JPS6326324A - Production of treated steel sheet - Google Patents

Production of treated steel sheet

Info

Publication number
JPS6326324A
JPS6326324A JP16805586A JP16805586A JPS6326324A JP S6326324 A JPS6326324 A JP S6326324A JP 16805586 A JP16805586 A JP 16805586A JP 16805586 A JP16805586 A JP 16805586A JP S6326324 A JPS6326324 A JP S6326324A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon
pressure
atmosphere
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16805586A
Other languages
Japanese (ja)
Other versions
JPH076024B2 (en
Inventor
Masahiro Abe
阿部 正広
Kazuhisa Okada
和久 岡田
Tsunehiro Yamaji
常弘 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16805586A priority Critical patent/JPH076024B2/en
Publication of JPS6326324A publication Critical patent/JPS6326324A/en
Publication of JPH076024B2 publication Critical patent/JPH076024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To suppress the growth of the crystal grains of the structure and to improve workability such as cutting by treating a steel sheet in a nonoxidative gaseous atmosphere of the pressure higher than the atm. pressure at the time of subjecting the steel sheet to vapor deposition of Si then to a diffusion treatment. CONSTITUTION:The steel sheet S is introduced into a heating furnace 1 where the steel sheet is subjected to the nonoxidative heating to a prescribed temp.; thereafter, the steel sheet is introduced into a CVD furnace 2. The Si is deposited by evaporation onto the surface of the steel sheet in said furnace at a prescribed temp. in the nonoxidative gaseous atmosphere contg. a prescribed ratio of SiCl4. The steel sheet S is then passed through an atmosphere sepn. chamber 5 and is introduced into a diffusion chamber 3 where the steel sheet S is soaked at the prescribed temp. in the nonoxidative gaseous atmosphere without contg. the SiCl4 to diffuse the Si deposited by evaporation on the surface of the steel sheet into the steel sheet S. The atmosphere control is so executed at the time of such diffusion treatment that the pressure of the nonoxidative gaseous atmosphere of the furnace 3 is kept always higher than the atm. pressure. The crystal grains of the structure is thereby easily suppressed to the smaller grain sizes.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、切断等の加工性に富んだ高ケイ素鋼板の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a high-silicon steel plate that is highly workable in cutting and the like.

〔従来技術とその問題点〕[Prior art and its problems]

変圧器や発電機等の回転機の鉄心として用いられている
電磁鉄板のほとんどは、高ケイ素鋼板からなっている。
Most electromagnetic iron plates used as cores of rotating machines such as transformers and generators are made of high-silicon steel plates.

この種の高ケイ素鋼板は、ケイ素含有量が増すにつれて
鉄損が低くな9、ケイ素含有量が6.5wt%付近では
、磁歪が0となり最大透磁率もピークになるなど、最も
優れた磁気特性を示すことが知られている。
This type of high-silicon steel sheet has the best magnetic properties, with iron loss decreasing as the silicon content increases9, and magnetostriction reaching 0 and maximum magnetic permeability reaching a peak when the silicon content is around 6.5 wt%. is known to show.

このような高ケイ素鋼板の製造方法の1つとして、滲珪
法が知られている。この方法は、普通鋼板または4wt
%以下のケイ素を含有する低ケイ素鋼板に対して、Si
 C1+を含有する無酸化ガス雰囲気中で、蒸着処理を
施して、鋼板の表面にケイ素を蒸着させ、次いで、5i
C14を含有しない無酸化ガス雰囲気中で、鋼板に対し
て拡散処理を施して、蒸着させたケイ素を鋼板中に拡散
させ、かくして、ケイ素を均質に含有させた高ケイ素鋼
板を得るものである。
As one of the methods for producing such high-silicon steel sheets, the silica process is known. This method uses ordinary steel plate or 4wt
% or less of silicon, Si
Silicon is vapor-deposited on the surface of the steel plate by vapor deposition in a non-oxidizing gas atmosphere containing C1+, and then 5i
In a non-oxidizing gas atmosphere that does not contain C14, the steel plate is subjected to a diffusion treatment to diffuse the vapor-deposited silicon into the steel plate, thus obtaining a high-silicon steel plate containing silicon homogeneously.

しかしながら、このような従来の滲珪法によって得られ
た高ケイ素鋼板は、ケイ素の蒸着処理に続く拡散処理時
に、組織の結晶粒が成長して粒度が大きくなっているた
めに、加工性が悪く粒界破断を生じ易いので、これに行
なう加工の程度が大きい場合には、加工が容易でないと
いう問題があつた。
However, high-silicon steel sheets obtained by the conventional silica method have poor workability because the crystal grains of the structure grow and the grain size becomes large during the diffusion treatment following the silicon vapor deposition treatment. Since grain boundary fractures are likely to occur, there is a problem that processing is not easy when the degree of processing is large.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上述の現状に鑑み、ケイ素を蒸着し
た鋼板の拡散処理時に、組織の結晶粒の成長を抑制して
結晶粒を小さい粒度にさせた、切断等の加工性に富んだ
高ケイ素鋼板を得ることができる、製造方法を提供する
ことにある。
In view of the above-mentioned current situation, the purpose of the present invention is to suppress the growth of crystal grains in the structure and reduce the grain size during the diffusion treatment of silicon-deposited steel sheets, and to provide a highly workable material with excellent workability such as cutting. An object of the present invention is to provide a manufacturing method capable of obtaining a silicon steel plate.

〔発明の概要〕[Summary of the invention]

この発明の方法は、鋼板に対して蒸着処理を施すことに
より、前記鋼板の表面にケイ素を蒸着させ、次いで、常
圧より高い圧力の無酸化ガス雰囲気中で前記鋼板に対し
て拡散処理を施すことにょ9、前記蒸着させたケイ素を
前記鋼板中に拡散させることに特徴を有するものである
In the method of the present invention, silicon is vapor-deposited on the surface of the steel plate by subjecting the steel plate to a vapor deposition process, and then a diffusion process is performed on the steel plate in a non-oxidizing gas atmosphere at a pressure higher than normal pressure. Particularly 9, the method is characterized in that the vapor-deposited silicon is diffused into the steel sheet.

〔発明の構成〕[Structure of the invention]

以下、この発明の製造方法について詳述する。 The manufacturing method of the present invention will be described in detail below.

この発明において用いられる鋼板の成分紹或は特に限定
されないが、優れた磁気特性を得るためには、以下に述
べる成分組成を有していることが望ましい。
Although the composition of the steel sheet used in this invention is not particularly limited, in order to obtain excellent magnetic properties, it is desirable that the steel sheet has the following composition.

(1)ケイ素含有量が3〜6.5wt%の高ケイ素鋼板
を製造する場合; 炭素:0.01wt%以下、ケイ素:4wt%以下、マ
ンガン:2wt%以下。不可避不純物はできるだけ少な
い方が望ましい。
(1) When manufacturing a high-silicon steel sheet with a silicon content of 3 to 6.5 wt%; carbon: 0.01 wt% or less, silicon: 4 wt% or less, manganese: 2 wt% or less. It is desirable to have as few unavoidable impurities as possible.

(2)センダスト合金高ケイ素鋼板を製造する場合:炭
素: 0.01wt%以下、ケイ素:4wt%以下、ア
ルミニウム:3〜8wt%、ニッケル:’4wt%以下
、マンガン:2wt%以下、クロムおよびチタン等の耐
食性を増す元素:5wt%以下。不可避不純物はできる
だけ少ない方が望ましい。
(2) When manufacturing Sendust alloy high silicon steel sheet: Carbon: 0.01 wt% or less, Silicon: 4 wt% or less, Aluminum: 3 to 8 wt%, Nickel: 4 wt% or less, Manganese: 2 wt% or less, chromium and titanium. Elements that increase corrosion resistance such as: 5 wt% or less. It is desirable to have as few unavoidable impurities as possible.

鋼板は、切板状鋼板でも帯板状鋼板(銅帯)でもよく、
また、釧片の熱間圧延−冷間圧延によって得られたもの
でも、溶鋼の直接鋳造・急冷凝固法によって得られたも
のでもよい。ケイ素の蒸着をCVD法により行なうとき
には、蒸着時に鋼板の板厚が減少するから、製品板厚に
対し減少板厚分を付加した板厚のものを用いる必要があ
る。
The steel plate may be a cut steel plate or a strip steel plate (copper strip),
Further, it may be obtained by hot rolling/cold rolling of a piece, or by direct casting/rapid solidification of molten steel. When silicon is vapor-deposited by the CVD method, the thickness of the steel plate decreases during vapor deposition, so it is necessary to use a steel plate with a thickness equal to the reduced thickness added to the product thickness.

この発明は、このような鋼板に対して、ケイ素を蒸着さ
せたのち拡散処理する隙に、常圧より高い圧力の無酸化
ガス雰囲気中で拡散処理を行ない、これによって鋼板中
にケイ素を拡散させると同時に組織の結晶粒の成長を抑
制して、結晶粒を小さい粒度にさせた高ケイ素鋼板を得
るものである。
In this invention, after silicon is vapor-deposited on such a steel sheet, a diffusion treatment is performed in a non-oxidizing gas atmosphere at a pressure higher than normal pressure, thereby diffusing silicon into the steel sheet. At the same time, the growth of crystal grains in the structure is suppressed to obtain a high-silicon steel sheet in which the crystal grains have a small grain size.

第1図は、この発明の製造方法の1実施態様を示す説明
図である。第1図において、1は加熱炉、2はCVD炉
、3は拡散炉、4は冷却帯、5および6はそれぞれ拡散
炉3の入側および出側の雰囲気分離室、7は連続的に搬
送される帯板状鋼板(銅帯)である。
FIG. 1 is an explanatory diagram showing one embodiment of the manufacturing method of the present invention. In Fig. 1, 1 is a heating furnace, 2 is a CVD furnace, 3 is a diffusion furnace, 4 is a cooling zone, 5 and 6 are atmosphere separation chambers on the entrance and exit sides of the diffusion furnace 3, respectively, and 7 is a continuous conveyance This is a strip-shaped steel plate (copper strip).

鋼板Sは、加熱炉1に導かれ、そこで1023〜120
0°C近辺の温度まで無酸化加熱されたのち、CVD炉
2に導かれ、そこでmo1分率で5iCj、を5〜35
%含んだ無酸化ガス雰囲気中で、1023〜1200℃
の温度でCVD法(化学的気相蒸着法)により、その表
面にケイ素の蒸着が行なわれる。
The steel plate S is guided to the heating furnace 1, where the steel plate S has a temperature of 1023 to 120
After being heated without oxidation to a temperature around 0°C, it is led to a CVD furnace 2, where it is heated to 5 to 35 molar fractions of 5iCj.
1023-1200℃ in a non-oxidizing gas atmosphere containing %
Silicon is deposited on the surface by CVD (chemical vapor deposition) at a temperature of .

次いで、鋼板Sは、雰囲気分離室5を通って拡散炉3に
導かれ、そこで5iCj?、を含まない無酸化ガス雰囲
気中で、1200〜1400℃の温度で均熱され、銅板
Sの表面に蒸着したケイ素を鋼板S中へ拡散する拡散処
理が行なわれる。
The steel plate S is then led through the atmosphere separation chamber 5 to the diffusion furnace 3 where 5iCj? The copper plate S is soaked at a temperature of 1200 to 1400° C. in a non-oxidizing gas atmosphere that does not contain , and a diffusion treatment is performed to diffuse silicon deposited on the surface of the copper plate S into the steel plate S.

ここで、拡散炉3は、無酸化ガス雰囲気の圧力が常圧よ
シ高くなるように、雰囲気制御が行なわれている。拡散
炉3の入側および出側の雰囲気分離室5および6は、拡
散炉3の雰囲気と外部の雰囲気とを分離するだめの手段
、例えばラビランスやシールロール等を備えている。拡
散炉3の雰囲気を特に高圧にする場合には、入側および
出側の雰囲気分離室5および6は多段に設けることがで
きる。拡散炉3の雰囲気ガスとしては、Ar 、 N2
 。
Here, the atmosphere of the diffusion furnace 3 is controlled so that the pressure of the non-oxidizing gas atmosphere is higher than normal pressure. The atmosphere separation chambers 5 and 6 on the inlet and outlet sides of the diffusion furnace 3 are equipped with means for separating the atmosphere of the diffusion furnace 3 from the outside atmosphere, such as a labyrinth or a seal roll. If the atmosphere in the diffusion furnace 3 is to be under particularly high pressure, the atmosphere separation chambers 5 and 6 on the inlet and outlet sides can be provided in multiple stages. The atmospheric gas in the diffusion furnace 3 includes Ar, N2
.

He等の不活性ガスや、H2、CH4等の還元性ガスが
用いられる。拡散処理時に、鋼板Sの表面に酸化膜を形
成させず、また不純物を取除くという観点からは、H2
の使用が有効である。
An inert gas such as He or a reducing gas such as H2 or CH4 is used. From the viewpoint of not forming an oxide film on the surface of the steel sheet S and removing impurities during the diffusion treatment, H2
is effective.

一般に、ケイ素を蒸着した鋼板は、ケイ素の拡散処理時
のガス雰囲気の条件の違いによって、拡散処理時に組織
の結晶粒の成長が著しく異なることが知られていたが、
ガス雰囲気の圧力による影響については明らかでなかっ
た。本発明者等の研究によれば、CVD法によりケイ素
を蒸着した鋼板に対して、Arを用いた無酸化ガス雰囲
気の圧力を変えて拡散処理を施した場合、結晶粒の平均
粒径は、常圧のとき0.4〜0.5m、1.5気圧のと
き0.3m7I1前後、2気圧以上のとき0,2 yn
sより小になることがわかった。これは、拡散処理時の
雰囲気が高圧になるにつれて、結晶粒の成長に必要な駆
動力たる、鋼板表面での界面エネルギーが増加すること
が原因であると考えられる。従って、ケイ素を蒸着した
鋼板Sに対する拡散処理時に、拡散炉3の無酸化ガス雰
囲気の圧力を常圧よシ高い適宜の圧力に制御することに
よって、組織の結晶粒を容易に小さい粒度に抑制するこ
とができる。
In general, it has been known that the growth of crystal grains in silicon-deposited steel sheets differs markedly during the diffusion process depending on the gas atmosphere conditions during the silicon diffusion process.
The influence of the pressure of the gas atmosphere was not clear. According to research conducted by the present inventors, when a steel plate on which silicon has been deposited by the CVD method is subjected to diffusion treatment by changing the pressure of a non-oxidizing gas atmosphere using Ar, the average grain size of the crystal grains is 0.4 to 0.5 m at normal pressure, 0.3 m7I1 at 1.5 atm, 0.2 yn at 2 atm or more
It turns out that it is smaller than s. This is thought to be due to the fact that as the atmosphere during the diffusion process becomes higher pressure, the interfacial energy on the surface of the steel sheet, which is the driving force required for grain growth, increases. Therefore, during the diffusion treatment of the silicon-deposited steel sheet S, by controlling the pressure of the non-oxidizing gas atmosphere in the diffusion furnace 3 to an appropriate pressure higher than normal pressure, the crystal grains in the structure can be easily suppressed to a small grain size. be able to.

ケイ素を蒸着した鋼板Sは、無酸化ガス雰囲気の圧力が
常圧より高い圧力に制御された拡散炉3での拡散処理に
よって、ケイ素の拡散と同時に組織の結晶粒の成長の抑
制が行なわれ、組織の結晶粒を小さな粒度にさせた高ケ
イ素鋼板となる。次いで、鋼板Sば、雰囲気分離室6を
通って冷却帯4に導かれ、そこで冷却されたのち、巻取
られる。
The silicon-deposited steel sheet S is subjected to a diffusion treatment in a diffusion furnace 3 in which the pressure of a non-oxidizing gas atmosphere is controlled to be higher than normal pressure, thereby simultaneously diffusing silicon and suppressing the growth of crystal grains in the structure. This results in a high-silicon steel sheet with a small crystal grain structure. Next, the steel sheet S is guided through the atmosphere separation chamber 6 to the cooling zone 4, where it is cooled and then wound up.

以上の実施態様では、帯板状の鋼板Sに対して、連続し
たCVD炉2および拡散炉3で蒸危処理および拡散処理
を連続的に行なつプこが、切板状の鋼板の場合には、1
つの炉の雰囲気等を切換えることによって、蒸着処理お
よび拡散処理を連続的に行なうこともできる。また、鋼
板に対するケイ素の蒸着もCVD法に限らず、I)V 
、D法(物理的気相蒸着法)等を用いることもできる。
In the embodiment described above, the vapor hazard treatment and the diffusion treatment are continuously performed on the strip-shaped steel plate S in the continuous CVD furnace 2 and the diffusion furnace 3, but in the case of the cut plate-shaped steel plate, is 1
By switching the atmosphere of the two furnaces, the vapor deposition process and the diffusion process can be performed continuously. In addition, silicon vapor deposition on steel sheets is not limited to the CVD method;
, D method (physical vapor deposition method), etc. can also be used.

〔実施例〕〔Example〕

小型のCVD炉−拡散炉を用い、0.3u厚の3wt%
ケイ素鋼板に対して、モル分率20%の5iC14を含
有するAr  SiC&混合ガスの無酸化ガス雰囲気中
で、CVD法によりケイ素の蒸着処理を行ない、次いで
、S IC1hを含まないArの無酸化ガス雰囲気の圧
力を、常圧および高圧側に変えた条件下で、1200°
C220分の拡散処′PIを行なって、高ケイ素鋼板を
製造した。そして、筒ケイ素鋼板の組織の平均結晶粒径
と拡散処理時の雰囲気の圧力との関係を調べた。その結
果全第2図に示す。寸/こ、高ケイ素鋼板から切り出し
だ試験片について3点曲げ試験を行ない、そのときの破
断に至る件での曲げ半径を測定して、粒界破断の起こり
すらさ1、即ち、粒界破断を起こさずに塑性加工できる
加工性の良好さを調べた。その結果を第3図に示す。
Using a small CVD furnace-diffusion furnace, 3wt% of 0.3u thickness
A silicon steel plate is subjected to a silicon vapor deposition process using a CVD method in an Ar SiC and mixed gas non-oxidizing gas atmosphere containing 5iC14 at a mole fraction of 20%, and then an Ar non-oxidizing gas containing no SIC1h is applied. 1200° under conditions where the atmospheric pressure was changed to normal pressure and high pressure side.
A high-silicon steel plate was manufactured by performing a diffusion treatment 'PI' for C220 minutes. Then, the relationship between the average grain size of the structure of the cylindrical silicon steel sheet and the pressure of the atmosphere during the diffusion treatment was investigated. The results are shown in Figure 2. A three-point bending test was performed on a test piece cut from a high-silicon steel plate, and the bending radius at which fracture occurred was measured to determine the likelihood of intergranular rupture (1), that is, intergranular rupture. We investigated the good workability of plastic working without causing any problems. The results are shown in FIG.

第2図に示されるように、従来法通り、拡散処理時の雰
囲気の圧力が常圧であるときには、鋼板組織の結晶が拡
散処理時に成長するので、平均結晶粒径は0.4〜o、
smの大きなものに々っている。
As shown in Fig. 2, as in the conventional method, when the pressure of the atmosphere during the diffusion treatment is normal pressure, the crystals of the steel sheet structure grow during the diffusion treatment, so the average grain size is 0.4~0.
It is suitable for large size SM.

これに対し、この発明の方法通シ、拡散処理時の雰囲気
の圧力が常圧より高くなると、それにつれて鋼板表面で
の界面エネルギーが増加するために、鋼板組織の結晶が
拡散処理時に成長を抑制され、平均結晶粒径は次第に小
さくなっている。そして、雰囲気の圧力が2気圧以上で
は、平均結晶粒径は0.2u弱程度と非常に小さくなる
On the other hand, according to the method of the present invention, when the pressure of the atmosphere during the diffusion treatment becomes higher than normal pressure, the interfacial energy on the surface of the steel sheet increases accordingly, which suppresses the growth of crystals in the steel sheet structure during the diffusion treatment. The average grain size is gradually decreasing. When the atmospheric pressure is 2 atmospheres or more, the average crystal grain size becomes very small, about 0.2 μ or less.

第3図に示されるように、この発明の方法通り、拡散処
理時の努囲気の圧力が常圧より高いときには、平均結晶
粒径が小さいために、3点曲げ試験での曲げ半径は小さ
く、加工性が良好になっている。そして、雰囲気の圧力
が2気圧以上では、曲げ半径が10u弱程度と非常に小
さく、加工性が著しく良好になる。この曲げ半径の小さ
い高ケイ素鋼板では、小型のトロイダルコイルの鉄心の
製造が可能である。
As shown in FIG. 3, according to the method of the present invention, when the pressure of the surrounding atmosphere during the diffusion treatment is higher than normal pressure, the bending radius in the three-point bending test is small because the average crystal grain size is small. Good workability. When the pressure of the atmosphere is 2 atmospheres or more, the bending radius is very small, about 10 microns, and the workability is extremely good. This high-silicon steel plate with a small bending radius makes it possible to manufacture a small toroidal coil core.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、組織の結晶粒を容易に小さい粒度に
させた、切断等の加工性に富んだ高ケイ素鋼板を製造す
ることができる。
According to the present invention, it is possible to produce a high-silicon steel sheet that has easy crystal grains in its structure and is highly workable in cutting and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の製造方法の1実施態様を示す説明
図、第2図は、高ケイ素鋼板の組織の平均結晶粒径と拡
散処理時のY囲気の圧力との関係を示すグラフ、第3図
は、高ケイ素鋼板の組織の平均結晶粒径と破断に至る壕
での曲げ半径との関係を示すグラフである。図面におい
て、1・加熱炉、     2− CV D炉、3 拡
散炉、      4 ・冷却帯、5.6・雰囲気分離
室、  S・鋼板。
FIG. 1 is an explanatory diagram showing one embodiment of the manufacturing method of the present invention, and FIG. 2 is a graph showing the relationship between the average grain size of the structure of a high-silicon steel sheet and the pressure of the Y surrounding atmosphere during diffusion treatment. FIG. 3 is a graph showing the relationship between the average grain size of the structure of a high-silicon steel plate and the bending radius at the groove that leads to fracture. In the drawings, 1. Heating furnace, 2. CVD furnace, 3. Diffusion furnace, 4. Cooling zone, 5.6. Atmosphere separation chamber, S. Steel plate.

Claims (1)

【特許請求の範囲】[Claims] 鋼板の表面にケイ素を蒸着させ、次いで、常圧より高い
圧力の無酸化雰囲気中で、前記蒸着させたケイ素を前記
鋼板中に拡散させることを特徴とする、処理鋼板の製造
方法。
A method for producing a treated steel sheet, which comprises depositing silicon on the surface of a steel sheet, and then diffusing the deposited silicon into the steel sheet in a non-oxidizing atmosphere at a pressure higher than normal pressure.
JP16805586A 1986-07-18 1986-07-18 Method of manufacturing treated steel sheet Expired - Fee Related JPH076024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16805586A JPH076024B2 (en) 1986-07-18 1986-07-18 Method of manufacturing treated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16805586A JPH076024B2 (en) 1986-07-18 1986-07-18 Method of manufacturing treated steel sheet

Publications (2)

Publication Number Publication Date
JPS6326324A true JPS6326324A (en) 1988-02-03
JPH076024B2 JPH076024B2 (en) 1995-01-25

Family

ID=15860993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16805586A Expired - Fee Related JPH076024B2 (en) 1986-07-18 1986-07-18 Method of manufacturing treated steel sheet

Country Status (1)

Country Link
JP (1) JPH076024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012077A (en) * 2006-07-06 2008-01-24 Kojima Kiyoko Toe pad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012077A (en) * 2006-07-06 2008-01-24 Kojima Kiyoko Toe pad

Also Published As

Publication number Publication date
JPH076024B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US5089061A (en) Method for producing high silicon steel strip in a continuously treating line
CN108374130B (en) Non-oriented silicon steel and method for producing non-oriented silicon steel by thin slab continuous casting and rolling process
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
CZ231199A3 (en) Process for producing strips of silicon steel
JPS6326324A (en) Production of treated steel sheet
US4115160A (en) Electromagnetic silicon steel from thin castings
JP2004506093A (en) Method of adjusting inhibitor dispersion in production of grain-oriented electrical steel strip
JPS6326323A (en) Production of treated steel sheet
CN1033822C (en) Method of making regular grain oriented silicon steel without hot band anneal.
JP2528748B2 (en) Method of manufacturing silicon steel sheet by continuous line
JPH0565536A (en) Manufacture of high silicon steel sheet having high permeability
JPH0257635A (en) Manufacture of extra thin foil of grain-oriented silicon steel with low core loss
JP2701443B2 (en) High silicon steel sheet having excellent iron loss characteristics and method for producing the same
EP4265349A1 (en) Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing electromagnetic steel sheet
JPS6148761B2 (en)
JPH0549744B2 (en)
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JPS62222022A (en) Manufacture of nonoriented electrical sheet having good brittleness resistance and magnetic characteristic after stress relief annealing
JPH0465901B2 (en)
JPH0368716A (en) Production of grain-oriented silicon steel strip reduced in iron loss
JPH03100123A (en) Production of grain-oriented silicon sheet reduced in iron loss
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS62227076A (en) Manufacture of high silicon steel material
JPS6347333A (en) Manufacture of nonoriented electrical steel sheet having remarkably small iron loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees