JPS63267420A - Treatment method and device for gas mixture containing hydrogen sulfide - Google Patents

Treatment method and device for gas mixture containing hydrogen sulfide

Info

Publication number
JPS63267420A
JPS63267420A JP62102052A JP10205287A JPS63267420A JP S63267420 A JPS63267420 A JP S63267420A JP 62102052 A JP62102052 A JP 62102052A JP 10205287 A JP10205287 A JP 10205287A JP S63267420 A JPS63267420 A JP S63267420A
Authority
JP
Japan
Prior art keywords
hydrogen
gas mixture
gas
hydrogen sulfide
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62102052A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP62102052A priority Critical patent/JPS63267420A/en
Publication of JPS63267420A publication Critical patent/JPS63267420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To collect, separate and recover decomposition products out of gas mixture by irradiating gas mixture containing hydrogen sulfide with laser beam at the specified temperature or more and decomposing hydrogen sulfide. CONSTITUTION:For example, gas mixture containing H2S such as fermentation produced gas or the like generated from a water treatment device using a bioreactor 3 is guided to a produced gas treatment recovery section A, introduced to a laser beam irradiating device 61 provided combinedly with a heater 62, and irradiated with laser beam at the temperature of 70 deg.C or more to decompose H2S into hydrogen and sulfur. Sulfur is collected by a collector 7 such as electric dust collector or the like at the rear and recovered. After being separated by a membrane separator 8 together with CH4 in the gas mixture, hydrogen is separated from CH4 by a hydrogen recovery device 9 and recovered into a storage tank 101.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硫化水素を含有する発酵生成ガス等の硫化水
素含有ガス混合物の処理方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for treating hydrogen sulfide-containing gas mixtures, such as fermentation product gases containing hydrogen sulfide.

〔従来の技術及び問題点〕[Conventional technology and problems]

硫化水素(HIO)金含有するガス混合物からH,Sの
分離除去処理を行なう例として、都市ガス製造において
ナフサの脱硫で生成するH、8の処理(除去)について
説明する。
Hydrogen sulfide (HIO) As an example of the separation and removal treatment of H and S from a gas mixture containing gold, the treatment (removal) of H and 8 generated by desulfurization of naphtha in city gas production will be described.

ナフサの脱硫は、ナフサの水蒸気改質プロセス例えばI
CI法で用いられるナフサのガス化触媒が原料中の硫黄
化合物により顕著に被毒され、その機能を有効に発揮し
えなくなるため(必要であり、通常1 ppm以下の痕
跡量ま1で脱硫が行われる。
Desulfurization of naphtha is carried out by the steam reforming process of naphtha, e.g.
Because the naphtha gasification catalyst used in the CI method is significantly poisoned by sulfur compounds in the raw material and cannot perform its function effectively (desulfurization is normally carried out to trace amounts of 1 ppm or less), It will be done.

該方法は、原料ナフサを予熱器及び加熱炉で加熱し、水
素と混合し、原料ナフサ中の硫黄化合物を水素と反応さ
せH,8に変換する。次いで、H,8#i酸化亜鉛を充
填した第1段目の吸収塔で吸着除去される。ここで、除
去できなかった硫黄化合物は水添触媒塔でHlBに変換
され、次いで2段目の酸化亜鉛の吸収塔で除去される。
In this method, raw material naphtha is heated in a preheater and a heating furnace, mixed with hydrogen, and sulfur compounds in the raw material naphtha are reacted with hydrogen to convert into H,8. Next, it is adsorbed and removed in the first stage absorption tower filled with H, 8#i zinc oxide. Here, the sulfur compounds that could not be removed are converted to HlB in the hydrogenation catalyst tower, and then removed in the second stage zinc oxide absorption tower.

酸化亜鉛によるHIS除去の反応式を次に示す。The reaction formula for removing HIS using zinc oxide is shown below.

ZnO+ HlB →ZnS + HIO(吸収除去)
酸化亜鉛とH雪Sの反応は、350〜400℃のような
高温で良く反応するため、上記のH,8の除去は高温で
行われている。
ZnO + HlB → ZnS + HIO (absorption removal)
Since the reaction between zinc oxide and H snow S occurs well at a high temperature such as 350 to 400°C, the above-mentioned removal of H and 8 is performed at a high temperature.

このため、次のような欠点がある。Therefore, there are the following drawbacks.

1、 反応剤として、酸化亜鉛が必要である。又、副生
物として硫化亜鉛(Zn8)が生じ、別途処理が必要で
ある。
1. Zinc oxide is required as a reactant. Furthermore, zinc sulfide (Zn8) is produced as a by-product and requires separate treatment.

2 高温が必要である。2. High temperature is required.

五 HlBはZn8と水(HsO)に変換され、資源の
有効利用(H,Sを水素と硫黄に分離すれば新しい資源
となる)の面から見直す必要がある。
5. HlB is converted into Zn8 and water (HsO), which needs to be reconsidered from the perspective of effective resource utilization (separating H and S into hydrogen and sulfur will create a new resource).

また、特開昭56−45802号公報に絋、硫化水素中
にレーザ光を集光して硫化水素を水とイオウに防電破壊
して水素を製造方法が記載されているが、該方法におい
ては硫化水素のガス圧は20ト一ル以上と高く、またレ
ーザ光出力も50メガワット以上と非常に大きいもので
、その構成において本発明と異なり、また、特開昭59
−129289号公報には、合成ガス中にtまれる微量
の硫化水素ガスをレーザー元を用いて分解する方法が記
載されているが、該方法は常温で行なわれており、しか
も硫黄は銅パイプ表面に析出させるもので、特殊゛な硫
黄回収装置及び銅パイプ再生装置を必要とする〇〔発明
の構成〕 本発明は、 HIOを含有するガス混合物の処理方法に
関し、該ガス混合物に70℃以上の温度でレーザft、
t−照射してH,80分解処理を行ない、生成した分解
生成物をガス混合物から捕集、分離又は回収することを
特徴とするH、8を含有するガス混合物の処理方法及び
装置である。
Furthermore, Japanese Patent Application Laid-Open No. 56-45802 describes a method for producing hydrogen by concentrating a laser beam into hydrogen sulfide and breaking down the hydrogen sulfide into water and sulfur. The gas pressure of hydrogen sulfide is as high as 20 torr or more, and the laser light output is very large as 50 megawatts or more, and its structure is different from that of the present invention, and it is
Publication No. 129289 describes a method for decomposing trace amounts of hydrogen sulfide gas contained in synthesis gas using a laser source, but this method is carried out at room temperature, and the sulfur is removed through copper pipes. The present invention relates to a method for treating a gas mixture containing HIO, which requires a special sulfur recovery device and copper pipe regeneration device. laser ft at a temperature of
A method and apparatus for processing a gas mixture containing H, 8, characterized in that H, 80 decomposition treatment is performed by t-irradiation, and the generated decomposition products are collected, separated or recovered from the gas mixture.

本発明の一具体例として、バイオリアクターを用いた水
処理装置から発生するH、8 ’i含む生成ガスの処理
に本発明方法を適用した概念図を@1図に示す。
As a specific example of the present invention, Figure @1 shows a conceptual diagram in which the method of the present invention is applied to the treatment of a generated gas containing H,8'i generated from a water treatment device using a bioreactor.

原水1は先ず前処理装置2に導入され、f過処理等が行
なわれた後ポンプ(図示せず)でバイオリアクター3に
送られる0 バイオリアクタ−3は、嫌気性下で水中の有機物等が微
生物の作用により分解、処理される反応器であする。
Raw water 1 is first introduced into a pre-treatment device 2, and after being subjected to overtreatment, etc., it is sent to a bioreactor 3 using a pump (not shown). It is a reactor that is decomposed and processed by the action of microorganisms.

バイオリアクター5で嫌気性処理された水は、後方の処
理装置4に送られ、膜分離や好気性生物処理が行なわれ
る。このようにして処理水5が得られ、これは放流され
るか又は他の用途に供される〇 一方、バイオリアクター3内の嫌気性処理においては、
有機物の分解、処理によって二酸化炭素(COs )、
メタン(CHa )−水(H2O)、 H,8及び微量
の亜酸化窒素(NzO)等が生成する0これらの生成ガ
ス混合物はファン(図示せず)によリ「生成ガスの処理
、回収部」Aに導かれ、H,80分解処理及びH,Sの
分解処理により生成した硫黄又は硫黄含有物質及び水素
の回収、又ならびに共存するCH4等の有価物質の回収
が行なわれている。
The water that has been anaerobically treated in the bioreactor 5 is sent to the rear treatment device 4, where it is subjected to membrane separation and aerobic biological treatment. In this way, treated water 5 is obtained, which can be discharged or used for other purposes.On the other hand, in the anaerobic treatment inside the bioreactor 3,
Carbon dioxide (COs),
Methane (CHa) - water (H2O), H, 8, and a trace amount of nitrous oxide (NzO) are produced. These produced gas mixtures are removed by a fan (not shown) to the "Produced gas processing and recovery section. ``A, recovery of sulfur or sulfur-containing substances and hydrogen produced by H, 80 decomposition treatment and H, S decomposition treatment, as well as recovery of coexisting valuable substances such as CH4, is being carried out.

「生成ガス処理、回収部JAt−説明する。``Produced gas processing and recovery section JAt - Explain.

例えば1,800 ppmのH,S ’i金含有るバイ
オリアクター3からの生成ガス混合物〔他にC03=6
5%、CH4: 60 % e Neo : 250 
ppm f含有し残りは空気と水よりなる〕は、加熱器
68を併設したレーザ光照射器61に導入され、H,8
は水素と硫黄に分解処理される。
For example, the product gas mixture from bioreactor 3 containing 1,800 ppm H,S'i gold [in addition C03=6
5%, CH4: 60% e Neo: 250
ppm F and the rest consists of air and water] is introduced into a laser beam irradiator 61 equipped with a heater 68, and H,8
is decomposed into hydrogen and sulfur.

硫黄は後方の捕集装置It7で捕集され、回収される。Sulfur is collected and recovered by the rear collection device It7.

水素は、生成ガス混合物中のCH4とともに膜分離器8
により分離され次後、水素回収装置?によりガス混合物
(水素とCH4の混合ガス)から分離され、回収されて
いるololは回収された水素の貯蔵タンクである。1
08は、水素回収装置9で分離された(水素を分離した
残りのガス) CH4の貯蔵タンク(ガスホルダー)で
ある。
Hydrogen is transferred to membrane separator 8 along with CH4 in the product gas mixture.
After separation, hydrogen recovery equipment? The olol, which is separated from the gas mixture (mixed gas of hydrogen and CH4) and recovered by the olol, is a storage tank for the recovered hydrogen. 1
08 is a storage tank (gas holder) for CH4 separated by the hydrogen recovery device 9 (remaining gas after hydrogen separation).

レーザ光照射器6!は、本発明の特長であるレーザ光の
照射によりH,8の分解が行なわれる反応器である。
Laser light irradiator 6! This is a reactor in which H, 8 is decomposed by irradiation with laser light, which is a feature of the present invention.

レーザ光照射器61の一具体例を第2図に基いて説明す
る。レーザ光照射器61は、レーザ光発振管11及びレ
ーザ光の照射によりH,Sの分解が行なわれる加熱され
た反応器12よp成る。
A specific example of the laser beam irradiator 61 will be explained based on FIG. 2. The laser beam irradiator 61 includes a laser beam oscillation tube 11 and a heated reactor 12 in which H and S are decomposed by laser beam irradiation.

レーザ光発振管11からのレーザ光の波長は、処理対象
物質に吸収されれば良く、150〜250 nm、好ま
しくは170〜225nmであるO レーザの種類及び媒質ガスは、上記の波長のレーザ光を
発するものであれば良く、適用分野、共存物質等により
適宜選択して使用できる。即ち、H,8のみを処理する
か、後述のごとく共存する有害物質も同時に処理するか
等により適宜選択できる。
The wavelength of the laser beam from the laser beam oscillation tube 11 is 150 to 250 nm, preferably 170 to 225 nm, as long as it is absorbed by the substance to be treated. It may be used as long as it emits , and can be appropriately selected and used depending on the field of application, coexisting substances, etc. In other words, it can be selected as appropriate depending on whether only H, 8 is to be treated or whether coexisting harmful substances are to be treated at the same time as will be described later.

通常レーザの種類はエキシマレーザ、又媒質ガスはFz
 、 ArF 、 ArC2,KrF 、 KrCtが
用いられ、これらは1種又は2′PIi以上選択して使
用することができる。
Usually the type of laser is excimer laser, and the medium gas is Fz
, ArF, ArC2, KrF, and KrCt, and these can be used singly or in combinations of 2'PIi or more.

レーザ光の照射方法は、ガスに均一かつ効果的に照射さ
れれば何れの方法でも良く周知の方法が適用できる。
Any method of irradiating the laser light may be used as long as the gas can be irradiated uniformly and effectively, and well-known methods can be used.

通常、第2図に示すごとく、ガスの流れに対して向流に
照射するのが好ましく又、反応器12内部に攪拌羽根等
の攪拌機構を設けるか又は旋回流により、ガスを攪拌し
ガスに均一照射するのが好ましい。
Usually, as shown in Fig. 2, it is preferable to irradiate the gas in a countercurrent direction to the flow of the gas.In addition, a stirring mechanism such as a stirring blade is provided inside the reactor 12, or a swirling flow is used to stir the gas. Uniform irradiation is preferred.

又、レーザ光の照射は、適宜集光して、あるいは集光し
ないで行なうことが出来る。
Further, the laser light irradiation can be performed with or without focusing as appropriate.

第2図において151及び13:はガスの流れを示し、
131は入口、1321′i出口のガスの流れを示し、
14はレーザ光の照射窓である。
In Fig. 2, 151 and 13: indicate gas flows;
131 indicates the gas flow at the inlet, 1321′i the gas flow at the outlet,
14 is a laser beam irradiation window.

本方式は、 H,8分解に対して温度は70℃以上の比
較的高い温度が必要である。このため、温度の選定は、
装置の大ささ、効果、経済性などにより適宜決めること
ができるが100℃以上の温度が好ましい。
This method requires a relatively high temperature of 70°C or higher for H,8 decomposition. Therefore, temperature selection is
The temperature can be determined as appropriate depending on the size of the device, effectiveness, economical efficiency, etc., but a temperature of 100° C. or higher is preferable.

第1図に示す例においては、バイオリアクター3から排
出される20〜30℃の温度のガスをレーザ光照射器6
1に導入する。レーザ光照射器61は加熱器62により
加熱されるようになっている。
In the example shown in FIG.
1. The laser beam irradiator 61 is heated by a heater 62.

H,Sは高温でのレーザ光の照射により水素と硫黄とに
分解されるが、室温程度の温度ではH,8はH8まで分
解されるにとどまり後処理を必要とする。
H and S are decomposed into hydrogen and sulfur by laser beam irradiation at high temperatures, but at temperatures around room temperature, H and 8 are only decomposed to H8, requiring post-treatment.

Hasを含有するガス混合物が、燃焼排ガスのような付
着、凝縮性物質を含む場合、レーザ光照射器61の温度
は、排ガス中の酸ミスト等の反応器への付着、凝縮が無
視し得る温度以上、一般的には例えば120℃以上の酸
露点以上の温度で照射を行なうのが好ましい。
When the gas mixture containing Has contains adhering and condensable substances such as combustion exhaust gas, the temperature of the laser beam irradiator 61 is set to a temperature at which adhesion and condensation of acid mist and the like in the exhaust gas to the reactor can be ignored. As mentioned above, it is generally preferable to perform the irradiation at a temperature equal to or higher than the acid dew point, for example, 120° C. or higher.

HISの分解生成物である硫黄は、捕集装置7で捕集さ
れ・る。捕集装置7は、硫黄をガス中より分離、捕集す
る機能があれば何れでも良い。
Sulfur, which is a decomposition product of HIS, is collected by a collection device 7. The collection device 7 may be any device as long as it has the function of separating and collecting sulfur from the gas.

通常、電気集塵方式、フォルター集塵方式、遠心集塵方
式、或いは慣性集塵方式の捕実装u′t、を適用分野、
共存ガス成分、規模、効果、経済性等により適宜選択し
、11m又は2種以上組合わせて行なう周知の手段で実
施することが出来る。
Usually, the application field is an electrostatic precipitator, a filter precipitator, a centrifugal precipitator, or an inertial precipitator.
It can be suitably selected depending on the coexisting gas components, scale, effect, economy, etc., and can be carried out by well-known means such as 11m or a combination of two or more.

捕集された硫黄は、捕集装[7よシ適宜回収され、精製
処理され、資源として有効に利用される。
The collected sulfur is appropriately collected using a collection device [7], purified, and effectively used as a resource.

H,8の分解生成物としての水素は、共存するCH4と
ともに生成ガス混合物より膜分離器8により分離後、永
素回収装[9によ膜分離、回収される。
Hydrogen as a decomposition product of H,8 is separated from the produced gas mixture along with coexisting CH4 by a membrane separator 8, and then membrane-separated and recovered by an hydrogen recovery device [9].

水素回収装置9蝶、水素がガス中よp分離あるいは捕集
する機能があれば何れでも良い0通常、膜分離方式、水
素吸蔵会合方式を適用分野、共存ガスの成分、規模、効
果、経済性等により適宜用いることKよシ、水素をガス
中の他の成分より効果的に分離あるいは捕集することが
出来る。
Hydrogen recovery equipment 9.Any device is fine as long as it has the function of separating or capturing hydrogen from the gas.0 Normally, membrane separation method, hydrogen storage association method is applied, components of coexisting gas, scale, effect, economical efficiency. When used appropriately, hydrogen can be separated or collected more effectively than other components in the gas.

水素回収装置9で分離あるい紘捕集された水素は、回収
され、資源として有効に利用される0101は回収され
た水素の貯蔵タンクである0回収された水素の有効利用
の例としては、ナフサの脱硫におけろ水添脱硫工程の脱
硫用リサイクルへの利用等がある。
The hydrogen separated or collected in the hydrogen recovery device 9 is recovered and used effectively as a resource. 0101 is a storage tank for the recovered hydrogen. 0 Examples of effective use of recovered hydrogen are: In the desulfurization of naphtha, it can be used to recycle the hydrodesulfurization process for desulfurization.

水素回収装f19に用いられる膜分離方式は、ガス混合
物より水素を選択的に透過される水素分離膜を用いたも
ので、周知の膜技術を適宜用いることが出来る〇 水素分離膜の例としては、パラジウム(合金)膜、ポリ
スルホン糸膜、ポリイミド系膜、セルロースアセテート
系膜がある。
The membrane separation method used in the hydrogen recovery device f19 uses a hydrogen separation membrane that selectively permeates hydrogen from the gas mixture, and well-known membrane technologies can be used as appropriate. Examples of hydrogen separation membranes are: , palladium (alloy) membrane, polysulfone thread membrane, polyimide membrane, and cellulose acetate membrane.

水素回収装置9に用いられる水嵩吸蔵合金方式は、ガス
混合物より水素を捕集する水素吸蔵合金を用いるもので
、周知の該技術を用いることが出来る〇 水素吸蔵合金(金属水素化物)の例としては、TiMn
5.s−水素化物、T11)4Zr64Cr64Mrl
l−水素化物s TiFe  −水素化物、 MmNi
4,6A/44−水素化物を又200℃程度であればM
g1Ni−水素化物を好適に用いることができる。
The water bulk storage alloy system used in the hydrogen recovery device 9 uses a hydrogen storage alloy that captures hydrogen from a gas mixture, and this well-known technology can be used as an example of a hydrogen storage alloy (metal hydride). is TiMn
5. s-hydride, T11)4Zr64Cr64Mrl
l-hydride s TiFe -hydride, MmNi
4,6A/44-hydride and M at about 200℃
g1Ni-hydride can be suitably used.

膜分離器8は、生成ガス混合物から水素とCH4t−膜
分離により分離するもので、周知の膜技術で実施するこ
とが出来る。この水素、 CH。
The membrane separator 8 separates hydrogen and CH4t from the product gas mixture by membrane separation, and can be implemented using known membrane technology. This hydrogen, CH.

分離膜としては、ポリイミドをペースとする有機膜を用
いることができる■ ガスホルダー103に回収されたCH4は、H,8が除
去され高純度のものであるので、クリーンな資源として
、有効利用される。
As the separation membrane, an organic membrane based on polyimide can be used. CH4 recovered in the gas holder 103 has H and 8 removed and is of high purity, so it can be used effectively as a clean resource. Ru.

第1図に示す例においては、水素をCH4とともに分離
した後水素の分離、回収を行なっているが、先ず水素の
みを分離し、次いでCH4t−分離しても良い0又、逆
に、cH4t−分離し、次いで水素の分離を行なっても
良い。
In the example shown in FIG. 1, hydrogen is separated and recovered after being separated together with CH4. However, it is also possible to first separate only hydrogen and then separate CH4t-, or conversely, cH4t- Separation and then hydrogen separation may be performed.

混合ガス中にCH4の様な回収すべき物質がない場合は
CH4回収の部分鉱不要であることは言うまでもない。
Needless to say, if there is no substance to be recovered such as CH4 in the mixed gas, there is no need for partial ore for CH4 recovery.

又、 I(,8の処理は、膜分離等でCH4を分離、回
収後に行なっても良い。
Further, the treatment of I(, 8) may be performed after CH4 is separated and recovered by membrane separation or the like.

本発明は、上述のごとく混合ガス中のH,8の処理に関
するものであるが、混合ガス中に他の有害物質が含まれ
る場合、レーザ光の波長等の選択により、共存する有害
物質も同様に処理される6例えば、H2Sとともに微量
に共存するN、Oは、レーザ光(媒質ガスArF )で
同時に分解処理することが出来る。
As mentioned above, the present invention relates to the treatment of H, 8 in a mixed gas, but if other harmful substances are included in the mixed gas, the coexisting harmful substances can also be treated by selecting the wavelength of the laser beam, etc. For example, N and O, which coexist in small amounts with H2S, can be simultaneously decomposed using laser light (medium gas ArF).

表1にH,8と共存する有害ガスでH,8と同時に処理
しうるものについて、レーザ光波長と媒質ガスの例を示
す。
Table 1 shows examples of laser light wavelengths and medium gases for harmful gases that coexist with H and 8 and can be treated simultaneously with H and 8.

表  1 実施例 第2図に示したレーザ光照射器に下水処理の嫌気性発酵
により生成したガス(H28含有量1.000 ppm
 )を1t/分で流し、レーザ光の照射を行ない反応器
出口のH2S及び水素濃度全測定した。レーザ光照射器
後方にフィルターを設置し、レーザ光の照射状態で1時
間上記カスを流した後フィルターの捕集物を回収し測定
した。
Table 1 Example Gas produced by anaerobic fermentation for sewage treatment (H28 content 1.000 ppm) was applied to the laser light irradiator shown in Figure 2.
) was flowed at a rate of 1 t/min, laser light was irradiated, and the H2S and hydrogen concentrations at the reactor outlet were all measured. A filter was installed behind the laser beam irradiator, and the debris was allowed to flow for one hour under laser beam irradiation, and then the collected material on the filter was collected and measured.

なお処理条件は次のとおりである〇 レーザ:エキシマレーザ、ArF20W反応器大きさ:
1を 反応器の温度=200℃ H!S及び水素の測定:ガスクロマトグラフフィルター
上捕集物の測定=XX線回 析分析次のとおりであった。
The processing conditions are as follows: Laser: excimer laser, ArF20W reactor size:
1 to reactor temperature = 200℃ H! Measurement of S and hydrogen: Measurement of the material collected on the gas chromatography filter = XX-ray diffraction analysis The results were as follows.

H,8のef5J= : 1 ’Oppm以下水素の濃
度: 950 ppm フィルター捕果物ニア5岬 フィルター捕集物のX線回析分析の結果捕集物はイオウ
を生成物とするものでめった。
H, 8 ef5J=: 1'Oppm or less Hydrogen concentration: 950 ppm X-ray diffraction analysis of the filter-collected material near 5-Misaki filter showed that the collected material contained sulfur as a product.

〔発明の効果〕〔Effect of the invention〕

1、H,81に含有するガス混合物に70℃以上の温度
でレーザ光を照射することKより、■ カス混合物中の
H,S t−分解処理することができる。
By irradiating a gas mixture containing 1, H, and 81 with a laser beam at a temperature of 70° C. or higher, (1) H, St-decomposition treatment in the scum mixture can be carried out.

■ H,8の分解処理により水素や硫黄の様な再利用可
能な物質に変換出来る。
■ By decomposing H,8, it can be converted into reusable substances such as hydrogen and sulfur.

2、  H!8をレーザ光で分解後、分解生成物の捕集
、又は分mを、 ■ 電気集塵方式、フィルター集塵方式、遠心集塵方式
、慣性集塵方式のいずれかで行なうことにより、硫黄又
は硫黄含有物質を捕集、回収できる。
2.H! After decomposing 8 with a laser beam, the decomposition products are collected or separated by one of the following methods: ■ Electrostatic precipitator, filter precipitator, centrifugal precipitator, or inertial precipitator. Capable of collecting and recovering sulfur-containing substances.

■ 膜分離方式、水素吸蔵合金方式のいずれかでガスの
分離・捕集全行なうことで、水素を分離、捕集でき、高
純度水素が回収できる。
■ By performing all gas separation and collection using either the membrane separation method or the hydrogen storage alloy method, hydrogen can be separated and collected, and high-purity hydrogen can be recovered.

& ガス混合物にHas以外の有害物質が共存する場合
、該有害物質もH,Sと同時に処理できる。
& When harmful substances other than Has coexist in the gas mixture, these harmful substances can also be treated at the same time as H and S.

4、 乾式処理法でめるので、排水処理等の二次的な処
理は不要で、実用的な方法である。
4. Since it is a dry treatment method, there is no need for secondary treatment such as wastewater treatment, making it a practical method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、バイオリアクターを用いた水処理装置から発
生するH、S″Ik含む生成ガスから不発明方法によ5
H,8を分解する装[を示す概念図、第2図は本発明で
用いるレーザ光照射器の1例を示す概念図である。
Figure 1 shows how the produced gas containing H and S''Ik generated from a water treatment device using a bioreactor is extracted by an uninvented method.
FIG. 2 is a conceptual diagram showing an example of a laser beam irradiator used in the present invention.

Claims (1)

【特許請求の範囲】 1、硫化水素を含有するガス混合物に70℃以上の温度
でレーザ光を照射して硫化水素を分解し分解によつて生
成した分解生成物をガス混合物から捕集、分離又は回収
することを特徴とするガス混合物中の硫化水素の除去方
法。 2、硫化水素の分解生成物である硫黄及び/又は硫黄含
有物質を電気集塵方式、フィルター集塵方式、遠心集塵
方式、慣性集塵方式の内何れか1種類以上の方式により
捕集、分離又は回収する特許請求の範囲第1項記載の方
法。 3、硫化水素の分解生成物である水素を膜分離方式及び
/又は水素収蔵合金方式により分離又は回収する特許請
求の範囲第1項記載の方法。 4、レーザ光の波長が150〜250nmである特許請
求の範囲第1項、第2項又は第3項記載の方法。 5、レーザ光の種類がエキシマレーザである特許請求の
範囲第4項記載の方法。 6、媒質ガスが、F_2、ArF、ArCl、KrF、
KrCl、の内いずれか1種類または2種類以上の混合
物である特許請求の範囲第4項又は第5項記載の方法。 7、被処理ガス混合物が発酵生成ガスである特許請求の
範囲第1項乃至第6項のいずれかの一に記載の方法。 8、加熱部を備えたレーザ照射部及び分解生成物の捕集
、分離又は回収部を備えてなる硫化水素を含有するガス
混合物の処理装置。 9、分解生成物の捕集、分離又は回収部が、硫黄及び/
又は硫黄含有物質及び/又は、水素の捕集、分離又は回
収を行なう機能を有するものである特許請求の範囲第8
項記載の装置。 10、分解生成物の捕集、分離又は回収部が電気集塵方
式、フィルター集塵方式、遠心集塵方式、慣性集塵方式
又は膜分離方式、水素吸蔵合金方式の内いずれか1種類
又は2種類以上の方式である特許請求の範囲第9項記載
の処理装置。
[Claims] 1. A gas mixture containing hydrogen sulfide is irradiated with laser light at a temperature of 70°C or higher to decompose hydrogen sulfide, and the decomposition products generated by the decomposition are collected and separated from the gas mixture. or recovery of hydrogen sulfide in a gas mixture. 2. Collecting sulfur and/or sulfur-containing substances, which are decomposition products of hydrogen sulfide, by one or more of the following: electrostatic precipitator, filter precipitator, centrifugal precipitator, or inertial precipitator; A method according to claim 1 for separating or recovering. 3. The method according to claim 1, wherein hydrogen, which is a decomposition product of hydrogen sulfide, is separated or recovered by a membrane separation method and/or a hydrogen storage alloy method. 4. The method according to claim 1, 2 or 3, wherein the wavelength of the laser beam is 150 to 250 nm. 5. The method according to claim 4, wherein the type of laser light is an excimer laser. 6. The medium gas is F_2, ArF, ArCl, KrF,
The method according to claim 4 or 5, wherein the method is any one type or a mixture of two or more types of KrCl. 7. The method according to any one of claims 1 to 6, wherein the gas mixture to be treated is a fermentation product gas. 8. An apparatus for treating a gas mixture containing hydrogen sulfide, comprising a laser irradiation section equipped with a heating section and a decomposition product collection, separation or recovery section. 9. If the decomposition product collection, separation or recovery section contains sulfur and/or
or Claim 8, which has the function of collecting, separating, or recovering sulfur-containing substances and/or hydrogen.
Apparatus described in section. 10. The decomposition product collection, separation or recovery section is one or two of the following: electrostatic precipitator, filter precipitator, centrifugal precipitator, inertial precipitator, membrane separation method, and hydrogen storage alloy method. 10. The processing device according to claim 9, which is a system of more than one type.
JP62102052A 1987-04-27 1987-04-27 Treatment method and device for gas mixture containing hydrogen sulfide Pending JPS63267420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62102052A JPS63267420A (en) 1987-04-27 1987-04-27 Treatment method and device for gas mixture containing hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62102052A JPS63267420A (en) 1987-04-27 1987-04-27 Treatment method and device for gas mixture containing hydrogen sulfide

Publications (1)

Publication Number Publication Date
JPS63267420A true JPS63267420A (en) 1988-11-04

Family

ID=14316995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62102052A Pending JPS63267420A (en) 1987-04-27 1987-04-27 Treatment method and device for gas mixture containing hydrogen sulfide

Country Status (1)

Country Link
JP (1) JPS63267420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277205A (en) * 1991-11-21 1993-10-26 Tokyo Electric Power Co Inc:The Method and device for continuously decomposing and separating chlorofluorocarbons
JP2020518438A (en) * 2017-04-18 2020-06-25 ブレイクスルー・テクノロジーズ・エルエルシーBreakthrough Technologies, LLC Sulfur production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277205A (en) * 1991-11-21 1993-10-26 Tokyo Electric Power Co Inc:The Method and device for continuously decomposing and separating chlorofluorocarbons
JP2020518438A (en) * 2017-04-18 2020-06-25 ブレイクスルー・テクノロジーズ・エルエルシーBreakthrough Technologies, LLC Sulfur production
US11697103B2 (en) 2017-04-18 2023-07-11 Breakthrough Technologies, LLC Sulfur production through the use of microwave and ultraviolet light energy

Similar Documents

Publication Publication Date Title
US4053554A (en) Removal of contaminants from gaseous streams
EP2136904B1 (en) Process and apparatus for carbon capture and elimination of multi-pollutants in flue gas from hydrocarbon fuel sources and recovery of multiple by-products
RU2241527C2 (en) Gas desulfurization process
JP2005502460A5 (en)
RU2558881C2 (en) Method and system for separation and purification of methane from biogas
CN110732227B (en) Method and device for treating acid gas
KR101239313B1 (en) Process for treating a gas stream
MX2009001742A (en) Integrated separation and purification process.
JP2000508966A (en) Method for selectively separating CO2 from a multi-component gas stream
US4004995A (en) Process for removing nitrogen oxides and sulfur dioxide from effluent gases
CN109499334B (en) Efficient trapping and separating H2S and CO2And resource utilization method
JPH06509497A (en) Method for removing hydrogen sulfide and/or carbon disulfide from waste gas
CA2233592A1 (en) Waste gas treatment system and method
JPS63267420A (en) Treatment method and device for gas mixture containing hydrogen sulfide
KR850006152A (en) Removal of sulfur compounds from exhaust gases
AU596705B2 (en) Process for conversion or reduction of sulfer dioxide to elemental sulfur
JPS59204687A (en) Fuel gas desulfurization
JPH1095603A (en) Recovery of sulfuric acid from waste sulfuric acid and apparatus for recovering sulfuric acid
WO2014136632A1 (en) Gas purification device and gas purification method
WO2019132209A1 (en) Method for purifying acidic gas containing hydrogen sulfide and apparatus therefor
JP4901193B2 (en) Pyrolysis gas purification method and apparatus
DE4336768A1 (en) Sulphur and nitrogen conversion from oxide to elemental form
ATE230789T1 (en) METHOD FOR COMPLETE MATERIAL, EMISSION-FREE USE THROUGH HIGH TEMPERATURE RECYCLING AND THROUGH FRACTIONAL MATERIAL-SPECIFIC CONVERSION OF THE RESULTING SYNTHESIS RAW GAS
KR102512235B1 (en) methods of sulfur recovery from biogas
GB2248444A (en) Process for removing hydrogen sulfide from a gaseous mixture and producing sulfur therefrom