KR102512235B1 - methods of sulfur recovery from biogas - Google Patents

methods of sulfur recovery from biogas Download PDF

Info

Publication number
KR102512235B1
KR102512235B1 KR1020220147761A KR20220147761A KR102512235B1 KR 102512235 B1 KR102512235 B1 KR 102512235B1 KR 1020220147761 A KR1020220147761 A KR 1020220147761A KR 20220147761 A KR20220147761 A KR 20220147761A KR 102512235 B1 KR102512235 B1 KR 102512235B1
Authority
KR
South Korea
Prior art keywords
sulfur
metal
biogas
sulfide
adsorbent
Prior art date
Application number
KR1020220147761A
Other languages
Korean (ko)
Inventor
김민길
이동희
배나리
이동하
최한나
Original Assignee
주식회사 태성공영
주식회사 태영건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태성공영, 주식회사 태영건설 filed Critical 주식회사 태성공영
Priority to KR1020220147761A priority Critical patent/KR102512235B1/en
Application granted granted Critical
Publication of KR102512235B1 publication Critical patent/KR102512235B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/021Separation of sulfur from gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention relates to a method for recovering sulfur from biogas, which can efficiently recover hydrogen sulfide in a solid form after adsorbing the hydrogen sulfide including sulfur in a gas form contained in biogas generated in an anaerobic digestion process. In particular, the objective of the present invention is to provide a method for recovering sulfur from biogas, which allows sulfur to be used by reducing sulfur dioxide generated in a process of regenerating a purified water sludge adsorbent used for removing hydrogen sulfide.

Description

바이오가스로부터 황을 회수하는 방법{methods of sulfur recovery from biogas}Methods of sulfur recovery from biogas}

본 발명은 바이오가스로부터 황을 회수하는 방법에 관한 것으로 상세하게는 혐기성 소화 공정에서 생성되는 바이오가스에 포함된 기체상태의 황화수소로부터 고체 상태의 황을 생성하여 회수할 수 있는 바이오가스로부터 황을 회수하는 방법에 관한 것이다. The present invention relates to a method for recovering sulfur from biogas, and more particularly, to recover sulfur from biogas that can be recovered by generating solid sulfur from gaseous hydrogen sulfide contained in biogas generated in an anaerobic digestion process. It's about how to do it.

황은 독성이 없으나 황화합물 이산화황이나 황화수소는 독성이 있으므로 주의해야 한다.Sulfur is not toxic, but the sulfur compounds sulfur dioxide and hydrogen sulfide are toxic, so care must be taken.

이러한 황화수소를 포함하는 황화합물은 화학공업 또는 환경정화와 같은 다양한 공정에서 발생하고, 따라서 황화합물을 제거하기 위한 다양한 기술이 개발되고 있으며, 그 예로 특허문헌 1 내지 3이 있다.Sulfur compounds containing such hydrogen sulfide are generated in various processes such as chemical industry or environmental purification, and therefore, various technologies for removing sulfur compounds have been developed, examples of which are Patent Documents 1 to 3.

특허문헌 1은 메탄생산균(methanogen), 유기-산화균(organic-oxidizing bacteria), 황화물-산화균(sulfide-oxidizing bacteria) 및 전기전도성인 입자를 포함하는 황화수소 제거 장치이고, Patent Document 1 is a hydrogen sulfide removal device containing methanogen, organic-oxidizing bacteria, sulfide-oxidizing bacteria and electrically conductive particles,

특허문헌 2는 황화수소 및 시안화수소를 포함하는 산가스를 투입하는 산가스 투입부, 제1 열원 및 제1 공기 주입부를 포함하며, 산가스를 연소하는 제1 연소로, 제1 연소로에서 생성된 암모니아를 분해하는 분해로 및 제2 열원 및 제2 공기 주입부를 포함하며, 제1 연소로 및 분해로를 통과한 산가스를 1350 내지 1600 ℃의 온도에서 가열하는 제2 연소로를 포함하는 황 회수 장치로서, 제2 공기 주입부는 제2 연소로에 산소를 주입하는 것인, 황 회수 장치이며, Patent Document 2 includes an acid gas input unit for inputting acid gas including hydrogen sulfide and hydrogen cyanide, a first heat source and a first air injection unit, and a first combustion furnace for burning acid gas, generated in the first combustion furnace. Sulfur recovery including a decomposition furnace for decomposing ammonia, a second heat source, and a second air injection unit, and a second combustion furnace for heating acid gas passing through the first combustion furnace and the decomposition furnace at a temperature of 1350 to 1600 ° C. The device is a sulfur recovery device, wherein the second air injection unit injects oxygen into the second furnace,

특허문헌 3은 이산화황-함유 폐가스로부터 이산화황을 선별적으로 제거하고 회수하는 방법으로서, 이산화황 흡수기에서 폐가스를 소듐 말레이트를 포함하는 완충된 수성 흡수 용액과 접촉시키고, 그에 의해서 폐가스로부터 이산화황을 상기 완충된 수성 흡수 용액 내로 흡수시키고, 이산화황이 제거된 배기가스와 이산화황-풍부 흡수 용액을 생성하는 단계; 이산화황 스트리퍼(stripper)에서 이산화황-풍부 흡수 용액을 가열하여 이산화황을 탈착시키고, 그에 의해서 재생 이산화황 흡수 용액과 이산화황-풍부 스트리퍼 가스를 생성하는 단계; 및 재생 이산화황 흡수 용액을 이산화황 흡수기로 재도입하는 단계를 포함하는 방법이다.Patent Document 3 is a method for selectively removing and recovering sulfur dioxide from sulfur dioxide-containing waste gas, wherein the waste gas is contacted with a buffered aqueous absorption solution containing sodium maleate in a sulfur dioxide absorber, thereby removing sulfur dioxide from the waste gas into the buffered Absorbing into an aqueous absorbent solution and producing a sulfur dioxide-free exhaust gas and a sulfur dioxide-rich absorbent solution; heating the sulfur dioxide-rich absorbent solution in a sulfur dioxide stripper to desorb sulfur dioxide, thereby producing a regenerated sulfur dioxide absorbent solution and a sulfur dioxide-rich stripper gas; and reintroducing the regenerated sulfur dioxide absorption solution to the sulfur dioxide absorber.

이와같이 다양한 황 제거 및 회수 기술이 개발되어 있지만, 특히 황화수소를 함유하는 바이오가스로부터 황화수소를 황의 형태로 직접 회수하는 기술은 개시된 바 없다.Although various sulfur removal and recovery technologies have been developed, in particular, a technology for directly recovering hydrogen sulfide in the form of sulfur from biogas containing hydrogen sulfide has not been disclosed.

바이오가스는 혐기성 소화(anaerobic digestion) 과정 즉, 생분해성(biodegradable) 유기물질들이 무산소 상태(anaerobic condition)에서 미생물에 의해 분해되는 과정에서 생성되는 것이다.Biogas is produced during anaerobic digestion, that is, a process in which biodegradable organic substances are decomposed by microorganisms under anaerobic conditions.

이러한 바이오가스(biogas)는 주로 메탄과 이산화탄소를 포함하고, 특히 소량의 황화수소, 암모니아, 물 등도 포함한다.Such biogas mainly contains methane and carbon dioxide, and in particular, small amounts of hydrogen sulfide, ammonia, water, and the like.

바이오가스에 포함된 황화수소는 강한 산성 가스로, 물과 반응하여 황산을 생성할 경우 배관 및 설비 부식을 야기할 수 있으므로 반드시 제거되어야 하고, 이러한 황화수소는 일반적으로 NaOH를 이용한 습식탈황이나, 금속산화물을 이용한 건식탈황 반응을 통해 제거한다.Hydrogen sulfide contained in biogas is a strong acidic gas, and when it reacts with water to produce sulfuric acid, it can cause corrosion of pipes and equipment, so it must be removed. It is removed through a dry desulfurization reaction using

습식탈황은 아래의 수식 1의 반응에 의해 바이오가스를 제거하는 방법이다.Wet desulfurization is a method of removing biogas by the reaction of Equation 1 below.

수식 1formula 1

H2S(g) + 2NaOH(l) → Na2S(s) + H2O(l)H 2 S(g) + 2NaOH(l) → Na 2 S(s) + H 2 O(l)

여기서 (g)는 기체, (l)은 액체, (s)는 고체를 의미한다.Here (g) means gas, (l) means liquid, and (s) means solid.

이 습식탈황을 이용하여 정제된 바이오가스는 열병합 발전기 등에 활용을 위한 수 ppm 수준의 황화수소 농도를 제공해 줄 수 있지만, 처리과정에서 폐수발생량이 많을 뿐만 아니라, 주기적으로 NaOH를 충전해야 하며, 농도 규제 등에서 문제가 있다.Biogas purified using this wet desulfurization can provide a hydrogen sulfide concentration of several ppm for use in cogeneration generators, etc., but not only generates a lot of wastewater in the treatment process, but also needs to periodically charge NaOH, there is a problem.

건식탈황은 금속산화물 또는 금속산화물을 포함한 탈황제를 이용하는 수식 2의 반응과 같으며, 적절한 반응 조건을 제공할 경우 수 ppm 수준까지 황화수소의 농도를 조절하는 것이 가능하다.Dry desulfurization is the same as the reaction of Equation 2 using a metal oxide or a desulfurization agent containing a metal oxide, and it is possible to control the concentration of hydrogen sulfide to a level of several ppm when appropriate reaction conditions are provided.

수식 2formula 2

H2S(g) + M-O(s) → M-S(s) + H2O(g)H 2 S(g) + MO(s) → MS(s) + H 2 O(g)

이 건식탈황 방법을 통해 황화수소가 제거되면서 금속 황화물(M-S)이 생성되는데, 산소와 접촉할 경우 수식 3의 반응을 통해 금속 산화물로 산화되면서 이산화황이 발생할 수도 있다. 그러나, 바이오가스에 포함된 유기물 성분과 수분은 건식탈황제 주변에 피막 형태로 형성되면 수식 3의 반응을 제한한다.As hydrogen sulfide is removed through this dry desulfurization method, metal sulfide (MS) is produced. When in contact with oxygen, sulfur dioxide may be generated while being oxidized to a metal oxide through the reaction of Equation 3. However, when the organic components and moisture contained in the biogas are formed in the form of a film around the dry desulfurization agent, the reaction of Equation 3 is limited.

수식 3formula 3

M-S(s) + 3/2O2(g) → M-O(s) + SO2(g)MS(s) + 3/2O 2 (g) → MO(s) + SO 2 (g)

대한민국 공개특허 제10-2019-0123513호Republic of Korea Patent Publication No. 10-2019-0123513 대한민국 공개특허 제10-2021-0074022호Republic of Korea Patent Publication No. 10-2021-0074022 대한민국 공개특허 제10-2019-0126184호Republic of Korea Patent Publication No. 10-2019-0126184

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 개발된 것으로, 혐기성 소화 공정에서 생성되는 바이오가스에 포함된 황화수소를 건식탈황을 통해 제거한 뒤, 제거한 황화수소를 고체 상태의 황으로 회수할 수 있는 바이오가스로부터 황을 회수하는 방법을 제공하는 것을 목적으로 한다. The present invention was developed to solve the problems of the prior art as described above, and after removing the hydrogen sulfide contained in the biogas generated in the anaerobic digestion process through dry desulfurization, the removed hydrogen sulfide can be recovered as sulfur in a solid state. It is an object to provide a method for recovering sulfur from biogas.

특히 본 발명에서는 황화수소 제거에 사용한 흡착제를 회수한 뒤, 이를 재생하는 공정에서 발생하는 이산화황을 환원하여 황을 회수하기 때문에, 일반적으로 폐기물로 버려지는 금속 황화물을 재생하여 금속산화물은 흡착제로 재활용할 수 있을 뿐만 아니라, 고체 상태의 황을 손쉽게 회수할 수 있는 장점이 있다.In particular, in the present invention, after recovering the adsorbent used for removing hydrogen sulfide, sulfur is recovered by reducing sulfur dioxide generated in the process of regenerating it, so metal sulfide, which is generally discarded as waste, can be recycled and metal oxide can be recycled as an adsorbent. In addition, there is an advantage in that sulfur in a solid state can be easily recovered.

상기와 같은 목적을 해결하기 위한 본 발명에 따른 바이오가스로부터 황을 회수하는 방법은 금속산화물 또는 금속산화물이 포함된 흡착제를 이용하여 바이오가스로부터 황화수소를 흡착하여 금속-황화물을 형성하는 금속-황화물 형성단계; 금속-황화물 형성단계에서 생성된 금속-황화물을 수거하는 금속-황화물 수거단계; 금속-황화물에 열을 가해 금속산화물 또는 금속산화물이 포함된 흡착제가 재생되면서 이산화황을 포함하는 가스를 발생시키고, 금속산화물이 포함된 흡착제 표면에서 이산화황이 황으로 환원되는 황 환원단계; 환원된 황을 회수하는 황 회수단계를 포함하는 것을 특징으로 한다.A method for recovering sulfur from biogas according to the present invention to solve the above object is to form a metal-sulfide by adsorbing hydrogen sulfide from biogas using a metal oxide or an adsorbent containing a metal oxide to form a metal-sulfide. step; a metal-sulfide collection step of collecting the metal-sulfide generated in the metal-sulfide formation step; A sulfur reduction step in which heat is applied to the metal-sulfide to regenerate the metal oxide or the adsorbent containing the metal oxide, generating a gas containing sulfur dioxide, and reducing the sulfur dioxide to sulfur on the surface of the adsorbent containing the metal oxide; It is characterized in that it comprises a sulfur recovery step of recovering the reduced sulfur.

상기 금속-황화물 형성단계는 일반적인 혐기성 소화공정에서 발생된 가스가 금속산화물 또는 금속산화물을 포함하는 흡착제층을 통과하는 무산소 분위기에서 이루어지고, 수식 The metal-sulfide formation step is performed in an anoxic atmosphere in which gas generated in a general anaerobic digestion process passes through a metal oxide or an adsorbent layer containing a metal oxide, and the formula

H2S(g) + M-O(s) → M-S(s) + H2O(g) 으로 반응한다.It reacts as H 2 S(g) + MO(s) → MS(s) + H 2 O(g).

상기 황 환원단계 중 가스를 발생시키는 과정은 수식 The process of generating gas during the sulfur reduction step is

M-S(s) + 3/2O2(g) → M-O(s) + SO2(g) 으로 반응한다.It reacts as MS(s) + 3/2O 2 (g) → MO(s) + SO 2 (g).

상기 황 환원단계 중 황을 환원하는 과정은 수식The process of reducing sulfur during the sulfur reduction step is

SO2(g) + 2CO(g) → Sulfur(s) + 2CO2(g) 에 의해 이루어진다.SO 2 (g) + 2CO (g) → Sulfur (s) + 2CO 2 (g).

상기 황 회수단계는 전기집진기에 의해 이루어지는 것이 바람직하다.The sulfur recovery step is preferably performed by an electric precipitator.

상기 금속산화물을 포함하는 흡착제는 알럼슬러지 100 중량부에 대하여 산성약품 2~4 중량부와, 금속계 첨가물 0.5~10중량부와, 공정수 50~200중량부를 포함하고, 상기 산성약품은, 폐황산, 재생 황산 또는 공업용 황산(H2SO4), 인산(H3PO4, KH2PO4, K3PO4, K2HPO4), 염산(HCl), 질산(HNO3) 중 어느 하나 또는 둘 이상을 포함하는 것이 바람직하다.The adsorbent containing the metal oxide includes 2 to 4 parts by weight of an acidic agent, 0.5 to 10 parts by weight of a metal additive, and 50 to 200 parts by weight of process water based on 100 parts by weight of alum sludge, and the acidic agent is waste sulfuric acid , recycled sulfuric acid or industrial sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 , KH 2 PO 4 , K 3 PO 4 , K 2 HPO 4 ), hydrochloric acid (HCl), nitric acid (HNO 3 ), or It is preferable to include two or more.

본 발명에 따른 바이오가스로부터 황을 회수하는 방법은 혐기성 소화 공정에서 생성되는 바이오가스에 포함된 황화수소로부터 황을 효율적으로 회수할 수 있는 효과가 있다.The method for recovering sulfur from biogas according to the present invention has an effect of efficiently recovering sulfur from hydrogen sulfide contained in biogas generated in an anaerobic digestion process.

특히 본 발명은 황화수소의 처리과정에서 물을 사용하지 않음에 따라 기존의 처리 방법에서 지나치게 많은 양의 물을 사용함에 따라 발생되는 처리수에 의해 2차적인 수질 오염을 방지할 수 있을 뿐만 아니라, 부수적인 화학재를 사용하지 않음에 따라 부수적으로 사용되는 화학약품에 의한 수질 오염을 방지할 수 있는 효과가 있다.In particular, since the present invention does not use water in the hydrogen sulfide treatment process, it is possible to prevent secondary water pollution by the treated water generated by using an excessively large amount of water in the existing treatment method. By not using phosphorus chemicals, there is an effect of preventing water pollution by chemicals used incidentally.

또한, 황화수소 제거 공정에서 사용한 흡착제를 재생하여 재활용하여 다시 황화수소 제거를 위한 흡착제로 사용할 수 있으며, 특히 흡착제 재생공정에서 황을 자연스럽게 회수할 수 있는 장점이 있다.In addition, the adsorbent used in the hydrogen sulfide removal process can be regenerated and recycled to be used again as an adsorbent for hydrogen sulfide removal. In particular, there is an advantage in that sulfur can be naturally recovered in the adsorbent regeneration process.

도 1은 본 발명에 따른 바이오가스로부터 황을 회수하는 공정도
도 2는 본 발명에 따른 바이오가스로부터 황을 회수하는 과정에서 회수된 분말을 분석한 X선 회절 분석 그래프
도 3은 본 발명에 따른 바이오가스로부터 황을 회수 과정에 사용되는 흡착제 제조 공정도
1 is a process diagram for recovering sulfur from biogas according to the present invention
Figure 2 is an X-ray diffraction analysis graph analyzing the powder recovered in the process of recovering sulfur from biogas according to the present invention
Figure 3 is an adsorbent manufacturing process diagram used in the process of recovering sulfur from biogas according to the present invention

본 발명은 다양한 변경을 가하여 실시할 수 있는 바, 특정 실시예들을 도면에 예시하고, 상세한 설명을 통해 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can be practiced by applying various changes, specific embodiments are illustrated in the drawings and will be described through detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, or substitutes included in the spirit and technical scope of the present invention.

각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Like reference numerals have been used for like elements throughout the description of each figure. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted.

본 발명은 혐기성 소화 공정에서 생성되는 바이오가스에 포함된 황화수소를 황의 형태로 회수할 수 있다. The present invention can recover hydrogen sulfide contained in biogas produced in an anaerobic digestion process in the form of sulfur.

본 발명에 따른 바이오가스로부터 황을 회수하는 방법은 흡착제를 이용하여 바이오가스로부터 황화수소를 흡착하여 금속-황화물을 형성하는 금속-황화물 형성단계; 금속-황화물 형성단계에서 생성된 금속-황화물을 수거하는 금속-황화물 수거단계; 금속-황화물에 열을 가해 흡착제를 재생하고 이산화황을 포함하는 가스를 발생시키고, 흡작체 표면의 황화수소를 황으로 환원하는 황 환원단계; 환원된 황을 회수하는 황 회수단계를 포함한다.A method for recovering sulfur from biogas according to the present invention includes a metal-sulfide formation step of adsorbing hydrogen sulfide from biogas using an adsorbent to form a metal-sulfide; a metal-sulfide collection step of collecting the metal-sulfide generated in the metal-sulfide formation step; A sulfur reduction step of regenerating the adsorbent by applying heat to the metal-sulfide, generating a gas containing sulfur dioxide, and reducing hydrogen sulfide on the surface of the absorber to sulfur; and a sulfur recovery step of recovering reduced sulfur.

혐기성 소화(산소가 없는 조건에서 미생물이 탄소 물질들을 분해) 공정에서 바이오가스(메탄, 50∼70%와 이산화탄소, 30∼50% 및 기타 부가스-황화수소 최대 2%, 암모니아 약 수백 ppm, 물 등)가 발생하게 되며, 메탄과 이산화탄소를 제외한 부가스를 제거하는 목적으로 흡착제를 사용한다. Biogas (methane, 50-70% and carbon dioxide, 30-50% and other additives - up to 2% hydrogen sulphide, about several hundred ppm ammonia, water, etc. ) is generated, and an adsorbent is used for the purpose of removing additional gases except methane and carbon dioxide.

상기 금속-황화물 형성단계는 흡착제, 좀 더 명확하게는 흡착제에 포함된 금속산화물 성분을 이용하여 바이오가스로부터 황화수소를 흡착하여 제거하는 단계이다.The metal-sulfide forming step is a step of adsorbing and removing hydrogen sulfide from biogas using an adsorbent, more specifically, a metal oxide component included in the adsorbent.

상기 금속-황화물 형성단계에서는 아래의 반응식에 의한 정반응이 진행된다.In the metal-sulfide forming step, a forward reaction proceeds according to the following reaction formula.

H2S(g) + M-O(s) → M-S(s) + H2O(g)H 2 S(g) + MO(s) → MS(s) + H 2 O(g)

금속-황화물 형성단계에서의 반응은 산소가 없는 조건에서 정반응이 발생하며, 산소가 존재하는 조건에서는 금속-황화물이 금속산화물로 재생하는 반응이 발생할 수도 있다. In the reaction in the metal-sulfide formation step, a forward reaction occurs in the absence of oxygen, and a reaction in which the metal-sulfide is regenerated into a metal oxide may occur in the presence of oxygen.

금속-황화물 형성단계에서는 정수슬러지와 금속산화물을 혼합한 뒤 450∼550 oC에서 열처리 및 탄화한 흡착제를 황화수소의 흡착을 통한 제거 목적으로 사용한다.In the metal-sulfide formation step, purified water sludge and metal oxide are mixed, and the adsorbent heat-treated and carbonized at 450-550 ° C is used for the purpose of adsorption and removal of hydrogen sulfide.

이 흡착제에 포함된 금속산화물은 다른 부가스를 제외한 황화수소와 화학반응을 통해 선택적으로 제거(흡착)하며, 폐흡착제, 좀 더 명확하게는 흡착제 내 금속산화물이 금속-황화물의 형태가 된다.The metal oxide contained in this adsorbent is selectively removed (adsorbed) through a chemical reaction with hydrogen sulfide, excluding other additive gases, and the metal oxide in the waste adsorbent, more specifically, the adsorbent, becomes a metal-sulfide form.

정반응의 깁스 자유에너지는(△G298K) -123 kJ/mol로 자발적으로 반응이며, 엔탈피는 -121 kJ/mol로 약한 발열반응이다. 따라서 이 반응은 상온, 상압 조건에서도 원활하게 진행된다. The Gibbs free energy of the forward reaction (ΔG 298K ) is -123 kJ/mol, and the reaction is spontaneous, and the enthalpy is -121 kJ/mol, which is a weakly exothermic reaction. Therefore, this reaction proceeds smoothly even at room temperature and normal pressure conditions.

아래 표에 반응 후 회수한 폐흡착제에 대해 1000 oC에서 강열 후 측정한 반정량 XRF 결과를 나타내었다. 폐흡착제에는 황 성분이 상당량 포함된 것을 확인할 수 있다.The table below shows the semi-quantitative XRF results measured after ignition at 1000 ° C for the waste adsorbent recovered after the reaction. It can be seen that the lung adsorbent contains a significant amount of sulfur components.

Figure 112022118562685-pat00001
상기 금속-황화물 수거 단계는 황화수소를 흡착한 금속-황화물 형태의 폐흡착제를 수거하는 단계이다.
Figure 112022118562685-pat00001
The metal-sulfide collection step is a step of collecting waste adsorbent in the form of metal-sulfide adsorbed with hydrogen sulfide.

상기 폐흡착제는 수거단계에서 별도의 공정 변수는 없으나, 상기 금속-황화물 형성단계에서 설명한 것과 같이, 공기 노출 시 흡착제 표면의 일부가 재생반응이 진행될 수 있다. The waste adsorbent does not have a separate process variable in the collection step, but as described in the metal-sulfide formation step, a part of the adsorbent surface may undergo a regeneration reaction when exposed to air.

이 반응은 상온, 상압 조건에서 발생할 수 있는데, 주로 흡착제의 표면에서만 발생하고 흡착제 내부까지는 본 반응이 진행되지 않으며, 그 이유는 폐흡착제 형성과정에서 생성된 물과, 바이오가스에 포함된 물 및 다양한 유기 성분들이 흡착제의 표면을 감싸고 있어 흡착제 내부로 반응가스가 통과하는 것을 막기 때문이다. This reaction can occur under conditions of normal temperature and atmospheric pressure. It mainly occurs only on the surface of the adsorbent and does not proceed to the inside of the adsorbent. The reason is that the water generated in the process of forming the waste adsorbent, This is because the organic components cover the surface of the adsorbent and prevent the passage of the reaction gas into the adsorbent.

상기 황 환원단계는 회수한 폐흡착제에 열을 가해 금속산화물을 재생함과 동시에 이산화황 등의 가스가 발생하는 가스발생 과정과, 흡착제의 표면에서 이산화황이 황으로 환원되는 과정으로 구분된다.The sulfur reduction step is divided into a gas generation process in which metal oxide is regenerated by applying heat to the recovered waste adsorbent and gas such as sulfur dioxide is generated at the same time, and a process in which sulfur dioxide is reduced to sulfur on the surface of the adsorbent.

상기 금속-황화물 수거단계에서 회수한 폐흡착제(금속-황화물)에 산소 공급 조건에서 열을 가하면 다음과 같은 반응이 발생한다.When heat is applied to the waste adsorbent (metal-sulfide) recovered in the metal-sulfide collection step under oxygen supply conditions, the following reaction occurs.

M-S(s) + 3/2O2(g) → M-O(s) + SO2(g)MS(s) + 3/2O 2 (g) → MO(s) + SO 2 (g)

이 단계는 별도의 반응열 없이도 가능하지만, 상술한 것과 같이 폐흡착제를 감싸고 있는 유기물 성분과 수분 등을 제거하여 폐흡착제로부터 금속산화물 재생하는 반응을 원활하게 진행하기 위해서 약 450~550 oC의 반응열과 산소(공기)를 제공하면 폐흡착제가 함유한 수분이 증발되고, 흡착되었던 유기물이 완전 혹은 불완전 연소 반응을 통해 CO2 또는 CO로 산화되어 방출되고, 따라서 폐흡착제 내부까지 반응가스인 산소가 공급될 수 있어 폐흡착제의 재생이 원활하게 진행됨과 동시에 금속-황화물이 금속산화물과 SO2로 산화되게 된다.This step is possible without additional reaction heat, but as described above, in order to smoothly proceed with the reaction of regenerating metal oxide from the waste adsorbent by removing the organic components and moisture surrounding the waste adsorbent, When oxygen (air) is provided, the moisture contained in the waste adsorbent is evaporated, and the adsorbed organic matter is oxidized to CO 2 or CO through a complete or incomplete combustion reaction and released. Therefore, regeneration of the waste adsorbent proceeds smoothly, and at the same time, metal-sulfide is oxidized to metal oxide and SO 2 .

이 과정에서 불완전 산화반응을 통해 발생한 CO와 가열 과정에서 발생한 SO2는 아래의 수식에 따라 금속 황으로 환원되게 된다.In this process, CO generated through an incomplete oxidation reaction and SO 2 generated during the heating process are reduced to metal sulfur according to the formula below.

2CO(g) + SO2(g) → Sulfur(s) + 2CO2(g)2CO (g) + SO 2 (g) → Sulfur (s) + 2CO 2 (g)

상기 황 회수단계는 집진장치를 이용하여 황을 회수되는 단계이다.The sulfur recovery step is a step of recovering sulfur using a dust collector.

생성된 황은 미립자이기 때문에 포집이 용이하지 않으므로, 황을 포집하기 위한 별도의 수단이 요구된다. 집진장치를 후단에 설치하여 집진하는 것이 바람직하고, 집진장치는 다양한 것이 사용될 수 있으나 전기집진기를 사용하는 것이고, 전기집진기는 고전압 전기장을 사용하여 연도 가스를 이온화하고 공기 흐름의 먼지는 전기장의 작용에 따라 공기 흐름에서 분리되는 원리에 따라 발생가스로부터 미립자 황을 집진기 표면에 부착하여 회수한다.The generated sulfur is not easy to collect because it is a fine particle, so a separate means for collecting sulfur is required. It is preferable to install a dust collector at the rear end to collect dust, and various types of dust collectors can be used, but an electric precipitator is used. According to the principle of being separated from the air stream according to the principle, particulate sulfur from the generated gas is attached to the surface of the dust collector and recovered.

상기 황 회수단계에서 전기집진기를 통해 회수된 황은 도 2에 도시한 바와 같으며, 포집된 분말을 X-선 회절 분석(D-8 Advance, Bruker)을 실시한 결과 도 3에 도시한 바와 같이, JCPDS no. 08-0247에 해당하는 황에 의한 회절패턴임을 확인하였다.The sulfur recovered through the electrostatic precipitator in the sulfur recovery step is as shown in FIG. 2, and as a result of performing X-ray diffraction analysis (D-8 Advance, Bruker) on the collected powder, as shown in FIG. 3, JCPDS no. It was confirmed that the diffraction pattern caused by sulfur corresponding to 08-0247.

한편, 상기 황 회수단계에서 황 회수를 좀 더 원활하게 하기 위해서는 폐흡착제의 열처리 공정에서 공기와 함께 CO를 투입하는 것이 바람직하다.On the other hand, in order to more smoothly recover sulfur in the sulfur recovery step, it is preferable to introduce CO together with air in the heat treatment process of the waste adsorbent.

상기한 바와 같은 바이오가스로부터 황을 회수하는 방법은 흡착제를 사용하고 있고, 이 흡착제는 알럼슬러지 100 중량부에 대하여 산성약품 2~4 중량부와, 금속계 첨가물 0.5~10 중량부와, 공정수 50~200 중량부를 포함하고, 상기 산성약품은, 폐황산, 재생 황산 또는 공업용 황산(H2SO4), 인산(H3PO4, KH2PO4, K3PO4, K2HPO4), 염산(HCl), 질산(HNO3) 중 어느 하나 또는 둘 이상을 포함하고, 상기 금속계 첨가물은 산화카드뮴(CdO), 산화구리(CuO), 산화아연(ZnO), 산화납(PbO), 망간 산화물(Mn2O3), 철산화물(Fe2O3) 중 하나 또는 둘 이상을 포함한다.The method for recovering sulfur from biogas as described above uses an adsorbent, and the adsorbent contains 2 to 4 parts by weight of an acidic agent, 0.5 to 10 parts by weight of a metal additive, and 50 parts by weight of process water based on 100 parts by weight of alum sludge. ~ 200 parts by weight, wherein the acidic agent is waste sulfuric acid, recycled sulfuric acid or industrial sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 , KH 2 PO 4 , K 3 PO 4 , K 2 HPO 4 ), It includes any one or two or more of hydrochloric acid (HCl) and nitric acid (HNO 3 ), and the metal-based additives include cadmium oxide (CdO), copper oxide (CuO), zinc oxide (ZnO), lead oxide (PbO), and manganese oxide. (Mn 2 O 3 ) and iron oxide (Fe 2 O 3 ).

상기 알럼슬러지 내 상기 금속계 첨가물의 반응 메카니즘은The reaction mechanism of the metal-based additive in the alum sludge is

Figure 112022118562685-pat00002
으로 이루어지는 반응이며, 각 반응에서 깁스 자유에너지는 음의 값이며, 엔탈피는 음의 값으로, 자발적 반응이며, 발열반응이다.
Figure 112022118562685-pat00002
In each reaction, the Gibbs free energy is a negative value and the enthalpy is a negative value, so it is a spontaneous and exothermic reaction.

상기 알럼슬러지, 산성약품, 금속계 첨가물 및 공정수를 수열반응기에 넣고 상기 수열반응기를 밀폐한 후 반응 온도를 80~110 ℃로 유지하고, 교반기를 90~110 rpm으로 회전하면서 20~40 분간 상기 재료들을 혼합하여 수열 합성하여 이루어진다.The alum sludge, acidic chemicals, metal-based additives, and process water were put into a hydrothermal reactor, the hydrothermal reactor was sealed, the reaction temperature was maintained at 80 to 110 ° C, and the agitator was rotated at 90 to 110 rpm for 20 to 40 minutes. It is made by hydrothermal synthesis by mixing them.

위 조건에 따라 제조한 흡착제를 450~550 ℃의 온도를 50~120 분 동안 유지하면 흡착제 내부의 유기물질이 탄화됨에 따라 흡착제는 탄소도 포함하게 된다.When the adsorbent prepared according to the above conditions is maintained at a temperature of 450 to 550 ° C. for 50 to 120 minutes, the adsorbent contains carbon as the organic material inside the adsorbent is carbonized.

흡착제의 조성은 1000 oC에서 강열 후 측정한 반정량법을 통한 XRF 분석으로부터 아래 표와 같다.The composition of the adsorbent is shown in the table below from XRF analysis through a semi-quantitative method measured after ignition at 1000 ° C.

Figure 112022118562685-pat00003
흡착제는 Al2O3, SiO2를 주요 성분으로 하고, 알럼슬러지에 포함된 금속 물질과, 흡착제 제조과정에서 첨가한 금속 산화물이 혼합되어 있는 것을 확인할 수 있다.
Figure 112022118562685-pat00003
It can be seen that the adsorbent has Al 2 O 3 and SiO 2 as main components, and the metal material contained in the alum sludge and the metal oxide added during the adsorbent manufacturing process are mixed.

상기한 바와 같은 금속 산화물이 포함된 흡착제를 제조하는 과정은 도 4에 도시한 바와 같이, 알럼슬러지 100 중량부에 대하여 산성약품 2~4 중량부와, 금속계 첨가물 0.5~10 중량부와, 공정수 50~200 중량부를 포함하는 조성물을 혼합하여 수열 합성하는 단계; 상기 수열 합성하는 단계를 통해 수열 합성된 반응물을 숙성하는 단계; 상기 숙성하는 단계를 거친 숙성물의 함수율을 조절하는 단계; 상기 조절하는 단계를 거친 탈수물을 파쇄하는 단계; 상기 파쇄하는 단계를 거친 파쇄물을 성형하는 단계; 상기 성형하는 단계로 획득한 성형물을 건조하는 단계; 상기 건조하는 단계를 거친 건조물을 탄화하는 단계를 포함한다.As shown in FIG. 4, the process of preparing the adsorbent containing the metal oxide as described above is 2 to 4 parts by weight of an acidic agent, 0.5 to 10 parts by weight of a metal additive, and process water based on 100 parts by weight of alum sludge. hydrothermal synthesis by mixing a composition containing 50 to 200 parts by weight; aging a reactant hydrothermally synthesized through the step of hydrothermal synthesis; Adjusting the moisture content of the matured product after the aging step; crushing the dehydrated water subjected to the adjusting step; Molding the crushed material subjected to the crushing step; drying the molding obtained in the molding step; and carbonizing the dried material subjected to the drying step.

수열 합성하는 단계는 상기 알럼슬러지, 산성약품, 금속계 첨가물 및 공정수를 수열반응기에 넣고 상기 수열반응기를 밀폐한 후 반응온도를 80~110 ℃로 유지하고, 교반기를 90~110 rpm으로 회전하면서 20~40 분간 상기 재료들을 혼합하여 수열 합성하여 이루어질 수 있다.In the hydrothermal synthesis step, the alum sludge, acidic chemicals, metal-based additives, and process water are put into a hydrothermal reactor, the hydrothermal reactor is sealed, the reaction temperature is maintained at 80 to 110 ° C, and the stirrer is rotated at 90 to 110 rpm while stirring at 20 ° C. It can be achieved by hydrothermal synthesis by mixing the above materials for ~40 minutes.

탄화하는 단계는 상기 건조하는 단계를 거친 건조물을 반응기에 넣고 450~550 ℃의 온도를 50~120 분 동안 유지하여 이루어지고, 황화수소를 흡착하여 회수한 흡착제는 상기 건조하는 단계 및 상기 탄화하는 단계의 반복을 통해 유사한 수준으로 황화수소의 흡착능력이 재생되어 황화수소의 흡착 및 황 회수 공정에 활용할 수 있다.The carbonization step is performed by putting the dried material that has passed through the drying step into a reactor and maintaining a temperature of 450 to 550 ° C. for 50 to 120 minutes, and the adsorbent recovered by adsorbing hydrogen sulfide is the drying step and the carbonization step. Through repetition, the adsorption capacity of hydrogen sulfide is regenerated to a similar level, and it can be used for adsorption of hydrogen sulfide and sulfur recovery process.

Claims (5)

흡착제를 이용하여 바이오가스로부터 황화수소를 흡착하여 금속-황화물을 형성하는 금속-황화물 형성단계;
금속-황화물 형성단계에서 생성된 금속-황화물을 수거하는 금속-황화물 수거단계;
금속-황화물에 열을 가해 흡착제를 재생하고 이산화황을 포함하는 가스를 발생시키고, 흡작체 표면에서 이산화황을 황으로 환원하는 황 환원단계;
환원된 황을 회수하는 황 회수단계;
상기 황 회수단계는 전기집진기에 의해 이루어지는 것을 특징으로 하는 바이오가스로부터 황을 회수하는 방법.
A metal-sulfide forming step of adsorbing hydrogen sulfide from biogas using an adsorbent to form a metal-sulfide;
a metal-sulfide collection step of collecting the metal-sulfide generated in the metal-sulfide formation step;
A sulfur reduction step of regenerating the adsorbent by applying heat to the metal-sulfide, generating a gas containing sulfur dioxide, and reducing the sulfur dioxide to sulfur on the surface of the absorber;
A sulfur recovery step of recovering reduced sulfur;
The sulfur recovery step is a method for recovering sulfur from biogas, characterized in that made by an electric precipitator.
제1항에 있어서,
상기 금속-황화물 형성단계는 무산소 분위기에서 이루어지고,
수식
H2S(g) + M-O(s) → M-S(s) + H2O(g) 으로 반응하고,
여기서, (g)는 가스, (s)는 고체인 것을 특징으로 하는 바이오가스로부터 황을 회수하는 방법.
According to claim 1,
The metal-sulfide forming step is performed in an oxygen-free atmosphere,
formula
It reacts as H 2 S (g) + MO (s) → MS (s) + H 2 O (g),
Here, (g) is a gas, (s) is a method for recovering sulfur from biogas, characterized in that the solid.
제1항에 있어서,
상기 황 환원단계 중 가스를 발생시키는 과정은
수식
M-S(s) + 3/2O2(g) → M-O(s) + SO2(g) 으로 반응하는
것을 특징으로 하는 바이오가스로부터 황을 회수하는 방법.
According to claim 1,
The process of generating gas during the sulfur reduction step
formula
MS(s) + 3/2O 2 (g) → MO(s) + SO 2 (g)
A method for recovering sulfur from biogas, characterized in that.
제1항에 있어서,
상기 황 환원단계 중 황을 환원하는 과정은
수식
SO2(g) + 2CO(g) → Sulfur(s) + 2CO2(g) 에 의해 이루어지는
것을 특징으로 하는 바이오가스로부터 황을 회수하는 방법.
According to claim 1,
The process of reducing sulfur in the sulfur reduction step is
formula
Formed by SO 2 (g) + 2CO (g) → Sulfur (s) + 2CO 2 (g)
A method for recovering sulfur from biogas, characterized in that.
제1항에 있어서,
상기 흡착제는 알럼슬러지 100 중량부에 대하여 산성약품 2~4 중량부와, 금속계 첨가물 0.5~10 중량부와, 공정수 50~200 중량부를 포함하고,
상기 산성약품은, 폐황산, 재생 황산 또는 공업용 황산(H2SO4), 인산(H3PO4, KH2PO4, K3PO4, K2HPO4), 염산(HCl), 질산(HNO3) 중 어느 하나 또는 둘 이상을 포함하는 것을 특징으로 하는 바이오가스로부터 황을 회수하는 방법.
According to claim 1,
The adsorbent comprises 2 to 4 parts by weight of an acidic agent, 0.5 to 10 parts by weight of a metal additive, and 50 to 200 parts by weight of process water, based on 100 parts by weight of alum sludge,
The acidic agent is waste sulfuric acid, recycled sulfuric acid or industrial sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 , KH 2 PO 4 , K 3 PO 4 , K 2 HPO 4 ), hydrochloric acid (HCl), nitric acid ( HNO 3 ) A method for recovering sulfur from biogas, characterized in that it comprises any one or two or more.
KR1020220147761A 2022-11-08 2022-11-08 methods of sulfur recovery from biogas KR102512235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220147761A KR102512235B1 (en) 2022-11-08 2022-11-08 methods of sulfur recovery from biogas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220147761A KR102512235B1 (en) 2022-11-08 2022-11-08 methods of sulfur recovery from biogas

Publications (1)

Publication Number Publication Date
KR102512235B1 true KR102512235B1 (en) 2023-03-22

Family

ID=86006108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220147761A KR102512235B1 (en) 2022-11-08 2022-11-08 methods of sulfur recovery from biogas

Country Status (1)

Country Link
KR (1) KR102512235B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140078039A (en) * 2012-12-14 2014-06-25 고등기술연구원연구조합 Apparatus for recovering sulfur from synthesis gas and Method therefor
KR20150140817A (en) * 2013-04-15 2015-12-16 지멘스 악티엔게젤샤프트 Absorbent, process for producing an absorbent, and process and device for separating off hydrogen sulphide from an acidic gas
KR101664265B1 (en) * 2016-04-06 2016-10-11 주식회사 태성공영 System and method for simultaneously remove hydrogen sulfide and ammonia using dissolve type dehumidifier
KR20190123513A (en) 2018-04-24 2019-11-01 울산과학기술원 Apparatus for controlling hydrogen sulfide and recovering sulfur
KR20190126184A (en) 2010-10-29 2019-11-08 엠이씨에스, 인코포레이티드 Regenerative recovery of sulfur dioxide from effluent gases
KR20200083848A (en) * 2018-12-31 2020-07-09 주식회사 태성공영 Adsorbent for simultaneous removal of hydrogen sulfide ammonia siloxane using alum-sludge
KR20200102249A (en) * 2019-02-21 2020-08-31 경기대학교 산학협력단 System for Selective Oxidation of H2S
KR20210074022A (en) 2019-12-11 2021-06-21 주식회사 포스코 Sulfur recovery apparatus and method having excellent hydrogen cyanide decomposition capability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190126184A (en) 2010-10-29 2019-11-08 엠이씨에스, 인코포레이티드 Regenerative recovery of sulfur dioxide from effluent gases
KR20140078039A (en) * 2012-12-14 2014-06-25 고등기술연구원연구조합 Apparatus for recovering sulfur from synthesis gas and Method therefor
KR20150140817A (en) * 2013-04-15 2015-12-16 지멘스 악티엔게젤샤프트 Absorbent, process for producing an absorbent, and process and device for separating off hydrogen sulphide from an acidic gas
KR101664265B1 (en) * 2016-04-06 2016-10-11 주식회사 태성공영 System and method for simultaneously remove hydrogen sulfide and ammonia using dissolve type dehumidifier
KR20190123513A (en) 2018-04-24 2019-11-01 울산과학기술원 Apparatus for controlling hydrogen sulfide and recovering sulfur
KR20200083848A (en) * 2018-12-31 2020-07-09 주식회사 태성공영 Adsorbent for simultaneous removal of hydrogen sulfide ammonia siloxane using alum-sludge
KR20200102249A (en) * 2019-02-21 2020-08-31 경기대학교 산학협력단 System for Selective Oxidation of H2S
KR20210074022A (en) 2019-12-11 2021-06-21 주식회사 포스코 Sulfur recovery apparatus and method having excellent hydrogen cyanide decomposition capability

Similar Documents

Publication Publication Date Title
Xu et al. Cost-effective sulfurized sorbents derived from one-step pyrolysis of wood and scrap tire for elemental mercury removal from flue gas
Kwaśny et al. Sorbents used for biogas desulfurization in the adsorption process.
CN108187451B (en) Method for removing gaseous elementary mercury from nano molybdenum sulfide material by wet method
Liu et al. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury
Liu et al. Co-doped ZnS with large adsorption capacity for recovering Hg 0 from non-ferrous metal smelting gas as a co-benefit of electrostatic demisters
JP2001096260A (en) Complete resource recovery process for waste using oxygen enriched gas without necessitating chimney
Zhang et al. Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke
Ji et al. Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: a review
Pyshyev et al. State of the art in the field of emission reduction of sulphur dioxide produced during coal combustion
US4008169A (en) Preparation of iron oxide sorbent for sulfur oxides
Pang et al. Selective uptake of gaseous sulfur trioxide and mercury in ZnO-CuS composite at elevated temperatures from SO2-rich flue gas
KR102199410B1 (en) Adsorbent for simultaneous removal of hydrogen sulfide ammonia siloxane using alum-sludge
CN101880553A (en) Integrated medium-high temperature coal gas purification method and device suitable for coal-based gas
CN107321165A (en) A kind of method based on fused salt recycling recovery hydrogen sulfide, cos
KR100961394B1 (en) Manufacturing Method of Zn-ferrite for removing H2S in Coke oven gas
KR102512235B1 (en) methods of sulfur recovery from biogas
KR850001200B1 (en) Process for dry desuifurization of flue gas
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
CN108502869B (en) Preparation method of sulfur-doped carbon material
CN103316578B (en) Method for absorbing sulfur dioxide and co-producing sulphur
KR101110553B1 (en) Removal method of hydrogen sulfide in coke oven gas
CN111348976A (en) Method for preparing multi-element compound fertilizer from waste activated carbon after flue gas desulfurization and denitrification
CN217829471U (en) Tail gas recovery active carbon adsorption device
CN111019716B (en) Device and method for cooperatively controlling and recovering mercury and sulfur in coal gas
CN115253674B (en) Pyrolysis tail gas treatment method for waste lithium ion batteries

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant