP4958582A JP4958582A JPS6326852B2 JP S6326852 B2 JPS6326852 B2 JP S6326852B2 JP 4958582 A JP4958582 A JP 4958582A JP 4958582 A JP4958582 A JP 4958582A JP S6326852 B2 JPS6326852 B2 JP S6326852B2
Authority
JP
Japan
Prior art keywords
cut
temperature
frequency
crystal
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4958582A
Other languages
Japanese (ja)
Other versions
JPS58166229A (en
Inventor
Yoritake Ooya
Mitsuo Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYOTA SEIMITSU KK
Original Assignee
MYOTA SEIMITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYOTA SEIMITSU KK filed Critical MYOTA SEIMITSU KK
Priority to JP4958582A priority Critical patent/JPS58166229A/en
Publication of JPS58166229A publication Critical patent/JPS58166229A/en
Publication of JPS6326852B2 publication Critical patent/JPS6326852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、直線状周波数温度特性を示す水晶振
動子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal resonator exhibiting linear frequency-temperature characteristics.

従来、水晶振動子の振動周波数が温度により変
化するのを利用して温度を正確に測定する試みが
なされている。しかし、従来知られているカツト
角の水晶振動子では、周波数温度特性が直線的に
なる温度が狭く、広い温度範囲に亘る測定をする
にはリニアライザーを併用する必要がある。この
ため測定器が非常に高価なものになつてしまつて
いた。
Conventionally, attempts have been made to accurately measure temperature by utilizing the fact that the vibration frequency of a crystal resonator changes with temperature. However, in conventionally known cut-angle crystal resonators, the temperature at which the frequency-temperature characteristic becomes linear is narrow, and it is necessary to use a linearizer in combination to make measurements over a wide temperature range. As a result, measuring instruments have become extremely expensive.

従来技術による水晶振動子において、周波数温
度特性に直線性を持たせる目的で製造された水晶
振動子はLCカツト水晶振動子である。
Among conventional crystal resonators, a crystal resonator manufactured for the purpose of providing linearity to frequency-temperature characteristics is an LC cut crystal resonator.

第1図は水晶片の切出し角を説明する為の図で
X軸、Y軸、Z軸はそれぞれ水晶の電気軸、機械
軸、光軸である。LCカツトは二重回転水晶振動
子であり、振動片は、Y軸に直交する水晶片(Y
板といわれている)を、Z軸を回転軸として反時
計方向にφ=11.17゜回転し、さらに新しくできた
X′軸を回転軸として反時計方向にθ=9.39゜回転
して得られる。
FIG. 1 is a diagram for explaining the cutting angle of a crystal piece, and the X-axis, Y-axis, and Z-axis are the electrical axis, mechanical axis, and optical axis of the crystal, respectively. The LC cut is a double rotating crystal resonator, and the vibrating piece is a crystal piece perpendicular to the Y axis (Y
The plate) was rotated counterclockwise by φ=11.17° using the Z-axis as the rotation axis, and a new plate was created.
Obtained by rotating θ=9.39° counterclockwise using the X′ axis as the rotation axis.

LCカツトによる水晶振動子は、比較的広い温
度範囲にわたり直線状の周波数温度特性を呈する
が、リニアライザーを併用しても精度の良い測定
ができる温度範囲は−80〜+250℃にとどまり低
温側での測定巾が狭い。
Crystal resonators made by LC cut exhibit linear frequency-temperature characteristics over a relatively wide temperature range, but even when used in conjunction with a linearizer, the temperature range in which highly accurate measurements can be made is limited to -80 to +250°C, and it is difficult to measure on the low-temperature side. The measurement width is narrow.

本発明は、前記従来技術の欠点に鑑みてなされ
たものであり、本発明の目的は、リニアライザー
なしで広い温度範囲の測定可能な水晶振動子を得
ることにある。
The present invention has been made in view of the drawbacks of the prior art, and an object of the present invention is to obtain a crystal resonator that can measure a wide temperature range without a linearizer.

無限平面に関する厚み振動理論を薄い水晶平板
に適用すると、共振周波数は となる。ここでρ、yo、及びCは夫々水晶片の
密度、厚み寸法及び固有値である。上記は温度
Tの関数であり、は基準温度Toの近傍でテー
ラー展開すると、 (T)(To){1+α(T−To)+β/2(T −To)2+γ/6(T−To)3} (2) となる。α、β、γは、夫々第1次、第2次、第
3次周波数温度係数であり次式で定義される。
Applying the thickness vibration theory regarding an infinite plane to a thin crystal plate, the resonant frequency is becomes. Here, ρ, yo, and C are the density, thickness, and characteristic value of the crystal piece, respectively. The above is a function of temperature T, and when is expanded in the vicinity of the reference temperature To, (T) (To) {1 + α (T-To) + β/2 (T - To) 2 + γ/6 (T-To) 3 } (2). α, β, and γ are the first, second, and third frequency temperature coefficients, respectively, and are defined by the following equations.

α=1/∂/∂T)Tp β=1/∂2/∂T2Tp γ=1/∂3/∂T3Tp (3) 水晶の密度や弾性定数、及びこれらの温度係数
の測定値を用い、式(1)、(2)、及び(3)より理論的に
α、β、γなどの値を求めることができる。
α=1/∂/∂T) Tp β=1/∂ 2 /∂T 2 ) Tp γ=1/∂ 3 /∂T 3 ) Tp (3) The density, elastic constant, and temperature coefficient of the crystal Using the measured values, the values of α, β, γ, etc. can be theoretically determined from equations (1), (2), and (3).

前記係数を用いて、周波数、温度特性が直線に
なる新カツトを発見した。
Using the above coefficients, we discovered a new cut in which the frequency and temperature characteristics are linear.

周波数−温度特性を直線にするには、2次及び
3次の周波数−温度係数であるβ、γを零にすれ
ば良い。
In order to make the frequency-temperature characteristic a straight line, β and γ, which are the second-order and third-order frequency-temperature coefficients, may be set to zero.

第2図は、本発明を説明する為の図であり、第
1図で説明した水晶片のカツト角、φ、θを用い
理論的に、前記周波数−温度係数、α、β、γが
零になる軌跡を示している。カツト角、φ、θは
反時計方向に回転するのを正としている。
FIG. 2 is a diagram for explaining the present invention. Using the cut angles, φ, and θ of the crystal piece explained in FIG. It shows the trajectory that will become. The cut angles, φ, and θ are positive when rotated counterclockwise.

第2図から、βとγが小さくなるのは、θ=
5゜、φ=5゜の近傍及びθ=5゜、φ=−5゜の近傍
(以下5゜−5゜カツトという)と、θ=20゜、φ=20゜
の近傍及びθ=20゜、φ=−20゜の近傍(以下20゜−
20゜カツトという)である。これらの4点ではβ
とγがほぼ零になるので、周波数温度係数はαだ
けと考えて良く、非常に良好な直線性を示すはず
である。
From Figure 2, β and γ become smaller because θ=
5°, near φ=5°, near θ=5°, φ=-5° (hereinafter referred to as 5°-5° cut), near θ=20°, near φ=20°, and near θ=20°. , in the vicinity of φ=-20° (below 20°-
20° cut). At these four points, β
Since and γ are almost zero, it can be considered that the frequency temperature coefficient is only α, and it should show very good linearity.

5゜−5゜カツトと、20゜−20゜カツトによる水晶片
を用いて水晶振動子を製造し、周波数温度特性を
測定したところ、リニアライザーなしでも−200
〜+250℃の広い温度範囲において良好な直線性
周波数温度特性を示し、理論値と良く一致した。
さらに各々のカツト角に対し±5゜の領域で同様の
振動子を製造して周波数温度特性を測定してみた
が、実用に耐えるのは各々のカツト角に対して±
3゜の領域であつた。第2図中にLCカツト(◎印)
の位置を表示してあるが、LCカツトは二次温度
係数βは小さいが、三次温度係数γが零の軌跡か
ら離れていることが判る。
When we manufactured crystal resonators using crystal pieces cut at 5°-5° and 20°-20°, and measured the frequency-temperature characteristics, we found that -200° even without a linearizer.
It showed good linear frequency-temperature characteristics over a wide temperature range of ~+250°C, and was in good agreement with the theoretical value.
Furthermore, we manufactured similar oscillators in the range of ±5° for each cut angle and measured the frequency-temperature characteristics.
It was in the 3° range. LC cut (marked with ◎) in Figure 2
It can be seen that although the second-order temperature coefficient β of the LC cut is small, the third-order temperature coefficient γ is far from the zero locus.

LCカツトが低温側で周波数温度特性が直線性
を示さないのは、三次温度係数γの影響によると
考えられる。
The reason why the frequency temperature characteristics do not show linearity when the LC cut is on the low temperature side is thought to be due to the influence of the third-order temperature coefficient γ.

5゜−5゜カツト及び20゜−20゜カツトが広い温度範
囲で周波数温度特性が良好なことは判つたが、5゜
−5°カツトと20゜−20゜カツトでは、水晶の切出し
角が異なるので、特性には差がある。まず一次温
度係数αが零になる軌跡からの距離が異なる為
に、一次温度係数が異なる。本発明では、Cモー
ドの厚みすべり振動を利用しているが、5゜−5゜カ
ツトでは基本波、三次振動波ともあまり差はなく
約60PPm/℃である。20゜−20゜カツトでは、振動
レスポンスが三次振動波の方が良く、又副振動も
少ないので、三次振動波を使用したが、約
17PPm/℃であつた。これはLCカツトの基本波
の周波数−温度係数の約40PPm/℃の1/2であ
る。
It was found that the 5°-5° cut and the 20°-20° cut have good frequency-temperature characteristics over a wide temperature range, but the 5°-5° cut and the 20°-20° cut cause the cutting angle of the crystal to Since they are different, there are differences in their characteristics. First, since the distance from the trajectory where the primary temperature coefficient α becomes zero is different, the primary temperature coefficients are different. In the present invention, C-mode thickness shear vibration is used, and in the 5°-5° cut, there is not much difference between the fundamental wave and the tertiary vibration wave, which is about 60 PPm/°C. For the 20°-20° cut, the third-order vibration wave was used because the vibration response is better and there are fewer secondary vibrations, but the
It was 17PPm/℃. This is 1/2 of the frequency-temperature coefficient of the fundamental wave of the LC cut, which is approximately 40PPm/°C.

第3図に5゜−5゜カツト、20゜−20゜カツト、LCカ
ツトの周波数温度特性を示す。
Figure 3 shows the frequency temperature characteristics of 5°-5° cut, 20°-20° cut, and LC cut.

(LCカツトはリニアライザー使用) 以上、本発明20゜−20゜カツトの特徴をまとめる
と、 1 周波数温度特性が広い範囲で直線性を示す。
(The LC cut uses a linearizer) The features of the 20°-20° cut of the present invention can be summarized as follows: 1. Frequency temperature characteristics exhibit linearity over a wide range.

2 20゜−20゜カツトの三次振動は副振動が少なく
安定した振動をする。
2 The tertiary vibration of the 20°-20° cut produces stable vibration with little secondary vibration.

3 カツト角に±3゜の巾があり、水晶片の加工が
容易である。
3. The cut angle has a width of ±3°, making it easy to process the crystal piece.

以上述べたように本発明によれば、直線状周波
数温度特性を有する水晶振動子が容易に製造でき
る。本発明で製造した振動片は12mm×14.727mmの
方形板で厚さは0.5mm、電極径は7.0mmであるが、
円形でもよく、さらに小型で性能を良くしたい場
合にはプラノコンベツクス、バイコンベツクスに
すると良く、耐衝撃性等を必要とする場合には音
叉形でも良い。
As described above, according to the present invention, a crystal resonator having linear frequency-temperature characteristics can be easily manufactured. The vibrating piece manufactured according to the present invention is a rectangular plate measuring 12 mm x 14.727 mm, with a thickness of 0.5 mm and an electrode diameter of 7.0 mm.
It may be circular, or if a smaller size and better performance is desired, a planoconvex or biconvex structure may be used, and if impact resistance is required, a tuning fork shape may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水晶の切出し角を説明する為の図、第
2図は本発明を説明する為の図、第3図は本発明
に係る水晶振動子の周波数温度特性を示す図であ
る。
FIG. 1 is a diagram for explaining the cutting angle of the crystal, FIG. 2 is a diagram for explaining the present invention, and FIG. 3 is a diagram showing the frequency-temperature characteristics of the crystal resonator according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 水晶のY軸に垂直な板をZ軸を回転軸として
反時計方向にφ=20゜±3゜回転し、さらにX′軸
(電気軸)を回転軸として反時計方向に0=20゜±
3゜回転して得られる水晶板を使用したことを特徴
とする水晶振動子。
1 Rotate the plate perpendicular to the Y-axis of the crystal counterclockwise by φ=20°±3° using the Z-axis as the rotational axis, and further counterclockwise by 0=20° using the X′-axis (electrical axis) as the rotational axis. ±
A crystal resonator characterized by using a crystal plate obtained by rotating it by 3 degrees.
JP4958582A 1982-03-26 1982-03-26 Crystal oscillator Granted JPS58166229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4958582A JPS58166229A (en) 1982-03-26 1982-03-26 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4958582A JPS58166229A (en) 1982-03-26 1982-03-26 Crystal oscillator

Publications (2)

Publication Number Publication Date
JPS58166229A JPS58166229A (en) 1983-10-01
JPS6326852B2 true JPS6326852B2 (en) 1988-05-31

Family

ID=12835290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4958582A Granted JPS58166229A (en) 1982-03-26 1982-03-26 Crystal oscillator

Country Status (1)

Country Link
JP (1) JPS58166229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127668A (en) * 1988-11-08 1990-05-16 Ricoh Co Ltd Developing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131434A (en) * 1983-12-20 1985-07-13 Yokogawa Hokushin Electric Corp Temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127668A (en) * 1988-11-08 1990-05-16 Ricoh Co Ltd Developing device

Also Published As

Publication number Publication date
JPS58166229A (en) 1983-10-01

Similar Documents

Publication Publication Date Title
JPS593695B2 (en) crystal thermometer
US4472656A (en) Temperature sensor and method using a single rotated quartz crystal
Bechmann Single response thickness-shear mode resonators using circular bevelled plates
JP3096472B2 (en) SC-cut crystal unit
JPH0622310B2 (en) Contour-slip crystal unit
JPS6326852B2 (en)
JPS62194720A (en) Contour shear crystal resonator
JP2005197946A (en) Tuning fork type crystal resonator
JPH0150135B2 (en)
JPS5837150Y2 (en) piezoelectric crystal resonator
JPS6367364B2 (en)
JPH0151135B2 (en)
JPS6326853B2 (en)
JPH11177376A (en) Sc-cut crystal resonator
JPS5824503Y2 (en) Width-slip crystal oscillator
JPH0434090B2 (en)
JPS6342596Y2 (en)
JPS6336748Y2 (en)
JPH0443223B2 (en)
JPS5912810Y2 (en) piezoelectric vibrator
JP2003023339A (en) Quartz vibrator
JPS5827547Y2 (en) crystal oscillator
JPS5912805Y2 (en) Width shear oscillator
JPS6325529B2 (en)
JPS6058709A (en) Piezoelectric vibrator