JPH06188238A - Heat treatment apparatus and method thereof - Google Patents

Heat treatment apparatus and method thereof

Info

Publication number
JPH06188238A
JPH06188238A JP34989392A JP34989392A JPH06188238A JP H06188238 A JPH06188238 A JP H06188238A JP 34989392 A JP34989392 A JP 34989392A JP 34989392 A JP34989392 A JP 34989392A JP H06188238 A JPH06188238 A JP H06188238A
Authority
JP
Japan
Prior art keywords
reaction gas
tube
reaction
wafers
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34989392A
Other languages
Japanese (ja)
Inventor
Koji Iguchi
幸治 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP34989392A priority Critical patent/JPH06188238A/en
Publication of JPH06188238A publication Critical patent/JPH06188238A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make the flow rate of a reaction gas uniform and remove residual air existing between wafers, by introducing the reaction gas into the passage space of a reaction tube from the introducing ports provided on the wall surface of the outer tube of the reaction tube, and by blowing the reaction gas against the principal surfaces of the wafers from the jetting ports provided on the wall surface of the inner tube of the reaction tube, and further, by blowing the reaction gas against the wafers in one direction from the lateral side of the wafers. CONSTITUTION:The passage space of the reaction gas which is formed out of inner and outer tubes 15a, 15b of a reaction tube 15 having a double structure is divided into two partial passage spaces by a barrier plate 21a, and on the wall surfaces of the outer tubes of upper and lower passage spaces 22a, 22b, reaction gas introducing ports 20a, 20c and 20b are provided respectively. Also, on the wall surface of the inner tube of the passage space 22a, reaction gas jetting ports 18 are provided over the whole periphery thereof. Further, when the wafers stored in a jig pass the place neighboring a wafer inserting port of the bottom part of the reaction tube 15, the reaction gas is blown against the wafers along the gap between the wafers in one direction from the reaction gas jetting ports for air existing between the wafers to be removed, and thereafter, the wafers are further inserted into the innermost of the reaction tube 15. Thereby, oxide films are made uniform, and the film quality thereof can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造プロセスに
おける熱処理装置と熱処理方法に関するもので、特に半
導体基板に均一かつ良質な酸化膜を形成するために使用
されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus and a heat treatment method in a semiconductor manufacturing process, and is particularly used for forming a uniform and good quality oxide film on a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体基板(ウェーハ)主面に熱酸化膜
を形成する従来の熱処理装置及び熱処理方法の一例につ
いて、図7を参照して説明する。
2. Description of the Related Art An example of a conventional heat treatment apparatus and heat treatment method for forming a thermal oxide film on a main surface of a semiconductor substrate (wafer) will be described with reference to FIG.

【0003】ウェーハ1は、保持治具2により一定の間
隔をあけて保持され、保温筒3を介して反応管キャップ
4上に載置され、反応管5内に挿入される。反応ガス
(例えば高純度のO2 ガス)6は反応ガス導入管7を通
り、反応管5の頂部に設けられた反応ガス噴出口8よ
り、管内に導入される。使用済みの反応ガス6aは、反
応管5の底部近傍に設けられた排出口9より外部に排気
される。図示してないが、反応管5を囲んでヒータ等の
加熱手段等が設けられる。
The wafer 1 is held by the holding jig 2 at a constant interval, placed on the reaction tube cap 4 via the heat insulation tube 3, and inserted into the reaction tube 5. A reaction gas (for example, high-purity O 2 gas) 6 passes through a reaction gas introduction pipe 7 and is introduced into the pipe from a reaction gas jet port 8 provided at the top of the reaction pipe 5. The used reaction gas 6a is exhausted to the outside through an exhaust port 9 provided near the bottom of the reaction tube 5. Although not shown, a heating means such as a heater is provided around the reaction tube 5.

【0004】ウェーハ1は、前記加熱手段により、例え
ば1000℃程度の高温に加熱され、反応ガス噴出口8より
導入される反応ガス6と反応して酸化膜(Si O2 )が
形成される。
The wafer 1 is heated to a high temperature of, for example, about 1000 ° C. by the heating means, and reacts with the reaction gas 6 introduced from the reaction gas jet port 8 to form an oxide film (SiO 2 ).

【0005】上記の従来の酸化膜形成においては、次の
ような問題が生じる。
In the above conventional oxide film formation, the following problems occur.

【0006】ウェーハの大口径化が進むに従い、保持さ
れたウェーハ間に存在する残留大気の除去は、より困難
となる。ウェーハ間に大気が存在する限り、熱処理初期
に形成される酸化膜は、本来目的とした反応ガスでな
く、この残留大気を酸化剤とした酸化膜である。したが
ってウェーハ間に存在する残留大気は、良質な酸化膜形
成の大きな障害となる。
[0006] As the diameter of wafers increases, it becomes more difficult to remove the residual air existing between the held wafers. As long as the air exists between the wafers, the oxide film formed in the initial stage of the heat treatment is not the originally intended reaction gas, but an oxide film using this residual air as an oxidant. Therefore, the residual air existing between the wafers is a major obstacle to the formation of a good quality oxide film.

【0007】また、生産性向上のため、熱処理装置で一
度に処理するウェーハ数の多量化が進むに従い、ウェー
ハ保持治具2の全長が延長されるため、ウェーハ保持治
具2の上下両端に位置するウェーハ間で、反応管5の頂
部より供給された反応ガスのウェーハへの到達時間差が
増大するため、特に熱処理時間が短い場合、ウェーハ間
の酸化膜の均一性が劣化する。
In order to improve productivity, the total length of the wafer holding jig 2 is extended as the number of wafers to be processed at one time by the heat treatment apparatus is increased. Since the difference in the arrival time of the reaction gas supplied from the top of the reaction tube 5 to the wafers increases among the wafers, the uniformity of the oxide film between the wafers is deteriorated particularly when the heat treatment time is short.

【0008】[0008]

【発明が解決しようとする課題】これまで述べたよう
に、従来の熱処理装置と熱処理方法で、半導体ウェーハ
面に熱酸化膜を形成する場合、ウェーハ間に存在する残
留大気に含まれる不純物が、形成される酸化膜中に混入
し、良質な酸化膜形成の障害となる。ウェーハの大口径
化が進むに従い、この障害はより顕著にあらわれる。
As described above, when a thermal oxide film is formed on the surface of a semiconductor wafer by the conventional heat treatment apparatus and heat treatment method, impurities contained in the residual air existing between the wafers are It is mixed in the formed oxide film, which hinders the formation of a high-quality oxide film. This obstacle becomes more remarkable as the diameter of the wafer becomes larger.

【0009】また一度に処理されるウェーハ数は、生産
性向上のため増加する傾向にあり、ウェーハ保持治具も
長くなり、その両端に位置するウェーハ間では、反応ガ
スとの反応時間差が増大し、形成された酸化膜の均一性
が劣化する。
Further, the number of wafers processed at one time tends to increase for the purpose of improving productivity, the wafer holding jig also becomes longer, and the difference in reaction time between the wafers located at both ends thereof with the reaction gas increases. The uniformity of the formed oxide film deteriorates.

【0010】本発明の目的は、半導体プロセスにおける
従来の熱処理装置及び熱処理方法を改善することによ
り、ウェーハの多量化や大口径化で発生する問題点を取
り除き、成膜される酸化膜の均一性と膜質を向上させる
ことである。
The object of the present invention is to improve the conventional heat treatment apparatus and heat treatment method in the semiconductor process, thereby eliminating the problems caused by the increase in the number of wafers and the increase in diameter, and the uniformity of the oxide film formed. And to improve the film quality.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1に係る
熱処理装置は、図1に例示するように、内管15a及び
外管15bより成る二重構造の反応管15と、半導体ウ
ェーハ11の主面が反応管の長手方向の管軸に対して垂
直でかつ互いに空隙を介して対向保持される被処理ウェ
ーハ保持治具12と、反応ガス16を反応管15に導入
する反応ガス導入管17と、内管15a及び外管15b
によってつくられる反応ガス通路空間22a,22b
と、反応ガス通路空間の外管15bの壁面に設けられ、
反応ガス導入管17と連通する反応ガス導入口20a,
20b,20cと、反応ガス通路空間の内管15aの壁
面に設けられ、内管内に保持される半導体ウェーハ11
の主面に反応ガス16を吹き付ける反応ガス噴出口18
と、内管15aの壁面に設けられ内管内の反応ガスを反
応管外に排出する排出口19、あるいは図4に例示する
ようにこの排出口19と外管15bの壁面に設けられ内
管壁面の反応ガス流出口23及び反応ガス通路空間22
eを経由して反応管外に内管15a内の反応ガスを排出
する排出口19aとを具備することを特徴とするもので
ある。
As shown in FIG. 1, a heat treatment apparatus according to claim 1 of the present invention includes a reaction tube 15 having a double structure composed of an inner tube 15a and an outer tube 15b, and a semiconductor wafer 11. Wafer holding jig 12 whose main surface is perpendicular to the tube axis in the longitudinal direction of the reaction tube and is opposed to each other via a gap, and a reaction gas introduction tube for introducing reaction gas 16 into reaction tube 15. 17, inner pipe 15a and outer pipe 15b
Reaction gas passage spaces 22a, 22b created by
And provided on the wall surface of the outer tube 15b in the reaction gas passage space,
A reaction gas introduction port 20a communicating with the reaction gas introduction pipe 17,
20b and 20c, and a semiconductor wafer 11 provided on the wall surface of the inner tube 15a in the reaction gas passage space and held in the inner tube
Gas jet 18 for spraying reaction gas 16 onto the main surface of
And an exhaust port 19 provided on the wall surface of the inner pipe 15a for exhausting the reaction gas in the inner pipe to the outside of the reaction pipe, or an inner pipe wall surface provided on the wall faces of the exhaust port 19 and the outer pipe 15b as illustrated in FIG. Reaction gas outlet 23 and reaction gas passage space 22
A discharge port 19a for discharging the reaction gas in the inner pipe 15a is provided outside the reaction pipe via e.

【0012】本発明の請求項2に係る熱処理装置は、図
1に例示するように内管15a及び外管15bによって
つくられる反応ガス通路空間を隔壁21aによって 2つ
の反応ガス通路空間22a及び22bに分割した、ある
いは図4及び図5に例示するように隔壁21b,21
c,及び21dにより 3つの反応ガス通路空間22c,
22d及び22eに分割した、請求項1記載の熱処理装
置である。
In the heat treatment apparatus according to claim 2 of the present invention, as illustrated in FIG. 1, the reaction gas passage space formed by the inner pipe 15a and the outer pipe 15b is divided into two reaction gas passage spaces 22a and 22b by the partition wall 21a. The partition walls 21b, 21 are divided or, as illustrated in FIGS.
c and 21d, the three reaction gas passage spaces 22c,
The heat treatment apparatus according to claim 1, which is divided into 22d and 22e.

【0013】また本発明の請求項3に係る熱処理方法
は、上記請求項1または請求項2記載の熱処理装置を使
用する半導体ウェーハの熱処理方法であって、搭載され
たウェーハ間の空隙に沿って、反応ガス噴出口より反応
ガスを吹き付けながら被処理ウェーハ保持治具を反応管
内管に挿入する工程を含むことを特徴とする熱処理方法
である。
A heat treatment method according to claim 3 of the present invention is a heat treatment method for a semiconductor wafer using the heat treatment apparatus according to claim 1 or 2, wherein the heat treatment method is performed along a gap between mounted wafers. The heat treatment method includes a step of inserting the wafer holding jig to be processed into the reaction tube inner tube while spraying the reaction gas from the reaction gas jet port.

【0014】[0014]

【作用】本発明においては、反応管を内管及び外管より
成る二重構造とし、内管と外管とによりつくられる空間
を反応ガスが流れる通路空間とし、かつ外管の長手方向
の壁面に適当な間隔をあけて、複数の反応ガス導入口を
設けたので、反応ガス通路空間を経て反応ガス噴出口よ
りウェーハ主面に吹き付けられる反応ガスの流量は、各
噴出口について均一化される。また所望により反応ガス
通路空間を隔壁により複数の互いに独立した空間に分割
すれば、反応ガス噴出口よりウェーハへの均一な反応ガ
ス供給をより確実にすることができる。これにより均一
な酸化膜を形成することができる。
In the present invention, the reaction tube has a double structure consisting of the inner tube and the outer tube, the space formed by the inner tube and the outer tube is the passage space through which the reaction gas flows, and the wall surface of the outer tube in the longitudinal direction. Since a plurality of reaction gas inlets are provided at appropriate intervals, the flow rate of the reaction gas blown from the reaction gas jet port to the wafer main surface through the reaction gas passage space is made uniform for each jet port. . Further, if the reaction gas passage space is divided into a plurality of independent spaces by partition walls as desired, uniform reaction gas supply to the wafer from the reaction gas ejection port can be ensured more reliably. As a result, a uniform oxide film can be formed.

【0015】上記構成の熱処理装置においては、後述す
るように、反応ガス通路空間を分割する隔壁、外管壁面
に設けられる反応ガス導入口及び反応ガス排出口、なら
びに内管壁面に設けられる反応ガス噴出口及び反応ガス
流出口のそれぞれの設置個数と設置場所を調整すること
により、反応ガス噴出口より吹き付ける反応ガスの方向
を、ウェーハ主面に沿った方向にすることが可能であ
り、さらには一方向にウェーハ間を貫通して流れるよう
にすることも可能である。これはウェーハ間の残留大気
を除去するのに有効である。
In the heat treatment apparatus having the above-mentioned structure, as will be described later, a partition for dividing the reaction gas passage space, a reaction gas introduction port and a reaction gas discharge port provided on the outer tube wall surface, and a reaction gas provided on the inner tube wall surface. By adjusting the number of installations of the ejection port and the reaction gas outlet and the installation location, it is possible to make the direction of the reaction gas blown from the reaction gas ejection port along the main surface of the wafer. It is also possible to flow through the wafers in one direction. This is effective in removing the residual air between the wafers.

【0016】請求項3に係る熱処理方法では、反応管の
ウェーハ挿入口近傍における反応ガスの吹き付け方向が
ウェーハ主面に沿って一方向に流れるようにした反応管
を使用し、ウェーハを内管に挿入する過程で、ウェーハ
間に反応ガスを一方向より吹き付け、ウェーハ間に存在
する大気を反応ガスと置換するものである。これにより
ウェーハの大口径化に対しても残留大気が確実に除去で
きるので良質な酸化膜が得られる。
In the heat treatment method according to the third aspect, a reaction tube is used in which the reaction gas is blown in one direction along the main surface of the wafer in the vicinity of the wafer insertion port of the reaction tube. During the inserting process, the reaction gas is blown from one direction between the wafers to replace the atmosphere existing between the wafers with the reaction gas. As a result, the residual air can be reliably removed even when the diameter of the wafer is increased, so that a high quality oxide film can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明の熱処理装置の第1実施例
の構成図で、請求項1及び請求項2に係る装置である。
また図2及び図3は、それぞれ図1に示すA−A′線及
びB−B′線で反応管を切断した断面図である。
FIG. 1 is a block diagram of a first embodiment of a heat treatment apparatus of the present invention, which is an apparatus according to claim 1 and claim 2.
2 and 3 are cross-sectional views of the reaction tube taken along the line AA 'and the line BB' shown in FIG. 1, respectively.

【0019】図1ないし図3に示すように、反応管15
は内管15a及び外管15bから成る二重構造である。
この内管及び外管によってつくられる反応ガス通路空間
は、隔壁21aによって、上方の通路空間22a及び下
方の通路空間22bに 2分割され、それぞれの通路空間
22a及び22bの外管の壁面には、反応ガス導入管1
7と連通する反応ガス導入口20a,20c及び20b
が設けられている。通路空間22aの内管壁面には、図
2に示すように全周にわたって反応ガス噴出口18が設
けられる。
As shown in FIGS. 1 to 3, the reaction tube 15
Is a double structure composed of an inner pipe 15a and an outer pipe 15b.
The reaction gas passage space formed by the inner pipe and the outer pipe is divided into two by a partition wall 21a into an upper passage space 22a and a lower passage space 22b, and the wall surfaces of the outer pipes of the respective passage spaces 22a and 22b are Reaction gas introduction pipe 1
Reactant gas inlets 20a, 20c and 20b communicating with 7.
Is provided. As shown in FIG. 2, a reaction gas ejection port 18 is provided on the inner wall surface of the passage space 22a over the entire circumference.

【0020】また通路空間22bの内管壁面には、ウェ
ーハ挿入口近傍を除いて、通路空間22aと同様、反応
ガス噴出口18が内管全周にわたって設けられる。排出
口19は内管15aの壁面の底部に設けられ、内管内の
反応ガスを反応管外に排出する。
A reaction gas jet port 18 is provided on the inner wall surface of the passage space 22b over the entire circumference of the inner pipe as in the passage space 22a except for the vicinity of the wafer insertion port. The discharge port 19 is provided at the bottom of the wall surface of the inner pipe 15a and discharges the reaction gas in the inner pipe to the outside of the reaction pipe.

【0021】図3に示すように、通路空間22bのウェ
ーハ挿入口近傍においては、内管壁面に設けられる反応
ガス噴出口は、対向する一方の側の壁面(右側)にのみ
設けられ、噴出する反応ガスの流れを一方向とし、ウェ
ーハ間を貫通して反応ガスが流れるようにする。
As shown in FIG. 3, in the vicinity of the wafer insertion opening of the passage space 22b, the reaction gas jet port provided on the inner pipe wall surface is provided and jetted only on the wall surface (right side) on one side facing the inner wall surface. The flow of the reaction gas is unidirectional so that the reaction gas flows through the wafers.

【0022】ウェーハ11は、ウェーハ保持治具12内
に、その主面が反応管15の長手方向の管軸に対し垂直
で、かつ互いに間隔をあけて対向保持される。ウェーハ
治具12は、保温筒13を介して反応管キャップ14上
に載置される。
The wafer 11 is held in the wafer holding jig 12 so that its main surface is perpendicular to the tube axis in the longitudinal direction of the reaction tube 15 and is opposed to it with a space therebetween. The wafer jig 12 is placed on the reaction tube cap 14 via the heat insulating cylinder 13.

【0023】熱処理工程においては、あらかじめ反応管
内の大気を反応ガス16で置換し、ウェーハ11を収納
したウェーハ保持治具12を、反応管15の底部挿入口
より、内管15aに挿入する。
In the heat treatment step, the atmosphere in the reaction tube is replaced with the reaction gas 16 in advance, and the wafer holding jig 12 containing the wafer 11 is inserted into the inner tube 15a from the bottom insertion port of the reaction tube 15.

【0024】挿入に際しては、治具に収納されたウェー
ハが、反応管15の底部挿入口近傍を通るときには、ウ
ェーハ間の空隙に沿って、反応ガスの噴出口より、一方
向に反応ガスを吹き付け、ウェーハ間に存在する大気を
除去してから、さらに管奥に挿入する(請求項3の実施
例)。
At the time of insertion, when the wafer accommodated in the jig passes near the bottom insertion port of the reaction tube 15, the reaction gas is blown in one direction from the ejection port of the reaction gas along the gap between the wafers. After removing the atmosphere existing between the wafers, the wafer is further inserted into the inner part of the tube (the embodiment of claim 3).

【0025】本実施例では、反応ガスとして乾燥酸素ガ
スを使用し、Si 基板上に例えばゲート酸化膜のように
良質で薄い熱酸化膜を成膜する。反応管等は高純度の石
英管からつくられ、図示してないが反応管の長手方向を
囲む電熱ヒータによって、酸化温度 900℃から1100℃で
熱酸化膜が得られる。
In this embodiment, a dry oxygen gas is used as a reaction gas, and a high-quality thin thermal oxide film such as a gate oxide film is formed on the Si substrate. The reaction tube and the like are made of high-purity quartz tube, and a thermal oxide film is obtained at an oxidation temperature of 900 ° C to 1100 ° C by an electric heater (not shown) surrounding the longitudinal direction of the reaction tube.

【0026】上記実施例の反応管においては、反応ガス
16は、反応ガス導入管を流れ、反応ガス導入口20
a,20cと、導入口20bとから、互いに分離された
通路空間22aと通路空間22bとにそれぞれ同時に流
入した後、それぞれの内管に設けられた噴出口より内管
内に反応ガスを噴出する。従来の熱処理装置では、反応
ガス導入管には 1つの導入口しかなく、しかも直接反応
管に反応ガスを噴出するのに対し、上記実施例の装置で
は、反応ガス導入管と内管との間にクッションとなる反
応ガス通路空間を設け、隔壁により通路空間を上、下に
2分割し、それぞれの通路空間に対し、反応ガスの導入
及び噴出を、同時に並んで行なわせる。これにより上記
実施例の装置では、内管の壁面に設けられる複数個の反
応ガス噴出口より、ウェーハに供給される反応ガスの流
量は、内管の長手方向に沿ってほぼ均一となり、成膜さ
れた酸化膜の膜厚及び膜質の均一性は大幅に改善され
る。一度に処理されるウェーハの枚数が増加して、反応
管の長さが長くなっても、通路空間の分割数を増加すれ
ば、容易に上記の酸化膜の均一性を維持できる。
In the reaction tube of the above-mentioned embodiment, the reaction gas 16 flows through the reaction gas introduction tube and the reaction gas introduction port 20.
After simultaneously flowing into the passage space 22a and the passage space 22b, which are separated from each other, from the a and 20c and the introduction port 20b, the reaction gas is ejected into the inner pipe from the ejection port provided in each inner pipe. In the conventional heat treatment apparatus, the reaction gas introduction pipe has only one introduction port, and further, the reaction gas is directly ejected to the reaction pipe, whereas in the apparatus of the above embodiment, the reaction gas introduction pipe and the inner pipe are A reaction gas passage space that serves as a cushion is provided in the
It is divided into two parts, and the reaction gas is introduced and jetted into the respective passage spaces at the same time. As a result, in the apparatus of the above-mentioned embodiment, the flow rate of the reaction gas supplied to the wafer from the plurality of reaction gas ejection ports provided on the wall surface of the inner tube becomes substantially uniform along the longitudinal direction of the inner tube, and the film formation The uniformity of the film thickness and film quality of the formed oxide film is significantly improved. Even if the number of wafers processed at one time increases and the length of the reaction tube increases, the uniformity of the oxide film can be easily maintained by increasing the number of divided passage spaces.

【0027】上記実施例の熱処理装置及び熱処理方法に
よれば、ウェーハ挿入口近傍では、図3に示すように、
反応ガス噴出口は、内管壁面の一方の側(右側)に設け
られ、対向する側(左側)には設けられていないので、
反応ガスの流れは一方向となる。すなわち一方向に流れ
る反応ガスをウェーハ間に吹き付けながら反応管に挿入
するので、残留大気をウェーハ間より確実に除去するこ
とができる。特にゲート酸化膜のように薄い酸化膜で
は、残留大気による酸化膜の割合が相対的に厚くなるの
で、上記ウェーハ挿入時の残留大気を除去する効果は顕
著である。またウェーハ口径が大型化されても、ウェー
ハ間に残留する大気を容易に除去できる。
According to the heat treatment apparatus and the heat treatment method of the above-described embodiment, as shown in FIG.
Since the reaction gas ejection port is provided on one side (right side) of the inner pipe wall surface and is not provided on the opposite side (left side),
The flow of the reaction gas is unidirectional. That is, since the reaction gas flowing in one direction is blown between the wafers and inserted into the reaction tube, residual air can be reliably removed from between the wafers. Particularly in the case of a thin oxide film such as a gate oxide film, the ratio of the oxide film due to the residual air becomes relatively thick, so that the effect of removing the residual air during the wafer insertion is remarkable. Further, even if the diameter of the wafer is increased, the atmosphere remaining between the wafers can be easily removed.

【0028】図4は、本発明の熱処理装置の第2実施例
の構成図で、請求項1及び請求項2に係る装置である。
また図5は、図4に示すC−C′線で反応管を切断した
断面図である。なお図1ないし図3と同じ符号は同じ部
分または対応部分を示す。
FIG. 4 is a block diagram of a second embodiment of the heat treatment apparatus of the present invention, which is the apparatus according to the first and second aspects.
FIG. 5 is a cross-sectional view of the reaction tube taken along the line CC 'shown in FIG. The same reference numerals as those in FIGS. 1 to 3 indicate the same or corresponding portions.

【0029】図1に示す熱処理装置と異なる点は、隔壁
21bによって反応ガス通路空間を上、下に 2分割した
後、さらに下方の通路空間を図5に示すように、反応管
の管軸方向の隔壁21c及び21dによって、通路空間
22dと22eとに 2分割したことである。すなわち通
路空間22dの外管の壁面には反応ガス導入口20fを
設け、内管の壁面には反応ガス噴出口18を設ける。通
路空間22eは、通路空間22dと対向した位置に形成
され、その外管の壁面には反応ガス排出口19aが設け
られ、内管壁面の反応ガス流出口23及び反応ガス通路
空間22eを経由して、内管内の反応ガスを排出口19
aから外に排出する。内管15aの底部には、第1実施
例と同様、反応ガス排出口19aが設けられる。
The difference from the heat treatment apparatus shown in FIG. 1 is that after dividing the reaction gas passage space into upper and lower parts by the partition wall 21b, the passage space further below is divided in the axial direction of the reaction tube as shown in FIG. The partition walls 21c and 21d are divided into two passage spaces 22d and 22e. That is, the reaction gas inlet port 20f is provided on the wall surface of the outer tube of the passage space 22d, and the reaction gas injection port 18 is provided on the wall surface of the inner tube. The passage space 22e is formed at a position facing the passage space 22d, the reaction gas discharge port 19a is provided on the wall surface of the outer pipe thereof, and passes through the reaction gas outlet 23 and the reaction gas passage space 22e on the inner pipe wall surface. The reaction gas in the inner pipe to the discharge port 19
Discharge from a. At the bottom of the inner pipe 15a, a reaction gas discharge port 19a is provided as in the first embodiment.

【0030】第2実施例においては、反応管の下方で
は、図5に示すように、反応ガス16(矢線で示す)は
通路空間22dの反応ガス噴出口18からウェーハ間を
貫通するように噴出され、対向する通路空間22eの反
応ガス流出口23に吸引され、反応ガス排出口19aよ
り管外に放出される。排出口19aは図示してないがダ
クトに接続され、排出口19aの気圧は、一般に内管内
の反応ガス圧に比較して小さく、そのため反応ガスは流
出口23に吸引され、ウェーハ間を一方向に流れる。本
実施例は、第1実施例に比較して、ウェーハを反応管に
挿入する際、ウェーハ間に存在する大気を容易にかつ速
やかに反応ガスに置換できる。
In the second embodiment, below the reaction tube, as shown in FIG. 5, the reaction gas 16 (indicated by the arrow) passes through the reaction gas jet port 18 of the passage space 22d between the wafers. The gas is ejected, sucked into the reaction gas outlet 23 of the opposing passage space 22e, and discharged outside the tube from the reaction gas outlet 19a. The discharge port 19a is connected to a duct (not shown), and the atmospheric pressure of the discharge port 19a is generally smaller than the pressure of the reaction gas in the inner tube, so that the reaction gas is sucked into the flow outlet 23 and unidirectionally flows between the wafers. Flow to. Compared to the first embodiment, this embodiment can easily and quickly replace the atmosphere existing between the wafers with the reaction gas when inserting the wafer into the reaction tube.

【0031】なお第2実施例の応用例として、隔壁21
bを除去し、反応管の長手方向の隔壁21c及び21d
を頂部まで延長し、反応ガス通路空間を長手方向に2 分
割し、内管内の反応ガスの流れをすべて一方向にするこ
とができる。
As an application example of the second embodiment, the partition wall 21
b is removed, and partition walls 21c and 21d in the longitudinal direction of the reaction tube are removed.
Can be extended to the top, the reaction gas passage space can be divided into two in the longitudinal direction, and the flow of the reaction gas in the inner tube can be made unidirectional.

【0032】図6は、本発明の熱処理装置の第3実施例
の構成図である。本実施例は、内管15aと外管15b
によりつくられる通路空間22fに隔壁を設けないこと
のほかは第1実施例とほぼ同じである。すなわち内管1
5aと外管15bとでつくられる反応ガス通路空間22
fは一体で、その外管15bには反応ガス導入口20
g,20h及び20jが設けられる。反応ガスは、通路
空間に、複数の導入口より一様に供給され、通路空間を
経て噴出口より噴出されるので、反応ガスの流量は、反
応管の長手方向に沿ってほぼ均一となる。これは反応管
の構造を簡単にし、かつ一度に熱処理するウェーハ数が
多量化し、ウェーハ保持治具の全長が延長されても、ウ
ェーハ間の酸化膜の均一性を維持することができる。
FIG. 6 is a block diagram of the third embodiment of the heat treatment apparatus of the present invention. In this embodiment, the inner pipe 15a and the outer pipe 15b are
It is almost the same as the first embodiment except that the partition wall is not provided in the passage space 22f created by. Ie inner tube 1
Reaction gas passage space 22 formed by 5a and outer tube 15b
f is integrated, and the reaction gas inlet port 20 is provided in the outer tube 15b.
g, 20h and 20j are provided. The reaction gas is uniformly supplied to the passage space through the plurality of inlets and is ejected from the ejection port through the passage space, so that the flow rate of the reaction gas becomes substantially uniform along the longitudinal direction of the reaction tube. This simplifies the structure of the reaction tube, increases the number of wafers to be heat-treated at one time, and maintains the uniformity of the oxide film between the wafers even if the entire length of the wafer holding jig is extended.

【0033】上記実施例は縦型熱処理装置について述べ
たが、本発明は横型熱処理装置に対しても適用できるこ
とは勿論である。
Although the above embodiment describes the vertical heat treatment apparatus, it is needless to say that the present invention can be applied to a horizontal heat treatment apparatus.

【0034】また上記実施例では、反応ガスとしてドラ
イ酸素を使用した熱酸化膜形成について述べたがこれに
限定されない。ウェーハ間の残留大気を除去し、均一な
薄膜を形成するその他の場合においても、本発明を適用
することができる。
In the above embodiment, the formation of the thermal oxide film using dry oxygen as the reaction gas has been described, but the present invention is not limited to this. The present invention can be applied to other cases where residual air between wafers is removed and a uniform thin film is formed.

【0035】[0035]

【発明の効果】これまで述べたように、本発明において
は反応管を二重構造とし、内管と外管とにより反応ガス
通路空間をつくり、また所望により通路空間を分割し、
複数の反応ガス導入口を設ける等により、噴出口から均
一に反応ガスを噴出するようにした。またウェーハ保持
治具に保持されいているウェーハ間に存在する大気を、
ウェーハを内管内に挿入する際、反応ガスを吹き付けて
除去するようにした。これらにより、一度に処理するウ
ェーハの多量化やウェーハの大口径化で発生する問題点
を取り除き、成膜された酸化膜の均一性と、膜質を向上
させることができた。
As described above, in the present invention, the reaction tube has a double structure, the reaction gas passage space is formed by the inner pipe and the outer pipe, and the passage space is divided as desired.
By providing a plurality of reaction gas inlets or the like, the reaction gas is uniformly ejected from the ejection port. In addition, the atmosphere existing between the wafers held by the wafer holding jig is
When the wafer was inserted into the inner tube, the reaction gas was blown to remove it. As a result, it was possible to improve the uniformity of the formed oxide film and the film quality by eliminating the problems caused by increasing the number of wafers processed at one time and increasing the diameter of the wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱処理装置の第1実施例の模式的な構
成図である。
FIG. 1 is a schematic configuration diagram of a first embodiment of a heat treatment apparatus of the present invention.

【図2】図1に示す装置のA−A′線断面図である。FIG. 2 is a sectional view taken along the line AA ′ of the device shown in FIG.

【図3】図1に示す装置のB−B′線断面図である。FIG. 3 is a sectional view taken along line BB ′ of the device shown in FIG.

【図4】本発明の熱処理装置の第2実施例の模式的な構
成図である。
FIG. 4 is a schematic configuration diagram of a second embodiment of the heat treatment apparatus of the present invention.

【図5】図4に示す装置のC−C′線断面図である。5 is a sectional view taken along line CC ′ of the apparatus shown in FIG.

【図6】本発明の熱処理装置の第3実施例の模式的な構
成図である。
FIG. 6 is a schematic configuration diagram of a third embodiment of the heat treatment apparatus of the present invention.

【図7】従来の熱処理装置の構成図である。FIG. 7 is a block diagram of a conventional heat treatment apparatus.

【符号の説明】[Explanation of symbols]

1,11 半導体ウェーハ 2,12 ウェーハ保持治具 3,13 保温筒 4,14 反応管キャップ 5,15 反応管 6,16 反応ガス 7,17 反応ガス導入管 8,18 反応ガス噴出口 9,19,19a 排出口 15a 内管 15b 外管 20a,20b,20c 反応ガス導入口 20d,20e,20f 反応ガス導入口 20g,20h,20j 反応ガス導入口 21a,21b,21c,21d 隔壁 22a,22b 反応ガス通路空間 22c,22d,22e 反応ガス通路空間 22f 反応ガス通路空間 23 反応ガス流出口 1,11 Semiconductor wafer 2,12 Wafer holding jig 3,13 Insulation tube 4,14 Reaction tube cap 5,15 Reaction tube 6,16 Reaction gas 7,17 Reaction gas introduction tube 8,18 Reaction gas jet 9,19 , 19a Outlet port 15a Inner tube 15b Outer tube 20a, 20b, 20c Reaction gas inlet port 20d, 20e, 20f Reaction gas inlet port 20g, 20h, 20j Reaction gas inlet port 21a, 21b, 21c, 21d Partition wall 22a, 22b Reaction gas Passage space 22c, 22d, 22e Reaction gas passage space 22f Reaction gas passage space 23 Reaction gas outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内管及び外管より成る二重構造の反応管
と、半導体ウェーハ主面が反応管の長手方向の管軸に対
して垂直でかつ互いに空隙を介して対向保持される被処
理ウェーハ保持治具と、反応ガスを反応管に導入する反
応ガス導入管と、内管及び外管とによってつくられる反
応ガス通路空間と、反応ガス通路空間の外管の壁面に設
けられ反応ガス導入管と連通する反応ガス導入口と、反
応ガス通路空間の内管の壁面に設けられ内管内に保持さ
れる半導体ウェーハの主面に反応ガスを吹き付ける反応
ガス噴出口と、内管の壁面に設けられ内管内の反応ガス
を反応管外に排出する排出口あるいはこの排出口と外管
の壁面に設けられ内管内の反応ガスを内管壁面の反応ガ
ス流出口及び反応ガス通路空間を経由して反応管外に排
出する排出口とを具備することを特徴とする熱処理装
置。
1. A double-structured reaction tube consisting of an inner tube and an outer tube, and a semiconductor wafer main surface which is held perpendicular to a tube axis in the longitudinal direction of the reaction tube and opposed to each other with a gap therebetween. A wafer holding jig, a reaction gas introduction pipe for introducing a reaction gas into the reaction pipe, a reaction gas passage space created by an inner pipe and an outer pipe, and a reaction gas introduction provided on the wall surface of the outer pipe of the reaction gas passage space. Provided on the wall surface of the inner tube, a reaction gas inlet communicating with the tube, a reaction gas outlet provided on the wall surface of the inner tube of the reaction gas passage space and blowing a reaction gas onto the main surface of the semiconductor wafer held in the inner tube The discharge port for discharging the reaction gas in the inner tube to the outside of the reaction tube or this discharge port and the reaction gas in the inner tube provided on the wall surface of the outer tube through the reaction gas outlet port and the reaction gas passage space With a discharge port to discharge outside the reaction tube Heat treatment apparatus characterized by.
【請求項2】内管及び外管によってつくられる反応ガス
通路空間が隔壁によって分割された複数の反応ガス通路
空間である請求項1記載の熱処理装置。
2. The heat treatment apparatus according to claim 1, wherein the reaction gas passage space formed by the inner pipe and the outer pipe is a plurality of reaction gas passage spaces divided by partition walls.
【請求項3】請求項1または請求項2記載の熱処理装置
を使用する半導体ウェーハの熱処理方法において、搭載
されたウェーハ間の空隙に沿って、反応ガスの噴出口よ
り反応ガスを吹き付けながら前記被処理ウェーハ保持治
具を前記反応管内管に挿入する工程を含むことを特徴と
する熱処理方法。
3. A heat treatment method for a semiconductor wafer using the heat treatment apparatus according to claim 1 or 2, wherein the reaction gas is blown from an ejection port of the reaction gas along a gap between the mounted wafers. A heat treatment method comprising a step of inserting a processing wafer holding jig into the reaction tube inner tube.
JP34989392A 1992-12-02 1992-12-02 Heat treatment apparatus and method thereof Withdrawn JPH06188238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34989392A JPH06188238A (en) 1992-12-02 1992-12-02 Heat treatment apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34989392A JPH06188238A (en) 1992-12-02 1992-12-02 Heat treatment apparatus and method thereof

Publications (1)

Publication Number Publication Date
JPH06188238A true JPH06188238A (en) 1994-07-08

Family

ID=18406824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34989392A Withdrawn JPH06188238A (en) 1992-12-02 1992-12-02 Heat treatment apparatus and method thereof

Country Status (1)

Country Link
JP (1) JPH06188238A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413884B1 (en) 1997-06-05 2002-07-02 Nec Corporation Method of producing thin films using current of process gas and inert gas colliding with each other
JP2008186852A (en) * 2007-01-26 2008-08-14 Tokyo Electron Ltd Heat treatment apparatus and heat treatment method
JP2010239142A (en) * 2010-05-31 2010-10-21 Tokyo Electron Ltd Heat treatment apparatus, and heat treatment method
JP2015084376A (en) * 2013-10-25 2015-04-30 光洋サーモシステム株式会社 Heat treatment apparatus
JP2017175142A (en) * 2017-04-28 2017-09-28 光洋サーモシステム株式会社 Heat treatment apparatus
CN108074845A (en) * 2016-11-18 2018-05-25 株式会社日立国际电气 The manufacturing method of substrate board treatment, reaction tube and semiconductor device
JP2018088520A (en) * 2016-11-18 2018-06-07 株式会社日立国際電気 Substrate processing device, reaction tube, and method for manufacturing semiconductor device
KR20190050650A (en) * 2017-11-03 2019-05-13 주식회사 원익아이피에스 Reactor of apparatus for processing substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413884B1 (en) 1997-06-05 2002-07-02 Nec Corporation Method of producing thin films using current of process gas and inert gas colliding with each other
JP2008186852A (en) * 2007-01-26 2008-08-14 Tokyo Electron Ltd Heat treatment apparatus and heat treatment method
JP2010239142A (en) * 2010-05-31 2010-10-21 Tokyo Electron Ltd Heat treatment apparatus, and heat treatment method
JP2015084376A (en) * 2013-10-25 2015-04-30 光洋サーモシステム株式会社 Heat treatment apparatus
CN108074845A (en) * 2016-11-18 2018-05-25 株式会社日立国际电气 The manufacturing method of substrate board treatment, reaction tube and semiconductor device
KR20180056388A (en) * 2016-11-18 2018-05-28 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus, reaction tube structure and method of manufacturing semiconductor device
JP2018088520A (en) * 2016-11-18 2018-06-07 株式会社日立国際電気 Substrate processing device, reaction tube, and method for manufacturing semiconductor device
US11359283B2 (en) 2016-11-18 2022-06-14 Kokusai Electric Corporation Reaction tube structure and substrate processing apparatus
JP2017175142A (en) * 2017-04-28 2017-09-28 光洋サーモシステム株式会社 Heat treatment apparatus
KR20190050650A (en) * 2017-11-03 2019-05-13 주식회사 원익아이피에스 Reactor of apparatus for processing substrate

Similar Documents

Publication Publication Date Title
JP3819660B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
KR100305619B1 (en) Method of producing thin films using current of process gas and inert gas colliding with each other and apparatus for producing thin films for practicing the same method
JP3184000B2 (en) Method and apparatus for forming thin film
JP2001274107A (en) Diffusion furnace
JPH08264521A (en) Reaction furnace for producing semiconductor
JPH06188238A (en) Heat treatment apparatus and method thereof
JPH021116A (en) Heat treatment apparatus
JP2007158358A (en) Substrate processing apparatus
JP2000311862A (en) Substrate treating system
JP2004006551A (en) Device and method for treating substrate
JPH09148259A (en) Lateral reactor
JPS62206826A (en) Thermal treatment equipment for semiconductor
JPH0589451U (en) Semiconductor manufacturing equipment
JPH11260744A (en) Heat treating furnace
JP4070832B2 (en) Semiconductor manufacturing equipment
JP3279466B2 (en) Semiconductor wafer processing apparatus and semiconductor device
JPH07249585A (en) Semiconductor manufacturing device and its cleaning method
JPH0653140A (en) Continuous atmospheric pressure cvd device
JPH10256183A (en) Manufacture of semiconductor device
JP3225872B2 (en) Silicon oxide film formation method
KR100244915B1 (en) Gas supply apparatus of CVD
JP3552037B2 (en) Method and apparatus for forming silicon oxide film
JPH08139035A (en) Cvd method and equipment
JPH07176492A (en) Cvd apparatus
JPH04298024A (en) Vertical type semiconductor diffusion furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307