JPS632663B2 - - Google Patents

Info

Publication number
JPS632663B2
JPS632663B2 JP54125578A JP12557879A JPS632663B2 JP S632663 B2 JPS632663 B2 JP S632663B2 JP 54125578 A JP54125578 A JP 54125578A JP 12557879 A JP12557879 A JP 12557879A JP S632663 B2 JPS632663 B2 JP S632663B2
Authority
JP
Japan
Prior art keywords
vaporizer
heating element
liquid
steam generator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54125578A
Other languages
Japanese (ja)
Other versions
JPS5649163A (en
Inventor
Atsushi Nishino
Tadami Suzuki
Kazunori Sonedaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12557879A priority Critical patent/JPS5649163A/en
Priority to AU63397/80A priority patent/AU6339780A/en
Priority to US06/269,021 priority patent/US4419302A/en
Priority to PCT/JP1980/000223 priority patent/WO1981000903A1/en
Publication of JPS5649163A publication Critical patent/JPS5649163A/en
Publication of JPS632663B2 publication Critical patent/JPS632663B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は蒸気発生装置に関するもので、極めて
短時間に、従来よりも相対的に小さいエネルギー
で効率的に蒸気の発生が可能な省資源、省エネル
ギー型の蒸気発生装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam generator, and provides a resource-saving and energy-saving steam generator that can efficiently generate steam in an extremely short time and with relatively less energy than conventional ones. This is what we provide.

近年、加湿器,スチームアイロン,蒸気吸入
器,灯油ガス化燃焼器等のような液体を短時間に
気化させる蒸気発生装置を応用した機器の開発が
活発に行われており、市場で加湿器,吸入器,ス
チームオーブン,灯油ガス化燃焼器等が好評を得
ている。なかでも加湿器,吸入器は気管支炎患者
や喘息患者に効果的であるため、最近特にこの関
連製品が健康用品機器ブームにのり多く開発され
ている。
In recent years, there has been active development of devices that utilize steam generators that vaporize liquid in a short time, such as humidifiers, steam irons, steam inhalers, kerosene gasifiers, etc., and there are many humidifiers, Inhalers, steam ovens, kerosene gasification combustors, etc. have been well received. Among these, humidifiers and inhalers are effective for bronchitis and asthma patients, so recently many products related to these have been developed as part of the health equipment boom.

しかしながら、従来の吸入器は第1図に示す如
く、吸入器の本体1に液体の流入口2から水を注
入し、規定量の水3を電源をonしてシーズヒー
タ4で加熱する構成であり、300〜400mlの水に対
し通常400〜1KWの電源が必要で、しかも蒸気発
生までの時間が通常夏期でも7分、冬期には10〜
15分もかかるという欠点があつた。なお、水3が
沸騰すると蒸気は気化室5から蒸気の噴出口6を
経て噴出され、このとき薬液7が薬液の導入管8
を経て、蒸気とともに9のごとく噴霧される。
However, as shown in Fig. 1, conventional inhalers have a structure in which water is injected into the main body 1 of the inhaler from a liquid inlet 2, and a specified amount of water 3 is heated by a sheathed heater 4 when the power is turned on. Yes, a power supply of 400 to 1KW is usually required for 300 to 400ml of water, and the time to generate steam is usually 7 minutes in summer and 10 to 10 minutes in winter.
The drawback was that it took 15 minutes. Note that when the water 3 boils, steam is ejected from the vaporization chamber 5 through the steam outlet 6, and at this time, the chemical solution 7 flows into the chemical solution introduction pipe 8.
After that, it is sprayed together with steam as shown in 9.

この従来の装置は水3を入れ蒸気が発生するま
でにかなりの時間を必要とし、蒸気温の調整も困
難で、短時間の使用にもかかわらずある一定の規
定量の水を入れなければ一定量の水蒸気が発生し
ないものが多く、またシーズヒータ4は床面への
放熱が多く、本体1には放熱穴5′が設けられて
いるのも少なくない。したがつてシーズヒータ4
のエネルギー利用効率は著しく悪いものであつ
た。
This conventional device requires a considerable amount of time to add water and generate steam, and it is also difficult to adjust the steam temperature, which remains constant even if used for a short time unless a certain specified amount of water is added. Most of the sheathed heaters 4 do not generate a large amount of water vapor, and the sheathed heater 4 radiates a large amount of heat to the floor surface, and the main body 1 is often provided with heat radiation holes 5'. Therefore, sheathed heater 4
The energy use efficiency was extremely poor.

一方加湿器は夏期のクーラー使用時の乾燥対策
や冬期のFF式暖房器具使用時の加湿対策として、
クーラーおよびFF式暖房器具の成長とともに大
きく成長した製品である。
On the other hand, humidifiers are used as a countermeasure against dryness when using an air conditioner in the summer, and as a countermeasure against humidification when using an FF heater in the winter.
This is a product that has grown significantly along with the growth of coolers and FF heating equipment.

加湿器の原理として超音波式,加熱式とがある
が、加熱式のものは吸入器の場合と同様に水蒸気
を発生するまでに長時間を要したり、エネルギー
利用効率の観点から不経済であるため余りもちい
られていない。一方超音波式は広く用いられてい
る方法であるが、超音波式加湿器から発生するも
のは水蒸気でなく、5〜30μmの粒子径を有する
噴霧状水滴であるため視覚的には電源のonと同
時に水蒸気が発生する様に観えるが、水滴から水
蒸気に気化する迄にかえつて時間を要したりす
る。ところで吸入器より発生する水蒸気は肺に到
達することが可能であるが超音波加湿器より発生
する微粒5〜30μmの噴霧状水滴は器官で吸着さ
れ肺に至らないので、健康上の観点から超音波式
加湿器は市場で余り好評でない。
There are two types of humidifiers: ultrasonic type and heating type. However, like inhalers, heating type humidifiers take a long time to generate water vapor and are uneconomical from the viewpoint of energy efficiency. Because of this, it is not being used much. On the other hand, the ultrasonic humidifier is a widely used method, but what is generated from an ultrasonic humidifier is not water vapor but atomized water droplets with a particle size of 5 to 30 μm, so it is visually difficult to turn on the power. Although it appears that water vapor is generated at the same time, it takes time for the water droplets to evaporate into water vapor. By the way, the water vapor generated by an inhaler can reach the lungs, but the atomized water droplets of 5 to 30 μm generated by an ultrasonic humidifier are absorbed by the organs and do not reach the lungs, so from a health perspective, it is extremely dangerous. Sonic humidifiers are not very popular in the market.

また一方FF式石油温風機や室内給排気型の石
油温風機には灯油を気化させる液体気化装置を内
蔵している。この気化器は発熱体としてシーズヒ
ータまたはPTCサーシスターを用い、灯油気化
器の熱伝導の基本的構造は本質的には第1図の構
成を有し、発熱体により昇温(210〜250℃)され
た気化器の内壁面に灯油を定量供給して、灯油を
気化させる方法である。この従来の方法では発熱
体の熱容量に対し、灯油を気化するに必要な顕
熱、潜熱への利用効率が悪く、また通電開始か
ら、灯油が気化されるまでに通常3〜6分必要で
あり、また気化室に空気を送り予混合を行なうの
でこの気化室内にタールが蓄積し、さらに熱効率
を更に低下させることになる。
On the other hand, FF oil hot air fans and indoor air supply/exhaust type oil hot air fans have a built-in liquid vaporizer that vaporizes kerosene. This vaporizer uses a sheathed heater or a PTC thermosister as a heating element, and the basic structure of the heat conduction of the kerosene vaporizer is essentially the configuration shown in Figure 1. ) is a method of vaporizing kerosene by supplying a fixed amount of kerosene to the inner wall surface of the vaporizer. In this conventional method, the heat capacity of the heating element is inefficient in utilizing the sensible heat and latent heat required to vaporize kerosene, and it usually takes 3 to 6 minutes from the start of electricity supply until the kerosene is vaporized. Furthermore, since air is sent to the vaporization chamber for premixing, tar accumulates in the vaporization chamber, further reducing thermal efficiency.

本発明は極めて短時間に、比較的小エネルギー
にて極めて効率的に液体を気化させるコンパクト
な蒸気発生装置を提供することを目的とするもの
で、加湿器,吸入器,灯油気化器への応用展開の
可能な蒸気発生装置とするものである。以下、実
施例により本発明を説細に説明する。
The purpose of the present invention is to provide a compact steam generator that vaporizes liquid extremely efficiently with relatively little energy in an extremely short time, and is applicable to humidifiers, inhalers, and kerosene vaporizers. This is an expandable steam generator. Hereinafter, the present invention will be explained in detail with reference to Examples.

〔実施例 1〕 第2図,第3図に本発明の一実施例を示し、こ
の第2図,第3図は液体を瞬時に気化させること
の可能な蒸気発生装置である。
[Embodiment 1] An embodiment of the present invention is shown in FIGS. 2 and 3, and these FIGS. 2 and 3 show a steam generator capable of instantaneously vaporizing liquid.

気化器11の内壁面には溶射被覆層22を有す
る内壁12が設けられ、気化器11の中心部には
溶射被覆層21を有する発熱体13が発熱体用ス
ペーサ14により中空状態で固着されている。気
化器11には液体の供給口15、凝縮液体の回収
口16、気化蒸気の噴出口17がそれぞれ設けら
れ、液体タンク18に貯蔵されている液体20は
供給パイプ27を介して供給ポンプ19により必
要量が気化器11に供給され、発熱体13の表面
または気化器11の内壁面22の溶射被覆層2
1,22の表面上で瞬時に液体は気化され、気化
された蒸気は蒸気の噴出口17より勢いよく噴出
される。また気化器11を使用する初期、および
電源をoffした後に気化した蒸気は、すなわち余
分の蒸気や凝縮した液体は回収口16より貯液タ
ンク18に戻されることになる。発熱体13のエ
ネルギーは外部電源により、電気端子23により
供給される。気化器11の内部点検は裏蓋24の
着脱により容易に行える。
An inner wall 12 having a thermally sprayed coating layer 22 is provided on the inner wall surface of the vaporizer 11, and a heating element 13 having the thermally sprayed coating layer 21 is fixed in a hollow state to the center of the vaporizer 11 by a heating element spacer 14. There is. The vaporizer 11 is provided with a liquid supply port 15, a condensed liquid recovery port 16, and a vaporized vapor spout port 17, respectively, and the liquid 20 stored in the liquid tank 18 is supplied to the supply pump 19 via a supply pipe 27. The required amount is supplied to the vaporizer 11, and the thermal spray coating layer 2 is applied to the surface of the heating element 13 or the inner wall surface 22 of the vaporizer 11.
The liquid is instantaneously vaporized on the surfaces of 1 and 22, and the vaporized vapor is vigorously ejected from the vapor outlet 17. Further, during the initial use of the vaporizer 11 and after the power is turned off, vaporized vapor, that is, excess vapor and condensed liquid, are returned to the liquid storage tank 18 through the recovery port 16. Energy for the heating element 13 is supplied by an external power source through an electrical terminal 23. The interior of the vaporizer 11 can be easily inspected by attaching and detaching the back cover 24.

本実施例の特徴は第2図,第3図から理解でき
るように気化器11の内部に発熱体13を設ける
ことにより、発熱エネルギーの効率化を意図した
ものである。すなわち、本実施例は、極めてコン
パクトな構造で、瞬時に蒸気を発生させるために
第2図,第3図の如く発熱体13と気化器11の
内壁面に多孔質な溶射被覆層21,22を形成し
たものであり、こうすると液体のぬれ性が改善さ
れるとともに、液体の気化面、熱交換面積が拡大
し、同時に気化ガスの逸散も改善させる。
As can be understood from FIGS. 2 and 3, the feature of this embodiment is that a heat generating element 13 is provided inside the vaporizer 11 to improve the efficiency of heat generation energy. That is, this embodiment has an extremely compact structure and has porous thermal spray coating layers 21 and 22 on the inner wall surfaces of the heating element 13 and the vaporizer 11 as shown in FIGS. 2 and 3 in order to instantaneously generate steam. This improves the wettability of the liquid, expands the liquid vaporization surface and heat exchange area, and at the same time improves the dissipation of vaporized gas.

この結果、発熱体13からの液体への熱交換は
極めてスムーズに行われ、単位時間当り、単位面
積当りの伝熱輸送量は著しく改善され、脈動気流
の心配もなく、気化器11を極めて小型軽量にで
き、エネルギー効率も著しく改善されることにな
る。
As a result, heat exchange from the heating element 13 to the liquid is performed extremely smoothly, the amount of heat transfer per unit time and per unit area is significantly improved, there is no worry about pulsating airflow, and the vaporizer 11 can be made extremely compact. It can be made lighter and has significantly improved energy efficiency.

特に第2図,第3図の構成で灯油の気化を行な
う場合には、気化器11を小型、軽量、省エネル
ギー化のものにすることが可能になるだけでな
く、発熱体13の温度を高温(250〜400℃)にで
きるのでタールの発生はほとんど生じないと云う
画期的効果がみとめられた。
In particular, when kerosene is vaporized using the configuration shown in FIGS. 2 and 3, not only can the vaporizer 11 be made smaller, lighter, and more energy-saving, but the temperature of the heating element 13 can be raised to a higher temperature. (250 to 400°C), an epoch-making effect has been found in that almost no tar is generated.

次に他実施例について述べる。 Next, other embodiments will be described.

〔実施例 2〕 発熱体13をシーズヒータやカートリツジヒー
タの他に第4図a,bに示す複合ヒータとしても
良い。
[Embodiment 2] The heating element 13 may be a composite heater shown in FIGS. 4a and 4b in addition to a sheathed heater or a cartridge heater.

すなわち、第4図a,bは通常のNi―Cr線の
ような電熱線25上に粉末状のセラミツクス26
を溶射被覆したものである。このような複合発熱
体を用いても〔実施例1〕と同様の効果が期待で
きる。
That is, in FIGS. 4a and 4b, a powdered ceramic 26 is placed on a heating wire 25 such as a normal Ni-Cr wire.
This is a thermally sprayed coating. Even if such a composite heating element is used, the same effects as in [Example 1] can be expected.

〔実施例 3〕 この〔実施例3〕は〔実施例1〕のポンプ19
を用いないで気化器11に液体を供給するもので
ある。
[Example 3] This [Example 3] is the pump 19 of [Example 1].
The liquid is supplied to the vaporizer 11 without using the vaporizer.

すなわち、液体の供給方法として、第5図a,
bに示す如く液体の供給パイプ27の内部に毛細
管現象を有する耐熱性の液体吸上げ体28を充填
したのである。この液体吸上げ体28の材料とし
ては毛細管の吸上げ速さが水で10mm/10sec以上
のものが好ましく、ガラス繊維、黒鉛繊維、シリ
カ繊維、耐アルカリガラス繊維、ノボラツク繊維
のように耐熱性を有し、難燃性で、毛細管現象の
大なる材料が適していた。
That is, as a method of supplying liquid, Fig. 5a,
As shown in b, the inside of the liquid supply pipe 27 is filled with a heat-resistant liquid suction body 28 having capillary action. The material for this liquid suction body 28 is preferably one whose capillary suction speed is 10 mm/10 sec or more for water, and is preferably made of heat-resistant materials such as glass fiber, graphite fiber, silica fiber, alkali-resistant glass fiber, or novolak fiber. Materials that are highly flame retardant and have a large capillary action were suitable.

また、これに加えて気化器11の内部にガラス
繊維の様な耐熱性の繊維を第6図のごとく充填し
たものが効果的であつた。
In addition, it was effective to fill the inside of the vaporizer 11 with heat-resistant fibers such as glass fibers as shown in FIG.

すなわち、第6図は第3図の状態において気化
器と発熱体13の間にガラス繊維の様な耐熱性を
有し、毛細管現象を有する液体吸上げ体30が充
填したものである。
That is, in FIG. 6, in the state shown in FIG. 3, a liquid suction body 30 having heat resistance such as glass fiber and exhibiting capillary action is filled between the vaporizer and the heating element 13.

この〔実施例3〕では液体20が液体の供給パ
イプ27中に充填されているガラス繊維により気
化器11まで吸上げられ、気化器11の液体の供
給口15に至る。そしてこの液体は第6図のガラ
ス繊維30により気化器11の内部の発熱体13
表面に均等に引上げられて分配される。発熱体1
3表面に到達した液体は顕熱および潜熱を移送
し、発熱体13の表面で効果的に気化され、噴出
口17より噴出する。
In this [Embodiment 3], the liquid 20 is sucked up to the vaporizer 11 by the glass fibers filled in the liquid supply pipe 27, and reaches the liquid supply port 15 of the vaporizer 11. This liquid is then transferred to the heating element 13 inside the vaporizer 11 by means of the glass fiber 30 shown in FIG.
It is evenly pulled up and distributed over the surface. heating element 1
The liquid that has reached the surface of the heating element 13 transfers sensible heat and latent heat, is effectively vaporized on the surface of the heating element 13, and is ejected from the ejection port 17.

次に本発明を効果的に実施するための必要条件
について述べる。
Next, the necessary conditions for effectively implementing the present invention will be described.

<発熱体 13> 発熱体13は前述の如くシーズヒータ,カツト
リツジヒータ,PTCサーミスタ,電熱線にセラ
ミツクスを溶射した複合発熱体,ヒートパイプ
等、熱の供給が可能なものであれば何でも良い。
<Heating element 13> As mentioned above, the heating element 13 may be anything that can supply heat, such as a sheathed heater, a cartridge heater, a PTC thermistor, a composite heating element made by spraying ceramics on a heating wire, or a heat pipe.

<液体吸上げ体 28> 液体吸上げ体28としては前述の如く、水を吸
上げる速さが10mm/10sec以上のものが良い。す
なわち、10mm/10sec以下であれば発熱体13表
面に液体を迅速に供給することができない。また
本発明の目的にかなう液体吸上げ体28の材料は
種々検討した結果、ガラス繊維、シリカ繊維、耐
アルカリガラス繊維,黒鉛繊維,ノボラツク繊維
等が難燃性,耐熱性を有し、毛細管現象による水
の吸上能力も大であることから有用であることが
判明した。
<Liquid suction body 28> As described above, the liquid suction body 28 preferably has a water suction speed of 10 mm/10 sec or more. That is, if it is less than 10 mm/10 sec, the liquid cannot be quickly supplied to the surface of the heating element 13. Further, as a result of various studies, we have found that glass fiber, silica fiber, alkali-resistant glass fiber, graphite fiber, novolac fiber, etc. have flame retardancy and heat resistance, and that the materials for the liquid suction body 28 that meet the purpose of the present invention are flame retardant and heat resistant. It was found to be useful because it has a large water absorption capacity.

<溶射被覆層 21,22> 発熱体13の表面および気化器11の内面に施
す溶射被覆層21,22は蒸気発生装置として実
用に充分耐える熱サイクル強度を有しなくてはな
らない。
<Thermal Sprayed Coating Layers 21, 22> Thermal sprayed coating layers 21, 22 applied to the surface of the heating element 13 and the inner surface of the vaporizer 11 must have thermal cycle strength sufficient to withstand practical use as a steam generator.

溶射被覆層21,22の形成方法を発熱体13
を例に挙げ説明する。
The method for forming the thermal spray coating layers 21 and 22 is
This will be explained using an example.

先ず発熱体13の表面を充分洗滌して油脂分を
洗滌し、乾燥後に研削材で表面をブラスト処理す
る。なお、ブラスト処理は発熱体13の形状、大
きさにもよるが、研削材としてAl2O3かSiCの粒
度20〜100メツシユを用い、ブラスト圧3〜5
Kg/cm2で行ない、発熱体13の表面粗度を5〜
50μmにすることが好ましい。
First, the surface of the heating element 13 is thoroughly washed to remove oil and fat, and after drying, the surface is blasted with an abrasive. Although the blasting process depends on the shape and size of the heating element 13, Al 2 O 3 or SiC with a particle size of 20 to 100 mesh is used as the abrasive material, and the blasting pressure is 3 to 5.
Kg/ cm2 , and the surface roughness of the heating element 13 is 5~5.
Preferably, the thickness is 50 μm.

その後発熱体13を再び洗滌し、乾燥後溶射を
行なう。溶射材料は気化器11に用いる液体によ
り最適なものを選択して用いる。
Thereafter, the heating element 13 is washed again, dried, and then thermal sprayed. The thermal spraying material is selected and used depending on the liquid used in the vaporizer 11.

用いる液体が灯油の様な炭化水素の場合には、
Al,Znの純金属かAl,Si,Mg,Ca,Zr,Tiの
酸化物か複酸化物を溶射被覆することが好まし
い。
If the liquid used is a hydrocarbon such as kerosene,
It is preferable to thermally spray coat with a pure metal such as Al or Zn or an oxide or a mixed oxide of Al, Si, Mg, Ca, Zr, or Ti.

また用いる液体が水や水溶液の場合にはAl,
Si,Mg,Ca,Zr,Ti,Zn,Fe,Mn,Cuの金
属または合金あるいはこれらの酸化物、複酸化物
を溶射することが好ましい。なお具体的には金属
酸化物としてはAl2O3,SiO2,Fe2O3,TiO2
CaO,ZrO2,MgO、複酸化酸化物としては
MgAl2O4,MnAl2O4,FeAl2O4,CoAl2O4
ZnAl2O4,MgCr2O4等のスピネル型の複酸化物
が適当であり、これらの中で少なくても1種以上
の組合せが好ましい。これらの中で最も経済的で
効果の著しいものは、純Al金属,Al2O3
Al2O3TiO2,TiO2,ZrO2,SiO2,MgAl2O4が優
れた性能を示し、価格的にも極めて経済的であ
る。
In addition, if the liquid used is water or an aqueous solution, Al,
It is preferable to spray metals or alloys of Si, Mg, Ca, Zr, Ti, Zn, Fe, Mn, Cu, or their oxides or double oxides. Specifically, metal oxides include Al 2 O 3 , SiO 2 , Fe 2 O 3 , TiO 2 ,
CaO, ZrO 2 , MgO, double oxides
MgAl 2 O 4 , MnAl 2 O 4 , FeAl 2 O 4 , CoAl 2 O 4 ,
Spinel-type double oxides such as ZnAl 2 O 4 and MgCr 2 O 4 are suitable, and combinations of at least one of these are preferred. Among these, the most economical and most effective are pure Al metal, Al 2 O 3 ,
Al 2 O 3 TiO 2 , TiO 2 , ZrO 2 , SiO 2 , and MgAl 2 O 4 exhibit excellent performance and are extremely economical.

さらに、これらの物質の溶射方法として電気ア
ーク溶射法、炎溶射法、プラズマ溶射法、爆発溶
射法、ガス溶射法等があるが、電気アーク溶射法
とプラズマ溶射法を用いると極めて効果的であつ
た。
Furthermore, there are electric arc spraying, flame spraying, plasma spraying, explosive spraying, gas spraying, etc. as thermal spraying methods for these materials, but electric arc spraying and plasma spraying are extremely effective. Ta.

溶射被覆層21,22の厚みは10〜90μm程度
が本発明の目的に効果的であつた。
A thickness of about 10 to 90 μm for the thermal spray coating layers 21 and 22 was effective for the purpose of the present invention.

<対象とする液体> 本発明の蒸気発生装置の対象となる液体は水,
水溶液,薬溶液,灯油,軽油,溶剤等であり、対
象となる液体の沸点を考慮して発熱体11表面の
温度をコントロールすればあらゆる用途に用いる
ことができる。
<Target liquid> The target liquid of the steam generator of the present invention is water,
The liquid may be an aqueous solution, a medical solution, kerosene, light oil, a solvent, etc., and can be used for any purpose as long as the temperature of the surface of the heating element 11 is controlled in consideration of the boiling point of the liquid in question.

〔応用例 1〕 本発明の具体的な応用例を第7図を用いて説明
する。第7図は本発明の蒸気発生装置を吸入器に
応用したものである。
[Application Example 1] A specific application example of the present invention will be explained using FIG. 7. FIG. 7 shows an application of the steam generator of the present invention to an inhaler.

気化器11の発熱体の表面温度を130℃に設定
し、貯液タンク20から供給パイプ27で水を吸
上げ、水を瞬時に蒸気化して、噴出口17より比
較的圧力の高い蒸気を噴出させる。31は薬用容
器で、アドレナリンや食塩等の薬用液32が入れ
られており、薬用毛細管33を経て、上記噴出す
る水蒸気に吸上られて薬用散布スプレイ34とな
る。
The surface temperature of the heating element of the vaporizer 11 is set to 130°C, water is sucked up from the liquid storage tank 20 through the supply pipe 27, the water is instantly vaporized, and relatively high pressure steam is ejected from the spout 17. let Reference numeral 31 denotes a medicinal container, which contains a medicinal liquid 32 such as adrenaline or salt, which passes through a medicinal capillary tube 33 and is absorbed by the ejected water vapor to become a medicinal spray 34.

水蒸気の強,中,弱は発熱体13への電圧調整
で行え、吸入器は所望の時期にスウイツチのon
とともに3〜5秒後に水蒸気が噴出する。
The water vapor can be set to strong, medium, or weak by adjusting the voltage to the heating element 13, and the inhaler can be turned on at the desired time.
After 3 to 5 seconds, water vapor will be ejected.

〔応用例 2〕 第8図は本発明の蒸気発生装置を灯油のガス化
に応用したものである。
[Application Example 2] Fig. 8 shows the application of the steam generator of the present invention to the gasification of kerosene.

気化器11の発熱体13の表面温度を330℃に
制御して噴出口17から噴出する灯油を混合部3
5で空気と混合するもので、空気は噴出するガス
化燃料により吸入する方式である。なお、予混合
された燃料ガスはガスバーナ36で燃焼して炎3
7となる。
The surface temperature of the heating element 13 of the vaporizer 11 is controlled to 330°C, and the kerosene spouted from the spout 17 is transferred to the mixing section 3.
In step 5, the fuel is mixed with air, and the air is sucked in through the jetted gasified fuel. Note that the premixed fuel gas is combusted by a gas burner 36 to form a flame 3.
It becomes 7.

この場合電源をonして4〜8秒後にバーナ3
6は着火することになる。従来方式では着火する
までに10〜15分間を要し、発熱量3000Kcal/H
に要する電力は300〜400Wであつたが、この方式
では3000Kcal/Hの必要電力は40〜50W程度で
充分である。さらにこの方式では灯油の気化面に
タールが全く発生しない画期的なものである。
In this case, 4 to 8 seconds after turning on the power, burner 3
6 will be ignited. The conventional method takes 10 to 15 minutes to ignite and generates a calorific value of 3000Kcal/H.
The power required for this method was 300 to 400 W, but in this method, the required power of 3000 Kcal/H is only about 40 to 50 W. Furthermore, this method is revolutionary in that no tar is generated on the vaporizing surface of the kerosene.

以上のように本発明によればきわめて短時間で
蒸気を発生することができるとともに、この時必
要なエネルギーはきわめて少なくて良く、さらに
コンパクト化等も図れる。
As described above, according to the present invention, steam can be generated in an extremely short period of time, the energy required at this time is extremely small, and furthermore, the system can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸入器の断面図、第2図は本発
明の一実施例にかかる蒸気発生装置の断面図、第
3図は第2図のA―A′線で切断した断面図、第
4図a,bは同装置に用いる複合発熱体の斜視図
と拡大断面図、第5図a,bは同装置に用いる供
給パイプの正面断面図と側面断面図、第6図は同
装置の気化器に液体吸上げ体を充填した状態を示
す側面断面図、第7図は同装置を吸入器に応用し
た構成図、第8図は同装置を灯油気化器に応用し
た構成図である。 11……気化器、13……発熱体、15……液
体の供給口、17……噴出口、21,22……溶
射被覆層。
FIG. 1 is a sectional view of a conventional inhaler, FIG. 2 is a sectional view of a steam generator according to an embodiment of the present invention, and FIG. 3 is a sectional view taken along line A-A' in FIG. Figures 4a and 4b are perspective views and enlarged sectional views of the composite heating element used in the same device, Figures 5a and 5b are front sectional views and side sectional views of the supply pipe used in the same device, and Figure 6 is the same device. Figure 7 is a configuration diagram of the same device applied to an inhaler, and Figure 8 is a configuration diagram of the same device applied to a kerosene vaporizer. . 11... Vaporizer, 13... Heating element, 15... Liquid supply port, 17... Spout port, 21, 22... Thermal spray coating layer.

Claims (1)

【特許請求の範囲】 1 気化器の内部に中空状態で発熱体を設けると
ともに、この発熱体の外周部および気化器の内壁
面に溶射被覆層を形成し、前記気化器に液体の流
入口と気化ガスの流出口を設けてなる蒸気発生装
置。 2 発熱体の外周部とこの発熱体の外周部の気化
器の内壁面に溶射被覆層を形成し、発熱体と気化
器との中間層に耐熱性の毛細管現象を有する液体
吸上げ体を設置したことを特徴とする特許請求の
範囲第1項に記載の蒸気発生装置。 3 耐熱性の毛細管現象を有する液体吸上げ体に
て気化器へ液体を供給することを特徴とする特許
請求の範囲第1項に記載の蒸気発生装置。 4 溶射被覆層をAl,Si,Mg,Ca,Zr,Ti,
Zn,Fe,Mn,Cnの元素を少なくても1種以上
含む、金属,合金,金属酸化物、スピネル型の複
合酸化物で形成したことを特徴とする特許請求の
範囲第2項に記載の蒸気発生装置。 5 液体吸上げ体は、ガラス繊維,難燃性繊維,
金属繊維,セラミツクス繊維,石綿,炭素繊維,
セラミツクス性の多孔質体,発泡体の群の中から
少なくても一種以上で形成したことを特徴とする
特許請求の範囲第2項,または第3項に記載の蒸
気発生装置。
[Scope of Claims] 1. A heating element is provided in a hollow state inside the vaporizer, a thermal spray coating layer is formed on the outer periphery of the heating element and the inner wall surface of the vaporizer, and the vaporizer is provided with an inlet for liquid. A steam generator equipped with an outlet for vaporized gas. 2. A thermal spray coating layer is formed on the outer periphery of the heating element and the inner wall surface of the vaporizer on the outer periphery of the heating element, and a heat-resistant liquid suction body with capillary action is installed in the intermediate layer between the heating element and the vaporizer. The steam generator according to claim 1, characterized in that: 3. The steam generating device according to claim 1, characterized in that the liquid is supplied to the vaporizer by a heat-resistant liquid suction body having capillary action. 4 Thermal spray coating layer is made of Al, Si, Mg, Ca, Zr, Ti,
Claim 2, characterized in that it is formed of a metal, alloy, metal oxide, or spinel-type composite oxide containing at least one or more of the elements Zn, Fe, Mn, and Cn. Steam generator. 5 The liquid suction body is made of glass fiber, flame retardant fiber,
Metal fiber, ceramic fiber, asbestos, carbon fiber,
The steam generator according to claim 2 or 3, characterized in that the steam generator is made of at least one kind selected from the group consisting of ceramic porous bodies and foams.
JP12557879A 1979-09-29 1979-09-29 Vapor generator Granted JPS5649163A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12557879A JPS5649163A (en) 1979-09-29 1979-09-29 Vapor generator
AU63397/80A AU6339780A (en) 1979-09-29 1980-09-26 Vapor generator
US06/269,021 US4419302A (en) 1979-09-29 1980-09-26 Steam generator
PCT/JP1980/000223 WO1981000903A1 (en) 1979-09-29 1980-09-26 Vapor generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12557879A JPS5649163A (en) 1979-09-29 1979-09-29 Vapor generator

Publications (2)

Publication Number Publication Date
JPS5649163A JPS5649163A (en) 1981-05-02
JPS632663B2 true JPS632663B2 (en) 1988-01-20

Family

ID=14913644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12557879A Granted JPS5649163A (en) 1979-09-29 1979-09-29 Vapor generator

Country Status (1)

Country Link
JP (1) JPS5649163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008702A (en) * 2015-06-24 2017-01-12 明子 伊澤 Large-amount steam injection device enabling wall paper to be easily peeled off

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165707U (en) * 1983-04-22 1984-11-07 有限会社 田中圧延機工 Connection structure between the jumping arm and the connecting rod in the jumping platform of the cooling bed
JPS59165706U (en) * 1983-04-22 1984-11-07 有限会社 田中圧延機工 Support structure for the jumping arm on the jumping platform on the cooling floor
JP2516952Y2 (en) * 1990-08-09 1996-11-13 サンデン株式会社 Liquid atomizer
JP2510428Y2 (en) * 1992-04-13 1996-09-11 サンデン株式会社 Liquid atomizer vaporizer
JP5875024B2 (en) * 2012-03-03 2016-03-02 国立大学法人横浜国立大学 Superheated steam generator and superheated steam generation method
TR201903115T4 (en) * 2014-12-15 2019-03-21 Philip Morris Products Sa Continuous mode heater assembly for aerosol-generating system.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623613Y2 (en) * 1977-01-28 1981-06-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008702A (en) * 2015-06-24 2017-01-12 明子 伊澤 Large-amount steam injection device enabling wall paper to be easily peeled off

Also Published As

Publication number Publication date
JPS5649163A (en) 1981-05-02

Similar Documents

Publication Publication Date Title
US20060196968A1 (en) Controlled formation of vapor and liquid droplet jets from liquids
CN105054311A (en) Non-contact type heating electronic cigarette
CN109561736A (en) A kind of heater heating smokeable material and its heating not burning fuming equipment
US4572943A (en) Electrical steam generator for intermittent operation
WO2009114913A1 (en) Vitiated steam generator
JPS632663B2 (en)
CN204907942U (en) Non -contact adds thermoelectron cigarette
JPH10153128A (en) Method and device for supplying liquid/gas fuel to gas turbine
KR101293857B1 (en) Electronic cigarette atomizer structure including crucible having pipe
JP3054533B2 (en) Fuel cell system
WO2023241129A1 (en) Electronic atomization device and atomization device thereof
JPS5950886B2 (en) Equipment for atomizing and decomposing ammonia liquid
JPS632664B2 (en)
JPS586313A (en) Combustion apparatus for liquid fuel
JP2629423B2 (en) Combustion equipment
JPH0120511Y2 (en)
JPS584018Y2 (en) liquid fuel combustion equipment
JPS5913463Y2 (en) liquid fuel combustion equipment
JPS5956011A (en) Liquid fuel combustion device
JPS5816110A (en) Burner
JPS58219312A (en) Burner
JPS5989909A (en) Liquid evaporating device
JPS58182020A (en) Burner
JPH0933009A (en) Complete combustion device
JPS60235904A (en) Liquid fuel combustion apparatus