JPS6367364B2 - - Google Patents

Info

Publication number
JPS6367364B2
JPS6367364B2 JP21698582A JP21698582A JPS6367364B2 JP S6367364 B2 JPS6367364 B2 JP S6367364B2 JP 21698582 A JP21698582 A JP 21698582A JP 21698582 A JP21698582 A JP 21698582A JP S6367364 B2 JPS6367364 B2 JP S6367364B2
Authority
JP
Japan
Prior art keywords
temperature
cutting direction
frequency
crystal resonator
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21698582A
Other languages
Japanese (ja)
Other versions
JPS59107618A (en
Inventor
Mikihiko Yamashina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21698582A priority Critical patent/JPS59107618A/en
Publication of JPS59107618A publication Critical patent/JPS59107618A/en
Publication of JPS6367364B2 publication Critical patent/JPS6367364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は2回回転Yカツト水晶振動子のうち
=19.1±0.1゜の場合(以下ITカツトという)につ
いて、所望の周波数、ターンオーバー温度に対
し、曲率半径、動作次数を選択し、精度良く切断
方位θを決定可能な水晶振動子の製造方法に関す
るものである。
[Detailed Description of the Invention] (1) Technical Field of the Invention The present invention provides a method for controlling a twice-rotating Y-cut crystal oscillator with a rotation angle of =19.1±0.1° (hereinafter referred to as IT-cut) to a desired frequency and turnover temperature. On the other hand, the present invention relates to a method of manufacturing a crystal resonator in which the radius of curvature and the order of operation can be selected and the cutting direction θ can be determined with high accuracy.

(2) 技術の背景 通信システムの多重化、高速化に伴い、基準信
号源として高安定な水晶振動子の要望が高まつて
いる。これに対処しうる水晶振動子として外部か
ら加わる諸々の熱的、機械的ストレスの影響が小
さく、又使用恒温槽の温度(60〜80℃)付近での
周波数温度係数の小さなITカツト振動子が注目
されている。このようなITカツト振動子を製造
する場合、その設計段階において、最も重要なパ
ラメータである切断方位θを所望の周波数温度特
性に対応させて精度良く選定しなければならな
い。
(2) Technical background As communication systems become more multiplexed and faster, there is an increasing demand for highly stable crystal oscillators as reference signal sources. As a crystal oscillator that can cope with this problem, the IT cut oscillator is less affected by various externally applied thermal and mechanical stresses, and has a small frequency temperature coefficient near the temperature of the constant temperature oven used (60 to 80 degrees Celsius). Attention has been paid. When manufacturing such an IT cut resonator, the cutting direction θ, which is the most important parameter, must be selected accurately in the design stage in accordance with the desired frequency-temperature characteristics.

(3) 従来技術と問題点 切断方位がIRE表記(yxwl)/θで表わさ
れる厚みすべりモードを利用したブラノコンベツ
クス形水晶振動子を製造する場合、従来の設計方
法としては、周波数温度特性に対応した切断方位
θを選定するに際し、単に周波数温度特性曲線の
ターーオーバー温度T0に応じて一義的にθを選
定し、形状(振動子凸面の曲率半径R)について
は考慮していなかつた。しかしながら、特に=
19.1゜付近ではθに対するRの影響が大きいこと
が実験調査の結果判明した。従つて、従来のθの
選定方法においては、特に=19.1゜付近におい
て周波数温度特性に対応した正確なθが定まらず
製造歩留りの低下を来していた。
(3) Conventional technology and problems When manufacturing a Brano convex type crystal resonator using the thickness shear mode where the cutting direction is expressed by the IRE notation (yxwl)/θ, the conventional design method is to When selecting the corresponding cutting direction θ, θ was simply selected according to the over temperature T 0 of the frequency-temperature characteristic curve, and the shape (radius of curvature R of the convex surface of the vibrator) was not considered. However, especially =
Experimental investigation revealed that the influence of R on θ is large around 19.1°. Therefore, in the conventional method for selecting θ, an accurate θ corresponding to the frequency-temperature characteristics cannot be determined, especially around =19.1°, resulting in a decrease in manufacturing yield.

(4) 発明の目的 本発明は上記従来技術の欠点に鑑みなされたも
のであつて、=19.1゜付近での切断方位θを所
望の特性に応じて精度良く選定し、製造歩留りを
向上させ高精度な水晶振動子が得られる水晶振動
子の製造方法の提供を目的とする。
(4) Purpose of the Invention The present invention was made in view of the above-mentioned drawbacks of the prior art. The purpose of the present invention is to provide a method for manufacturing a crystal resonator that allows a highly accurate crystal resonator to be obtained.

(5) 発明の構成 この目的を達成するため、本発明では、IRE表
記(yxwl)/θによる切断方位,θを有す
る2回回転Yカツトの厚みすべりモード利用のプ
ラノコンベツクス形水晶振動子の製造方法におい
て、=19.1±0.1゜の範囲とし、共振周波数をf0
振動子凸面の曲率半径をR、周波数温度特性曲線
のターンオーバー温度をT0とし、厚みすべりモ
ードの動作次数mが1、3、5の場合のθを各々
θ1,θ3,θ5とすれば、 θ1=34.482(1‐3.6×10-4T0+2.3×10-6T0 2)―
95/f0・R θ3=34.732(1‐2.8×10-4T0+1.8×10-6T0 2)―
20/f0・R θ5=34.785(1‐3.7×10-4T0+2.6×10-6T0 2)―
50/f0・R となるように切断方位θを選定している。
(5) Structure of the Invention In order to achieve this object, the present invention provides a plano convex type crystal resonator using the thickness shear mode of a twice-rotated Y-cut having a cutting direction and θ in IRE notation (yxwl)/θ. In the manufacturing method, the range is =19.1±0.1°, and the resonant frequency is f 0 ,
The radius of curvature of the convex surface of the resonator is R, the turnover temperature of the frequency-temperature characteristic curve is T 0 , and θ when the operating order m of the thickness shear mode is 1 , 3, and 5 are θ 1 , θ 3 , and θ 5 , respectively. Then, θ 1 =34.482(1-3.6×10 -4 T 0 +2.3×10 -6 T 0 2 )―
95/f 0・R θ 3 =34.732(1‐2.8×10 -4 T 0 +1.8×10 -6 T 0 2 )―
20/f 0・R θ 5 =34.785(1‐3.7×10 -4 T 0 +2.6×10 -6 T 0 2 )―
The cutting direction θ is selected so that it becomes 50/f 0 ·R.

(6) 発明の実施例 第1図に本発明に係る水晶振動子の切断方位の
関係を示す。第1図には、Z軸廻りにだけ回転
しさらにX軸廻りにθだけ回転した2回回転Yカ
ツトの水晶板1が示される。このような水晶板1
は第2図に示すようにY″軸を中心光軸とする板
厚t、直径φ、曲率半径Rの平凸レンズ形(プラ
ノコンベツクス形)に加工し上下両面に電極3を
設けて水晶振動子2を構成する。このような水晶
振動子2の周波数温度特性は第3図に示すように
変曲点温度Tiを中心とする3次曲線となる。第
3図は共振周波数f0=10MHz(3次オーバートー
ン)、R=500mm、φ=14mmの試料で切断方位=
19.1゜の場合にθを変化させてターンオーバー温
度T0(温度係数が零になる点)を移動させたもの
である。この場合、各曲線a,b,cの切断方位
θをθa,θb,θcとすればθa<θb<θcである。
(6) Embodiments of the Invention FIG. 1 shows the relationship between cutting directions of a crystal resonator according to the present invention. FIG. 1 shows a twice-rotated Y-cut crystal plate 1 which is rotated only around the Z-axis and further rotated by θ around the X-axis. Crystal plate 1 like this
As shown in Fig. 2, it is machined into a plano-convex lens shape (plano-convex shape) with the center optical axis on the Y'' axis, a diameter φ, and a radius of curvature R. The frequency-temperature characteristic of such a crystal resonator 2 is a cubic curve centered at the inflection point temperature Ti, as shown in Figure 3. Figure 3 shows the resonance frequency f 0 = 10MHz. (3rd overtone), R = 500mm, φ = 14mm sample, cutting direction =
In the case of 19.1°, the turnover temperature T 0 (the point where the temperature coefficient becomes zero) is shifted by changing θ. In this case, if the cutting directions θ of the curves a, b, and c are θ a , θ b , and θ c , then θ abc .

一般に高安定水晶振動子は、恒温槽に収容し、
60〜80℃の温度範囲内の定められたある温度で用
いられる。従つて、安定した周波数特性を得るた
めには、ターンオーバー温度T0を恒温槽の所定
温度に一致させることが望ましく、設計にあたり
このT0をいかに精度良く定められるかどうかが
重要なポイントになる。本発明は、この点につい
て、切断方位θ及び曲率半径Rの影響を各々独立
に検討した結果、第4図、第5図に示すような関
係を見出し、これらの関係を簡単な計算式にまと
め、この計算式に基いて構成したものである。第
4図および第5図は、5次オーバートーンの場合
の一例であり、各々切断方位θおよび周波数f0
曲率半径Rの積の逆数に対する周波数1次温度係
数Aの変化を示す。即ち、第4図および第5図と
もに、θ1(f1R)に対して直線的に変化するので下
記のように書ける。
Generally, highly stable crystal units are housed in a constant temperature bath.
It is used at a certain temperature within the temperature range of 60-80°C. Therefore, in order to obtain stable frequency characteristics, it is desirable to match the turnover temperature T 0 to the predetermined temperature of the thermostatic chamber, and an important point in design is how accurately this T 0 can be determined. . Regarding this point, the present invention independently examined the influence of the cutting direction θ and the radius of curvature R, and found the relationships shown in FIGS. 4 and 5, and summarized these relationships into a simple calculation formula. , is constructed based on this calculation formula. FIGS. 4 and 5 are examples of the fifth-order overtone, and show changes in the frequency first-order temperature coefficient A with respect to the cutting direction θ and the reciprocal of the product of the frequency f 0 and the radius of curvature R, respectively. That is, in both FIGS. 4 and 5, since it changes linearly with respect to θ 1 (f 1 R), it can be written as follows.

ここで周波数温度特性を3次近似式で表わす
と、 △f/f0=A△Ts+B△Ts2+C△Ts3 (2)式 △Ts=T―Ts (Ts:基準温度) Tsを第3図に示すように変曲点温度Tiとすると
B0となり、 △f/f0A′△Ti+C′△Ti3 △Ti=T―Ti ∂(△f/f0)/∂(△T)=A′+3C′△Ti2 (3)式 となる。ターンオーバー温度T0は∂(△f/
f0)/∂△T=0のときのTであるから、△Ti=
T0―Tiとおくと A′=−3C′(T0―Ti)2 (4)式 (1)式よりA′=Kθ・△θ+KR1/f0R =−3C′(T0―T12(5)式 故に △θ=−3C′(T0―Ti)2―KRKR/foR/K〓 (6)式 △θ=θ―θ0(θ0はT0=Tiのときのθ)なので θ=θ0―3C′(T0―Ti)2+KR/foR/K〓 (7)式 (7)式の中でθ0,C′,Ti,K〓,KRは切断方位、
次数mにより定まるので、19.1゜、m=5に
ついて整理すると、 θ0=34.310(deg)、C′=73×10-12(1/℃3) T173(℃)だから、 θ=34.310―50/f0R+8.9 ×10-5(T0―73)2〔deg〕 =34.785(1―3.7×
10-4T0+2.6 ×10-6T0 2)―50/f0R〔deg〕 となる。同様にしてm=1、3の場合について求
めると、m=1のとき θ=34.482(1―3.6×10-4T0×2.3 ×10-6T0 2)―95/f0R m=3のとき θ=34.732(1―2.8×10-4T0+1.8 ×10-6T0 2)―20/f0R となる。
Here, the frequency temperature characteristic is expressed by a cubic approximation formula: △f/f 0 = A△Ts + B△Ts 2 + C△Ts 3 (2) Equation △Ts = T - Ts (Ts: reference temperature) Ts is the third As shown in the figure, when the inflection point temperature is Ti, it becomes B0, △f/f 0 A′△Ti+C′△Ti 3 △Ti=T−Ti ∂(△f/f 0 )/∂(△T)=A ′+3C′△Ti 2 Equation (3) is obtained. The turnover temperature T 0 is ∂(△f/
f 0 )/∂△T=0, so △Ti=
If T 0 -Ti, then A' = -3C' (T 0 -Ti) 2 From equation (4) (1), A' = Kθ・△θ+K R 1/f 0 R = -3C' (T 0 - T 1 ) 2 Because of formula (5), △θ=−3C′(T 0 −Ti) 2 −K R K R /foR/K〓 (6) formula △θ=θ−θ 00 is T 0 = θ for Ti), so θ=θ 0 −3C′(T 0 −Ti) 2 +K R /foR/K〓 (7) In equation (7), θ 0 , C′, Ti, K〓, K R is the cutting direction;
Since it is determined by the order m, 19.1°, rearranging for m = 5, θ 0 = 34.310 (deg), C' = 73 × 10 -12 (1/℃ 3 ) T 1 73 (℃), so θ = 34.310 - 50/f 0 R+8.9 ×10 -5 (T 0 -73) 2 [deg] =34.785 (1-3.7×
10 -4 T 0 +2.6 ×10 -6 T 0 2 ) -50/f 0 R [deg]. Similarly, when m = 1 and 3, when m = 1, θ = 34.482 (1 - 3.6 × 10 -4 T 0 × 2.3 × 10 -6 T 0 2 ) - 95 / f 0 R m = 3, θ=34.732 (1−2.8×10 −4 T 0 +1.8×10 −6 T 0 2 )−20/f 0 R .

第6図はm=1、3、5のときの上記3式、即
ち、f0Rに対するθの関係を各T0の値に応じてグ
ラフ化したものである。このグラフにより所望の
T0,f0,Rに応じてθを選定すれば、最適のθが
高精度に決定できる。
FIG. 6 is a graph of the above three equations when m=1, 3, and 5, that is, the relationship between θ and f 0 R, depending on the value of each T 0 . This graph shows the desired
By selecting θ according to T 0 , f 0 , and R, the optimum θ can be determined with high precision.

(7) 発明の効果 以上説明したように、本発明においは、水晶振
動子を製造する場合の切断方位θを決定するに際
し、ターンオーバー温度T0だけでなく、厚みす
べりモードの次数mに基いて周波数f0および曲率
半径Rを考慮して切断方位θを選定しているた
め、所望の特性に対応したθが精度良く容易に決
定でき、設計精度の向上ならびに製造歩留りの向
上が図られ安定して特性の信頼性の高い水晶振動
子が得られる。
(7) Effects of the Invention As explained above, in the present invention, when determining the cutting direction θ when manufacturing a crystal resonator, it is possible to determine the cutting direction θ based not only on the turnover temperature T 0 but also on the order m of the thickness shear mode. Since the cutting direction θ is selected in consideration of the frequency f 0 and the radius of curvature R, the θ corresponding to the desired characteristics can be determined easily and accurately, improving design accuracy and manufacturing yield, resulting in stable production. As a result, a crystal resonator with highly reliable characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水晶板の切断方位を説明
するための説明図、第2図は本発明に係る水晶振
動子を示すものでaは上面図、bは側面図であ
る。第3図は第2図の水晶振動子の周波数温度特
性の例を示すグラフ図、第4図および第5図は
各々切断方位θおよび曲率半径Rによる1次温度
係数Aの変化を示すグラフ図、第6図は本発明に
係るθとT0,f0,R,mの関係をグラフ化したグ
ラフ図である。 1…水晶板、2…水晶振動子、3…電極。
FIG. 1 is an explanatory diagram for explaining the cutting direction of a crystal plate according to the present invention, and FIG. 2 shows a crystal resonator according to the present invention, in which a is a top view and b is a side view. FIG. 3 is a graph showing an example of the frequency-temperature characteristics of the crystal resonator shown in FIG. 2, and FIGS. 4 and 5 are graphs showing changes in the primary temperature coefficient A depending on the cutting direction θ and the radius of curvature R, respectively. , FIG. 6 is a graph showing the relationship between θ and T 0 , f 0 , R, and m according to the present invention. 1...Crystal plate, 2...Crystal resonator, 3...Electrode.

Claims (1)

【特許請求の範囲】 1 IRE表記(yxwl)/θによる切断方位,
θを有する2回回転Yカツトの厚みすべりモード
利用のプラノコンベツクス形水晶振動子の製造方
法において、=19.1±0.1゜の範囲とし、共振周
波数をf0、振動子凸面の曲率半径をR、周波数温
度特性曲線のターンオーバー温度をT0とし、厚
みすべりモードの動作次数mが1,3,5の場合
のθを各々θ1,θ3,θ5とすれば、 θ1=34.482(1‐3.6×10-4T0+2.3×10-6T0 2)―
95/f0・R θ3=34.732(1‐2.8×10-4T0+1.8×10-6T0 2)―
20/f0・R θ5=34.785(1‐3.7×10-4T0+2.6×10-6T0 2)―
50/f0・R となるように切断方位θを選定して製造すること
を特徴とする水晶振動子の製造方法。
[Claims] 1. Cutting direction according to IRE notation (yxwl)/θ,
In the manufacturing method of a plano convex type crystal resonator using the thickness shear mode of a two-rotation Y-cut with θ, the range is =19.1±0.1°, the resonance frequency is f 0 , the radius of curvature of the convex surface of the resonator is R, Let T 0 be the turnover temperature of the frequency-temperature characteristic curve, and let θ be θ 1 , θ 3 , and θ 5 when the operating order m of the thickness shear mode is 1, 3 , and 5, respectively, then θ 1 = 34.482(1 -3.6×10 -4 T 0 +2.3×10 -6 T 0 2 )―
95/f 0・R θ 3 =34.732(1‐2.8×10 -4 T 0 +1.8×10 -6 T 0 2 )―
20/f 0・R θ 5 =34.785(1‐3.7×10 -4 T 0 +2.6×10 -6 T 0 2 )―
A method for manufacturing a crystal resonator, characterized in that the cutting direction θ is selected and manufactured so as to satisfy 50/f 0 ·R.
JP21698582A 1982-12-13 1982-12-13 Manufacture for crystal oscillator Granted JPS59107618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21698582A JPS59107618A (en) 1982-12-13 1982-12-13 Manufacture for crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21698582A JPS59107618A (en) 1982-12-13 1982-12-13 Manufacture for crystal oscillator

Publications (2)

Publication Number Publication Date
JPS59107618A JPS59107618A (en) 1984-06-21
JPS6367364B2 true JPS6367364B2 (en) 1988-12-26

Family

ID=16697007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21698582A Granted JPS59107618A (en) 1982-12-13 1982-12-13 Manufacture for crystal oscillator

Country Status (1)

Country Link
JP (1) JPS59107618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456700B1 (en) 2021-08-20 2022-09-27 Rockwell Collins, Inc. Specifying SC and IT cut quartz resonators for optimal temperature compensated oscillator performance

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3980972B2 (en) * 2002-09-02 2007-09-26 日本電波工業株式会社 Strip-shaped IT-cut crystal unit
JP3980971B2 (en) * 2002-09-02 2007-09-26 日本電波工業株式会社 IT cut crystal unit
JP4563437B2 (en) * 2007-10-18 2010-10-13 日本電波工業株式会社 Quartz crystal unit consisting of a Y-cut plate rotated twice
JP2016174265A (en) * 2015-03-17 2016-09-29 セイコーエプソン株式会社 Vibrator, oscillator, electronic apparatus, and mobile
WO2022044360A1 (en) * 2020-08-31 2022-03-03 有限会社マクシス・ワン Thermostatic bath-type crystal oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456700B1 (en) 2021-08-20 2022-09-27 Rockwell Collins, Inc. Specifying SC and IT cut quartz resonators for optimal temperature compensated oscillator performance

Also Published As

Publication number Publication date
JPS59107618A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
US4447753A (en) Miniature GT-cut quartz resonator
JPH0150129B2 (en)
JPH041862B2 (en)
Besson A new" electrodeless" resonator design
US4472656A (en) Temperature sensor and method using a single rotated quartz crystal
JPH0232807B2 (en)
JPS6367364B2 (en)
JPH03804B2 (en)
US11190133B2 (en) Oven-controlled frequency reference oscillator and method of fabricating thereof
CN112964384B (en) Resonator type wireless passive temperature sensor and working method
JPS5851687B2 (en) Tuning fork crystal oscillator
JPS58111515A (en) Crystal oscillator
JPS6326853B2 (en)
JPH11177376A (en) Sc-cut crystal resonator
JPS5912584Y2 (en) crystal temperature sensitive transducer
JPS59174010A (en) Rectangular at-cut quartz oscillator
JPS6366446B2 (en)
JPS5850046B2 (en) crystal unit
JPS583411A (en) Piezoelectric oscillator
JP2000040937A (en) Crystal resonator for sc cut
JPH0147932B2 (en)
JPS585018A (en) Small-sized gt-cut quartz oscillator
JPH0151135B2 (en)
JPS6246083B2 (en)
JPS5837150Y2 (en) piezoelectric crystal resonator