JPS6326327A - Continuous type chemical vapor deposition treatment device - Google Patents

Continuous type chemical vapor deposition treatment device

Info

Publication number
JPS6326327A
JPS6326327A JP17016186A JP17016186A JPS6326327A JP S6326327 A JPS6326327 A JP S6326327A JP 17016186 A JP17016186 A JP 17016186A JP 17016186 A JP17016186 A JP 17016186A JP S6326327 A JPS6326327 A JP S6326327A
Authority
JP
Japan
Prior art keywords
gas
nozzle headers
sheet
metal plate
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17016186A
Other languages
Japanese (ja)
Other versions
JPH0430469B2 (en
Inventor
Kinya Inamoto
稲本 金也
Hideo Shichinohe
七戸 秀夫
Masahiro Abe
阿部 正広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17016186A priority Critical patent/JPS6326327A/en
Publication of JPS6326327A publication Critical patent/JPS6326327A/en
Publication of JPH0430469B2 publication Critical patent/JPH0430469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve vapor deposition speed and to uniformize the thickness of vapor deposited films with a CVD treatment furnace for metal sheets by blowing an atmosphere gas from specifically constituted blow nozzles to the metal sheets. CONSTITUTION:Plural nozzle headers 4A1-4D1, 4A2-4D2 are disposed above and below the steel sheet S with the CVD treatment for steel sheets in order to obtain, for example, a high silicon steel sheet. The respective nozzle headers are provided with slit nozzles 5 along the longitudinal direction thereof and are provided along the transverse direction of the sheet S. The adjacent nozzle headers, for example, 4A1 and 4B1, 4B2 and 4C2 open respectively into blow ports 6 on the opposite sides and the treating gas is supplied thereto from the opposite side in the transverse direction of the sheet. Discharging cylindrical bodies 7 with exhaust gas suction ports are provided to the steel sheet inlet side in the furnace along the transverse direction of the sheet. The gas flow velocities are exactly reverse distributed as shown by solid lines A1, A2 and are uniformized in the transverse direction of the sheet like the flow velocity distribution B synthesized in the adjacent nozzles when the treating gas is supplied to the respective nozzle headers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続式化学気相蒸着処理装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a continuous chemical vapor deposition processing apparatus.

〔従来の技術〕[Conventional technology]

電磁鋼板として高珪素鋼板が用いられている。この種の
鋼板はSlの含有量が増すほど鉄損が低減され、8i:
6.5%では、鉄歪が0となり、最大透磁率もピークと
なる等、最も優れた磁気特性を呈することが知られてい
る。
High-silicon steel sheets are used as electrical steel sheets. In this type of steel sheet, the iron loss is reduced as the Sl content increases, and 8i:
It is known that at 6.5%, the iron strain becomes 0 and the maximum magnetic permeability reaches its peak, exhibiting the most excellent magnetic properties.

従来、高珪素鋼板を製造する方法として、圧延法、直接
鋳造法及び滲珪法があるが、このうち圧延法はS1含有
ii4%  4度までは製造可能であるが、それ以上の
si含有量では加工性が著しく悪くなるため冷間加工は
困難である。また直接鋳造法、所謂ストリップキャステ
ィングは圧延法のような加工性の問題は生じないが、未
だ開発途上の技術であり、形状不良を起こし易く、特に
高珪素鋼板の製造は困離である。
Conventionally, methods for producing high-silicon steel sheets include the rolling method, direct casting method, and extrusion method. Of these, the rolling method can produce up to 4% Si content, but it is possible to produce Si steel sheets with a Si content of up to 4%. Cold working is difficult because the workability deteriorates significantly. Further, although the direct casting method, so-called strip casting, does not have workability problems like the rolling method, it is still a technology under development and is prone to shape defects, making it particularly difficult to manufacture high-silicon steel sheets.

これに対し、滲珪法は低珪素鋼を溶製して圧延により薄
板とした後、表面から81を浸透させることにより高珪
素鋼板を製造するもので、これによれば加工性や形状不
良の問題を生じることなく高珪素鋼板を得ることができ
る。本発明者等は、このような滲珪法、とりわけ所謂C
VD法により高珪素鋼板を連続的に製造することができ
る処理プロセスの検討を進めている。このプロセスの概
略は鋼板をまず所定の温度に加熱後、CVD処理炉に導
き、ここで51ct4  ガスを含有する雰囲気ガスと
接触させて滲珪処理を行い、次いで拡散処理炉で均熱保
持することにより蒸着したSl  を鋼板内部に拡散さ
せるというものである。
On the other hand, the silicon permeation method produces high-silicon steel sheets by melting low-silicon steel, rolling it into a thin plate, and then infiltrating 81 from the surface. A high-silicon steel plate can be obtained without causing any problems. The present inventors have developed such a method, especially the so-called C
We are currently studying a processing process that can continuously produce high-silicon steel sheets using the VD method. The outline of this process is that the steel plate is first heated to a predetermined temperature, then introduced into a CVD processing furnace, where it is brought into contact with an atmospheric gas containing 51 ct4 gas to perform a silicon etchant treatment, and then kept soaked in a diffusion processing furnace. In this method, the deposited Sl is diffused into the steel sheet.

ところで従来では、CVD処理で反応ガスを大きく流動
させると、蒸着層にボイドが発生し、また蒸着層の純度
も低下するとされ、このためガス流動は必要最小限にと
どめるという考え方が定着していた。しかし本発明者等
の研究では、このようにガス流動が抑えられることによ
り、反応ガスの母材界面への拡散移動、及び反応副生成
物の界面表層からの離脱がスムースに行われず、このた
め処理に長時間を要すること、さらにはガス流動が抑え
られるためCVD処理炉内の反応ガス濃度に分布を生じ
、この結果、蒸着膜厚の不均一化を招くことが判った。
By the way, in the past, it was believed that if the reactive gas was allowed to flow greatly during CVD processing, voids would occur in the vapor deposited layer and the purity of the vapor deposited layer would also decrease.Therefore, the idea was to keep the gas flow to the minimum necessary. . However, in the research conducted by the present inventors, due to the gas flow being suppressed in this way, the diffusion movement of the reaction gas to the base material interface and the separation of reaction by-products from the interface surface layer do not occur smoothly. It has been found that the treatment takes a long time and that gas flow is suppressed, which causes a distribution in the concentration of the reactant gas in the CVD treatment furnace, resulting in non-uniformity in the thickness of the deposited film.

そして、このような事実に基づきさらに検討を加えた結
果、CVDM理炉において吹付ノズルにより雰囲気ガス
を被処理材に吹付けることにより5tct4  の鋼板
表面への拡散及び反応生成物たる1Pect4  の鋼
板表面からの放散を著しく促進し、高い蒸着速度でしか
も蒸着膜の不均一化を抑えつつCVD処理できることが
判った。
Based on these facts, we conducted further studies and found that by spraying atmospheric gas onto the treated material using a spray nozzle in a CVDM metal furnace, 5tct4 was diffused onto the steel plate surface and 1Pct4, which was a reaction product, was diffused from the steel plate surface. It was found that CVD processing can be performed at a high deposition rate while suppressing non-uniformity of the deposited film.

このようなノズルによる雰囲気ガスの吹付けは、スリッ
トノズルを有するノズルヘッダを鋼板幅方向に沿って配
置し、このノズルヘッダ内に一端側から処理用ガス(雰
囲気ガス)を供給することにより行われる。
Spraying of atmospheric gas with such a nozzle is performed by arranging a nozzle header having a slit nozzle along the width direction of the steel plate, and supplying processing gas (atmospheric gas) into this nozzle header from one end side. .

しかし、このようなノズルを用いた場合、第7図(a)
 (b)に示すように板幅方向におけるガス流速分布が
不均一になる。CVD反応においては、原料ガスの濃度
−ガス圧力、ガス流量が反応量に寄与するとされている
。第8図は鋼板のガス流速とCVDにより富化された8
1量との関係を示している。したがって、上述したよう
なガス流速分布を生じると鋼板表面上の生成物も板幅方
向をこ分布を持ち、均一にはならない。
However, when such a nozzle is used, Fig. 7(a)
As shown in (b), the gas flow velocity distribution in the plate width direction becomes non-uniform. In a CVD reaction, it is said that the concentration of raw material gas, the gas pressure, and the gas flow rate contribute to the reaction amount. Figure 8 shows the gas flow rate of the steel plate and the 8 enriched by CVD.
1 shows the relationship with the amount. Therefore, when the above-mentioned gas flow velocity distribution occurs, the products on the surface of the steel sheet also have this distribution in the width direction of the sheet, and are not uniform.

一般にスリットノズルから気体を一様に噴射させるには
、ヘッダ部を設けかなりの高圧で気体を送ればよいこと
が判っているが、連続CVDでは銅帯への衝突ガス流速
は2mノ’8eeあれば充分であり、高圧のガス噴射で
は反応にあずがらない無駄なガスを噴射せざるを得ず、
歩留り上好ましくない。
Generally, it is known that in order to uniformly inject gas from a slit nozzle, it is sufficient to install a header section and send the gas at a fairly high pressure, but in continuous CVD, the gas flow velocity colliding with the copper strip is 2 m/'8ee. However, high-pressure gas injection has no choice but to inject wasteful gas that does not contribute to the reaction.
Unfavorable in terms of yield.

本発明はこのような問題に鑑みなされたもので、その特
徴とするところは、金属板幅方向に沿ったノズルヘッダ
を、ライン方向で複数設け、これら複数のノズルヘッダ
について、隣接するノズルヘッダには金属板幅方向にお
ける反対方向から処理用ガスを供給するよう構成したこ
とにある。
The present invention was made in view of these problems, and its feature is that a plurality of nozzle headers are provided in the line direction along the width direction of the metal plate, and for these plurality of nozzle headers, adjacent nozzle headers are connected to each other. This is because the processing gas is supplied from opposite directions in the width direction of the metal plate.

また、他の特徴とするところは、上記構成に加え、金属
板の入側に、排ガス吸込口を有する排気用筒体を、金属
板幅方向に沿って設けたことにある。
Another feature is that, in addition to the above configuration, an exhaust cylinder having an exhaust gas suction port is provided on the inlet side of the metal plate along the width direction of the metal plate.

〔作 用〕[For production]

隣接するノズルヘッダに金属板幅方向における反対方向
から処理用ガスを供給すると、第6図実線(AI) (
4)で示すようにこれらのガス流速は丁度、逆の分布に
なり、したがって隣接したノズルにおいて合成された流
速分布は破線(B)のように板幅方向で均一なものとな
る。
When processing gas is supplied to adjacent nozzle headers from the opposite direction in the width direction of the metal plate, the solid line (AI) in Figure 6 (
As shown in 4), these gas flow velocities have exactly opposite distributions, and therefore the combined flow velocity distribution in adjacent nozzles becomes uniform in the plate width direction as shown by the broken line (B).

また金属板入側に排気口を設けることによリ、処理用ガ
スは金属板の進行方向と逆向きに流れ、この結果ガスの
金属板に対する相対流速が上げられ、CVD反応が促進
される。
Further, by providing an exhaust port on the inlet side of the metal plate, the processing gas flows in a direction opposite to the direction of movement of the metal plate, and as a result, the relative flow velocity of the gas with respect to the metal plate is increased, and the CVD reaction is promoted.

また、排ガス(処理用ガス)は、金属板幅方向に沿って
設けられた排気用筒体の排ガス吸込口から排出されるた
め、この部分でも流速を上げることができる。
Moreover, since the exhaust gas (processing gas) is discharged from the exhaust gas suction port of the exhaust cylinder provided along the width direction of the metal plate, the flow rate can be increased in this portion as well.

〔実施例〕〔Example〕

第1図ないし第3図は本発明を高珪素鉄板を得るための
鋼板CVD処理装置に適用した場合の−!i!施例を示
すもので、(1)は炉体、(2a)(2b)は搬送ロー
ル、(3)は炉入側、出側のシール装置、(8)は加熱
ヒータである。
Figures 1 to 3 show the case where the present invention is applied to a steel plate CVD processing apparatus for obtaining a high-silicon iron plate. i! In the figure, (1) is a furnace body, (2a) and (2b) are conveyor rolls, (3) is a sealing device on the entrance side and exit side of the furnace, and (8) is a heater.

このような構成において、鋼板パスラインの上下にはそ
れぞれ複数のノズルヘッダ(4人)〜(4D) (上部
ヘッダ’ (4A1)〜(4nt)、 下部ヘッダ=(
4人、)〜(4Dり )が配設されている。
In such a configuration, a plurality of nozzle headers (4 persons) to (4D) (upper header' (4A1) to (4nt), lower header = (
There are 4 people, ) to (4Dri).

各ノズルヘッダはその長手方向に沿ってスリットノズル
(5)が設けられており、金属板幅方向に沿って配置さ
れている。
Each nozzle header is provided with a slit nozzle (5) along its longitudinal direction, and is arranged along the width direction of the metal plate.

これらのノズルヘッダは、炉側側に設けられたガス吹込
口(6ム)(6B) 内をとその一端側が開口している
が、本発明では、隣接したノズルへ゛ンダ1例えば(4
ム、)と(4人り、(4ム雪)と(4ム、)がそれぞれ
反対側のガス吹込口(6)に開口し、板幅方向における
反対側から処理用ガスが供給されるようになっている。
These nozzle headers are open at one end of the gas inlet (6M) (6B) provided on the furnace side.
MU, ) and (4 people, 4MU Yuki) and (4MU, ) are opened to the gas inlet (6) on the opposite side, respectively, so that the processing gas is supplied from the opposite side in the board width direction. It has become.

すなわち本実施例では、上部のノズルヘッダのうち、(
4A1) (4C1)がガス吹込口(6人)に、また(
4B1)(4os)がガス吹込口(6B)にそれぞれ開
口している。また下部のノズルヘッダも、(4人m) 
(4ct)がガス吹込口(6人)に、(4nt) (4
Dりがガス吹込口(6B)にそれぞれ開口している。
That is, in this embodiment, among the upper nozzle headers, (
4A1) (4C1) is connected to the gas inlet (6 people), and (
4B1) (4os) are respectively opened to the gas inlet (6B). Also, the nozzle header at the bottom (4 people m)
(4ct) is placed in the gas inlet (6 people), (4nt) (4
Each of the D holes opens into a gas inlet (6B).

また炉内における鋼板入側には、排ガス吸込口を有する
排気用筒体(7)が、金属板幅方向に沿って設けられて
いる。本実施例ではこの排気用筒体(7)のライン方向
前後に透孔が形成され、この透孔内を鋼板が通板できる
ようにしている。そして、この透孔が排ガスの吸込口(
71)を構成している。
Further, on the steel plate inlet side in the furnace, an exhaust cylinder (7) having an exhaust gas suction port is provided along the width direction of the metal plate. In this embodiment, through holes are formed in the front and rear of the exhaust cylinder (7) in the line direction, and a steel plate can be passed through the through holes. This hole is the exhaust gas inlet (
71).

この排気用筒体(7)はその排ガス吸込口(71)をな
るべく鋼板に近づけるようにすることが好ましく、この
ため本実施例では、排気用筒体(力を貫くようにして鋼
板を通板させ、その通板用の透孔を排ガス吸込口(71
)としたものである。
It is preferable that the exhaust gas suction port (71) of the exhaust cylinder (7) is placed as close to the steel plate as possible.For this reason, in this embodiment, the exhaust cylinder (7) and connect the through hole for the plate to the exhaust gas suction port (71
).

第4図は排気用筒体の他の実施例を示すもので、鋼板パ
スラインの上下ζこ、該パスラインに近接させて排気用
筒体(7m) (7b)を配設し、鋼板と対向する部分
に排ガス吸込口(71)を設けたものである。
Fig. 4 shows another embodiment of the exhaust cylinder, in which the exhaust cylinder (7m) (7b) is disposed above and below the steel plate pass line and in close proximity to the pass line. An exhaust gas suction port (71) is provided in the opposing portion.

また、各ノズルヘッダ(4)の長手方向に詔けるガス流
速分布を少しでも緩和するため、第5図(a) (b)
に示すように、ノズルヘッダ(4)をその内部断面積が
ガス入側から出側にかけて順次小さくなるような構造と
することができる。
In addition, in order to alleviate the gas flow velocity distribution in the longitudinal direction of each nozzle header (4), as shown in Fig. 5 (a) (b)
As shown in FIG. 2, the nozzle header (4) can have a structure in which the internal cross-sectional area of the nozzle header (4) gradually decreases from the gas inlet side to the gas outlet side.

以上のような装置では、鋼板(S)は上下のノズル間を
通板し、各ノズル(スリットノズル)からSiC2,ガ
スを含む処理用ガスが鋼板面に吹付けられ、CVD処理
がなされる。
In the above-described apparatus, a steel plate (S) is passed between upper and lower nozzles, and processing gas containing SiC2 and gas is blown onto the steel plate surface from each nozzle (slit nozzle) to perform CVD treatment.

このような処理において、隣接するノズルヘッダのガス
流速は逆の分布状態となるため、第6図に示すようにガ
ス流速分布の平均化が図られる。
In such processing, the gas flow velocities of adjacent nozzle headers have an opposite distribution state, so that the gas flow velocity distribution is averaged as shown in FIG.

また、ガス排出部が炉内の入側ζこ設けられるため、処
理用ガスは鋼板(8)の進行方向と反対向きに流れ、鋼
板(S)に対するガスの相対流速が高められる。
Furthermore, since the gas discharge section is provided on the inlet side of the furnace, the processing gas flows in the opposite direction to the advancing direction of the steel plate (8), and the relative flow velocity of the gas with respect to the steel plate (S) is increased.

また第3図及び第4図に示す排気用筒体(7)では、ス
リット状の排気吸込口(71)が鋼板面の近くに位置し
ているため、この部分でのガス流速も高くなり、CVD
反応がより促進されることになる。例えば、この排気吸
込口近傍でも1 m/ lee  以上の流速が得られ
る。
Furthermore, in the exhaust cylinder (7) shown in FIGS. 3 and 4, the slit-shaped exhaust suction port (71) is located near the steel plate surface, so the gas flow rate in this part is also high. CVD
The reaction will be further accelerated. For example, a flow velocity of 1 m/lee or more can be obtained even near this exhaust suction port.

なお、本発明は鋼板のみならず他の金属板の処理設備に
も適用できる。
Note that the present invention can be applied not only to steel plates but also to processing equipment for other metal plates.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、連続式〇VD処理装置にお
いて、金属板幅方向における生酸物の分布を均一に保つ
ことができ、加えてノズル吹付部以外の部位の炉内ガス
流速も高めることができ、CVD処理の効率化を図るこ
とができる。
According to the present invention described above, in a continuous VD processing apparatus, it is possible to maintain a uniform distribution of raw oxides in the width direction of the metal plate, and in addition, the gas flow rate in the furnace at parts other than the nozzle spraying part can be increased. This makes it possible to improve the efficiency of CVD processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示すものであ
り、第1図は水平断面図、第2図は縦断面図、第3図は
排気用筒体を部分的に示す斜視図である。第4図は排気
用筒体の他の実施例を示す斜視図である。 第5図(a) (b)はノズルの他の実施例を示すもの
で、(&)は縦断面図% (b)は側面図である。第6
図は本発明装置にあけるノズル流速分布を示す説明図で
ある。第7図(&)及び(b)はスリットノズルを有す
るノズルの流速分布を示す説明図である。第8図はCV
D処理における処理用ガスの衝突流速に8i富化割合を
示すものである。 図において、(4A1)〜(4DI)、(4At)〜(
4n*)はノズルヘッダ、(5)はスリットノズル、(
7)(7a) (yb)は排気用筒体、(71)は排気
吸込口を各示す。
1 to 3 show an embodiment of the present invention, in which FIG. 1 is a horizontal sectional view, FIG. 2 is a vertical sectional view, and FIG. 3 is a perspective view partially showing the exhaust cylinder. It is a diagram. FIG. 4 is a perspective view showing another embodiment of the exhaust cylinder. FIGS. 5(a) and 5(b) show another embodiment of the nozzle, where (&) is a vertical cross-sectional view and (b) is a side view. 6th
The figure is an explanatory diagram showing the nozzle flow velocity distribution provided in the apparatus of the present invention. FIGS. 7(&) and (b) are explanatory diagrams showing the flow velocity distribution of a nozzle having a slit nozzle. Figure 8 shows CV
The 8i enrichment ratio is shown in the collision flow velocity of the processing gas in the D process. In the figure, (4A1) to (4DI), (4At) to (
4n*) is the nozzle header, (5) is the slit nozzle, (
7) (7a) (yb) indicates an exhaust cylinder, and (71) indicates an exhaust suction port.

Claims (2)

【特許請求の範囲】[Claims] (1)金属板の連続式化学気相蒸着処理装置において、 金属板幅方向に沿つたノズルヘッダを、ライン方向で複
数設け、これら複数のノズルヘッダについて、隣接する
ノズルヘッダには金属板幅方向における反対方向から処
理用ガスを供給するよう構成したことを特徴とする連続
式化学気相蒸着処理装置。
(1) In a continuous chemical vapor deposition processing apparatus for a metal plate, a plurality of nozzle headers are provided in the line direction along the width direction of the metal plate, and for these multiple nozzle headers, adjacent nozzle headers are arranged in the width direction of the metal plate. What is claimed is: 1. A continuous chemical vapor deposition processing apparatus, characterized in that the processing gas is supplied from opposite directions in the continuous chemical vapor deposition processing apparatus.
(2)金属板の連続式化学気相蒸着処理装置において、 金属板幅方向に沿つたノズルヘッダを、ライン方向で複
数設け、これら複数のノズルヘッダについて、隣接する
ノズルヘッダには金属板幅方向における反対方向から処
理用ガスを供給するよう構成し、金属板の入側には、排
ガス吸込口を有する排気用筒体を、金属板幅方向に沿つ
て設けたことを特徴とする連続式化学気相蒸着処理装置
(2) In a continuous chemical vapor deposition processing apparatus for metal plates, a plurality of nozzle headers are provided in the line direction along the width direction of the metal plate, and for these multiple nozzle headers, adjacent nozzle headers are A continuous chemical system configured to supply processing gas from the opposite direction of the metal plate, and an exhaust cylinder having an exhaust gas suction port provided along the width direction of the metal plate on the inlet side of the metal plate. Vapor-phase deposition processing equipment.
JP17016186A 1986-07-18 1986-07-18 Continuous type chemical vapor deposition treatment device Granted JPS6326327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17016186A JPS6326327A (en) 1986-07-18 1986-07-18 Continuous type chemical vapor deposition treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17016186A JPS6326327A (en) 1986-07-18 1986-07-18 Continuous type chemical vapor deposition treatment device

Publications (2)

Publication Number Publication Date
JPS6326327A true JPS6326327A (en) 1988-02-03
JPH0430469B2 JPH0430469B2 (en) 1992-05-21

Family

ID=15899811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17016186A Granted JPS6326327A (en) 1986-07-18 1986-07-18 Continuous type chemical vapor deposition treatment device

Country Status (1)

Country Link
JP (1) JPS6326327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256075A (en) * 2004-03-11 2005-09-22 Jfe Steel Kk Continuous chemical vapor deposition system for metallic strip
JP2005256084A (en) * 2004-03-11 2005-09-22 Jfe Steel Kk Nozzle for supplying gaseous raw material of chemical vapor deposition
JP2006257533A (en) * 2005-03-18 2006-09-28 Jfe Steel Kk Method for coating metallic strip surface with thin film and grain oriented silicon steel sheet with ceramic film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256075A (en) * 2004-03-11 2005-09-22 Jfe Steel Kk Continuous chemical vapor deposition system for metallic strip
JP2005256084A (en) * 2004-03-11 2005-09-22 Jfe Steel Kk Nozzle for supplying gaseous raw material of chemical vapor deposition
JP4549081B2 (en) * 2004-03-11 2010-09-22 Jfeスチール株式会社 Nozzle for supplying source gas for chemical vapor deposition
JP4553608B2 (en) * 2004-03-11 2010-09-29 Jfeスチール株式会社 Metal strip continuous chemical vapor deposition system
JP2006257533A (en) * 2005-03-18 2006-09-28 Jfe Steel Kk Method for coating metallic strip surface with thin film and grain oriented silicon steel sheet with ceramic film

Also Published As

Publication number Publication date
JPH0430469B2 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
CN105074021B (en) Continuous fusion galvanizing device
JPH08264521A (en) Reaction furnace for producing semiconductor
EP3168321B1 (en) Production method for alloyed hot-dip-galvanized steel sheet
EP3730662B1 (en) Method for producing hot-dip galvanized steel sheet and continuous hot-dip galvanizing apparatus
JPS6326327A (en) Continuous type chemical vapor deposition treatment device
KR890002742B1 (en) A combined continuous plating apparatus for hot-dip plating and vacuum deposition plating
CN105705663B (en) Continuous annealing apparatus and continuous annealing method
JP4123690B2 (en) Method for supplying atmospheric gas into continuous annealing furnace
JP3176843B2 (en) Manufacturing method and manufacturing equipment for hot-dip galvanized steel sheet
JP4549081B2 (en) Nozzle for supplying source gas for chemical vapor deposition
JPS6311623A (en) Production of steel sheet having excellent chemical convertibility and continuous annealing equipment thereof
JPH06188238A (en) Heat treatment apparatus and method thereof
JP3514130B2 (en) Vertical cooling device and cooling method for steel strip
JPH0383897A (en) Vapor-phase growth device
JP2003526011A (en) Supply / exhaust system for plasma polymerization equipment
JPS61179820A (en) Continuous annealing installation
JPH0645881B2 (en) Silicidation treatment method for steel plate in continuous treatment line
JPH059592A (en) Continuous annealing furnace
JP3140101B2 (en) CVD reactor
JP2927165B2 (en) Process gas supply and exhaust gas discharge method in continuous siliconizing line for high silicon steel strip production
JP2821823B2 (en) Coating weight control method for hot dip galvanizing
JP3257435B2 (en) Continuous siliconizing furnace for steel strip
US5352490A (en) Method of chemical vapor deposition in a continuous treatment line
JPS6237364A (en) Method and apparatus for alloyed galvanized steel sheet
JP2938070B1 (en) Atmospheric pressure CVD equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees