JPS63259459A - Limiting current type gas sensor - Google Patents

Limiting current type gas sensor

Info

Publication number
JPS63259459A
JPS63259459A JP62093163A JP9316387A JPS63259459A JP S63259459 A JPS63259459 A JP S63259459A JP 62093163 A JP62093163 A JP 62093163A JP 9316387 A JP9316387 A JP 9316387A JP S63259459 A JPS63259459 A JP S63259459A
Authority
JP
Japan
Prior art keywords
substrate
hole
electrode
limiting current
current type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62093163A
Other languages
Japanese (ja)
Inventor
Osamu Takigawa
修 滝川
Masaki Katsura
桂 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62093163A priority Critical patent/JPS63259459A/en
Publication of JPS63259459A publication Critical patent/JPS63259459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable the use and miniaturization of a thin film solid electrolyte, by forming a thin film at one end of an Si substrate provided with a hole by sputtering or the like to provide a porous body covering one of a pair of electrodes provided on both sides thereof. CONSTITUTION:First, a first platinum electrode film 1-2 is formed on an Si substrate 1-1 in a specified shape and a gas ion transmitting solid electrolytic film 1-3 is deposited thereon. In addition, a second platinum electrode 1-4 is formed on the top of the film. Then, the Si substrate 1-1 at the bottom of the electrode film 1-2 is etched away to form a hole 1-6 and, subsequently, a porous body 1-5 is formed to made an element. A part of the second electrode 1-4 is made of Au without catalytic activity and is led outside the porous body 1-5. Thus, a reliable thin film can be prepared on a hole by utilizing the nature of strict etchability silicon has.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は気体2イオンとして透過する固体電解質膜上
を用い、雰囲気中の・時定ガスの検出、測定e行う限界
電流式カスセンサに関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) This invention uses a solid electrolyte membrane that transmits gas as ions to detect and measure gases in the atmosphere at a limited current. Regarding the type scum sensor.

(従来技術) 固体′鑞解質を用いたガスセンサは、安定比ジルコニア
セラミックスを隔膜とした濃淡′4池型酸累センサ、同
じく安定化ジルコニアセラミックスを#1素ポンプとし
て作動させる限界成流式愼素センサが知られている。
(Prior art) Gas sensors using solid solutes include a concentration-concentration four-cell type acid accumulation sensor with a stabilized ratio zirconia ceramic as a diaphragm, and a limit flow type sensor that also operates a stabilized zirconia ceramic as the #1 elementary pump. Basic sensors are known.

前者は清度も高く、計則器として古(から用いられてい
るが、隔膜の片側に基準酸素分圧をもつ気体ないし固体
2充填する必要がある。
The former has high purity and has been used as a measuring device since ancient times, but it requires filling two gases or solids with a standard oxygen partial pressure on one side of the diaphragm.

基準酸素分圧をもつ気体を基準極とする方式ではボンベ
や大気をセンサ部まで導入する必要があり、煙道内の0
.ill定等には向(ものの小型fヒが不可能であり家
庭内層室内の酸素測定用センサ等には不向きCある。ま
た基準酸素分圧をもつ固体を壜電極として用いる方法は
基準直の寿命に間消を生ずる。これらの問題はa淡’を
電型セン廿には常に存在する。
In the method that uses a gas with a reference oxygen partial pressure as the reference electrode, it is necessary to introduce the cylinder or the atmosphere to the sensor, and the
.. However, it is not suitable for use as a sensor for measuring oxygen in indoor rooms at home.Also, the method of using a solid body with a standard oxygen partial pressure as a bottle electrode has a short lifespan of the standard voltage. These problems always exist in the electric type sensor.

限界ai式ガスセンサはこれらの欠点を補うもので、−
例として従来・翔られていた限界電流式酸素センサの(
「青を@8図に示す。
The limit AI type gas sensor compensates for these shortcomings, and -
For example, the limiting current type oxygen sensor (
“Blue is shown in Figure @8.

第8図に示したセンサに於て2−1は安定比ジルコニア
セラミックス14g、2−2.2−3は′電極、2−4
は空洞、2−5と構成する空洞外囲器で一部に外気との
連通孔2−6をもつ、2−4は凹型に形成され、2−6
を設けられた後安定比ジルコニアにガラス接N剤等2−
72用いて接着される。2−8.2−9はリード線であ
る。
In the sensor shown in Figure 8, 2-1 is a stable ratio zirconia ceramic of 14g, 2-2.2-3 is a 'electrode, and 2-4
2-5 is a hollow envelope having a hole 2-6 communicating with the outside air, 2-4 is formed in a concave shape, and 2-6
After providing the stable ratio zirconia with a glass N-contact agent, etc. 2-
72 for bonding. 2-8.2-9 are lead wires.

この素子を500℃以上とし、2−2と2−3間に電E
Ee印加すると酸素イオンによるイオン′屯流が2−1
を1して流れる。電圧をさらに増加させると一定の電圧
以上では電流の増υ口を示さなくなる。それは2−6を
通じて外から、もしくは外気へ放出される0、が制限を
うけるためで、この一定電流値を限界電流と呼ぶ。限界
電流工、Lは素子温度下、外気中の酸素分圧PO8,フ
ァラデ一定数F、気体定数を几、2−6の断面積2S、
長さをLとすると をもりて茂わすことができる。従って2−6の形状、す
なわちS/LがIL2規定する必決がある。
This element is heated to 500℃ or higher, and electric current is applied between 2-2 and 2-3.
When Ee is applied, the ion flow due to oxygen ions is 2-1
1 and flows. When the voltage is further increased, the current no longer increases above a certain voltage. This is because the zero discharged from the outside or to the outside air through 2-6 is limited, and this constant current value is called the limiting current. The limiting current, L is the element temperature, the oxygen partial pressure in the outside air PO8, the Faraday constant F, the gas constant 几, the cross-sectional area of 2-6 2S,
If the length is L, it can grow thickly. Therefore, it is inevitable that the shape of 2-6, that is, S/L, defines IL2.

すなわち2−6の管路インビーダンが十分高く。In other words, the pipe inductance of 2-6 is sufficiently high.

2−1を酸素イオンとして通過しつる酸素流に対して律
速となる必要がある。
2-1 needs to be rate-determining for the oxygen flow passing through as oxygen ions.

従来梨の限界電流型センサでは2−192−4を通常の
セラミックスの製法によりていた。このため2−1の厚
さは最も薄いものでも20μm程度で通常30〜50μ
mとなる。このため酸素イオンの通過抵抗も大となるた
め2−6の8 ’/ Lを小さくする必要がある。
In the conventional NEAR limiting current type sensor, 2-192-4 was manufactured using a normal ceramic manufacturing method. Therefore, the thickness of 2-1 is about 20 μm at its thinnest, and it is usually 30 to 50 μm.
m. For this reason, the passage resistance of oxygen ions also increases, so it is necessary to reduce 8'/L in 2-6.

2−4も通常のセラミックの方法で作られていたがa、
a孔2−6を設けるためレーザυロエ1機械卵重、細碌
の埋込み法がとられていた。レーザ0ロ工は焼成陵のA
jβh等から成る2−4に赤外レーザビーム2照射し容
融蒸させる方式である。この方法は60〜100μm程
度の直匝ともつ連通孔が得られるが、レーザビームの入
射側の穴径が太き(反対側の穴径が小さくなるため安定
して一定S/Lをもつ連通孔をもつ穴が得られない。ま
たA I!、0゜5)44 Q物が連通孔内面に付着す
るため一定インピーダンス2もつif路を得られない欠
点をもつ。
2-4 was also made using the normal ceramic method, but a.
In order to provide the a-holes 2-6, a laser υ Loe 1 mechanical embedding method was used. Laser 0-ro machining is A of firing machining.
In this method, 2-4 consisting of jβh, etc. is irradiated with two infrared laser beams and vaporized. With this method, a communicating hole with a straight diameter of about 60 to 100 μm can be obtained, but the hole diameter on the laser beam incident side is large (the hole diameter on the opposite side is small, so a communicating hole with a stable and constant S/L can be obtained). A hole with a hole cannot be obtained.Also, it has the disadvantage that an if path with a constant impedance of 2 cannot be obtained because A I!, 0°5) 44 Q substances adhere to the inner surface of the communicating hole.

その上熱衝撃で2−4の基材に亀裂を生ずる難点をもつ
Moreover, it has the disadvantage that thermal shock causes cracks in the base material of 2-4.

機械卵重は焼成前に2−4に対して?/miドリルで穴
あけ卵重を施す。ドリルはせいぜい100μm匝が使用
可能であるが長い穴があけられる。しかしながら焼成に
よる変形があるため再現性に乏しい。
Is the machine egg weight 2-4 before baking? Drill a hole with /mi drill and apply weight. A drill with a diameter of at most 100 μm can be used, but long holes can be drilled. However, reproducibility is poor due to deformation caused by firing.

細線を用いる方法は2−4の成形時に金1等の細線を哩
込み、ひきぬいた後焼成する。この方法では細線のわず
かな曲がり等により引き抜き時に2−4にクラックが入
りたり、穴形状の再現性が悪い。その上焼成により変形
をうけるのは機成加工と同様である。
In the method using a thin wire, a thin wire of gold 1 or the like is inserted during the molding step 2-4, drawn out, and then fired. In this method, cracks may appear in 2-4 during drawing due to slight bends in the thin wire, and the reproducibility of the hole shape is poor. Moreover, it undergoes deformation due to firing, similar to mechanical processing.

またこれらのようにして出来た2−4と固体電解[2気
密に封するためガラスj妾着剤2−7を用いる。すなわ
ち、2−1もしくは2−4にガラス接着剤を印刷し1両
者を鷹ねて熱処理を行い、ガラスを溶融させて接着する
。この場会、接着剤2−7が流れ、内部電極2−3に浸
透すると電極としての性能を損う。また内部1偽の外部
へのひき出し部2−10は段差があるた1/)気密封止
が困難である。また、amができても2−10部分が′
1気的に切断される事が多い。
In addition, a glass adhesive 2-7 is used to seal the solid electrolyte 2-4 and the solid electrolyte 2-4 airtightly. That is, a glass adhesive is printed on 2-1 or 2-4, and both are heated and heat treated to melt the glass and bond them together. At this time, the adhesive 2-7 flows and penetrates into the internal electrode 2-3, impairing its performance as an electrode. Moreover, since the inner part 1 and the drawer part 2-10 extending to the outside have a step, it is difficult to airtightly seal the part 2-10. Also, even if am is formed, the 2-10 part is '
It is often cut off in one go.

これら問屋点を解決するセンサとして、多孔質基板2用
い愼状の固体′嶋解質、及び多孔質なガス拡散制限体か
らなるセンサがある。この例を第9図に示す。3−1は
多孔質体からなる基板であり。
As a sensor that solves these problems, there is a sensor consisting of a porous substrate 2, a shell-like solid solution, and a porous gas diffusion restrictor. An example of this is shown in FIG. 3-1 is a substrate made of a porous material.

その上VC,第1のglL極3−2.m体11C解質膜
3−3、第2の′11!極3−4.ガス拡散制限体膜3
−5が形成されている。かかるセンサに8いては多孔質
導板3−1が多孔質膜の高いものが必要である。
Additionally VC, first glL pole 3-2. m-body 11C delytic membrane 3-3, second '11! Pole 3-4. Gas diffusion restrictor membrane 3
-5 is formed. In such a sensor, the porous conductive plate 3-1 needs to be a highly porous membrane.

従って1iliIlK、(支)本電解質を面方向に3互
い連絡さぜることが困帷であった。これを防ぐためには
〜20μmと厚くする必要があり、イオン透過抵抗が大
きくなるという欠点?有し℃いたライオン透過低流と下
げるには面A責を大きくすることが必要で小型比が困難
であった。
Therefore, it was difficult to mix the three main electrolytes in the plane direction. In order to prevent this, it is necessary to increase the thickness to ~20 μm, which is a disadvantage of increasing ion permeation resistance. In order to lower the lion permeation flow, which had a low flow rate, it was necessary to increase the area A, making it difficult to make a small size ratio.

また石英ガラス等の基板上に薄膜2形成するセンサがあ
るが、ガラスのエツチングが速(、形状?正71億に硯
定することが難かしく、また、署1−ドとり出しが難か
し、C+)つた。
In addition, there are sensors that form a thin film 2 on a substrate such as quartz glass, but the etching of the glass is fast (it is difficult to precisely determine the shape to the exact 7.1 billion yen, and it is difficult to take out the signatures). , C+) ivy.

(光切が解決しようとする間、辿点) 本店明は従来素子の構成を変更する事により上述した問
題点を解決し、薄膜面C1叫實の使用を可能とし、イオ
ン透過抵抗を下げ、小型比を可能にする限界電流型ガス
センサと得る事にある。
(While Mitsukiri is trying to solve the problem, the problem remains.) Akira Honten solved the above-mentioned problems by changing the configuration of the conventional element, making it possible to use the thin film surface C1, lowering the ion permeation resistance, The objective is to obtain a limiting current type gas sensor that enables compact size.

〔発明の構成〕[Structure of the invention]

(問題点を′f4決するための手段) 本発明では穴?有する8il板を使用し、その一端にス
パッタリング法等による薄膜を作製し。
(Means for resolving problems) Is there a hole in the present invention? A thin film was formed on one end of the 8il plate by sputtering or the like.

その両面に一対のt<it設け、そのうちの一つの電極
を覆うように多孔質膜からなるガス透過制限体?設けた
構造とし、従来素子のもつ欠点を除去し、小型比を可能
にする。尚、穴を有さないSt苓根上に薄膜を作製した
侵その反対面より所定のサイズにエツチングすることに
より、穴上に薄膜が形成できる。
A gas permeation restrictor consisting of a pair of t<it provided on both sides and a porous membrane covering one of the electrodes? This structure eliminates the drawbacks of conventional devices and enables miniaturization. Incidentally, a thin film can be formed on the hole by etching it to a predetermined size from the opposite side of the infiltration surface on which the thin film is formed on the St. ligament root, which does not have a hole.

(作用) 固体を解實膜を従来の塙結体力)らスパッタ等によるr
vi課とし、lii板上に形成する事によりシリコンの
もつ厳密にエツチングできる性質を利用し、信頼性ある
iil!膜と穴上に作成できる。また従来のl/10程
度の膜厚の薄膜の採用により、膜の′電気抵Kを下げる
事ができる。薄膜の採用により薄膜面積を従来の1/3
〜l/10とする事ができ、素子を1/3以下にする事
ができる。゛また。多孔質制限体を用いるので封止時の
問題を解決できる。
(Function) The solid is decomposed and the film is removed by sputtering, etc.
VI section, and by forming it on a LII board, we take advantage of the properties of silicon that can be precisely etched, resulting in reliable IIL! Can be created on membranes and holes. Furthermore, by employing a thin film with a thickness of about 1/10 of the conventional thickness, the electrical resistance K of the film can be lowered. By adopting a thin film, the thin film area is reduced to 1/3 of the conventional one.
~1/10, and the number of elements can be reduced to 1/3 or less.゛Again. Since a porous restrictor is used, problems during sealing can be solved.

(実砲例) 本発明による!1図のセンサを得る工程の同を第2図に
よって示す。まず厚さQ、2mmの8i+’7エハー(
1−1)に所定の形状に第1の白金電極膜(1−2)を
形成する。さらに固体電解質膜(1−3))2μm程度
堆櫨する。そして第2の白金$極(1−4)を形成する
(第2図(a))。第2の電極の一部は触媒活性のない
Auで作製され、多孔質体の外部に引出されている。次
に薄膜下部のSiをエツチングにより除去穴1−6S−
形成する(第2図(b))。次に多孔質体(1−5)と
形成し素子とした(第2図(C))。口金′畦極はDC
スパッタリングにより形成した。固体4解實は、 8m
o/e96 Y、O,p添り口したz r o、セラミ
ック2ターゲツトとし、1−LFスパッタリングにより
形成した。
(Actual gun example) Based on the present invention! The same process for obtaining the sensor shown in FIG. 1 is shown in FIG. First, the thickness Q is 2mm 8i+'7 Ehar (
A first platinum electrode film (1-2) is formed in a predetermined shape on 1-1). Furthermore, the solid electrolyte membrane (1-3) is deposited to a thickness of about 2 μm. Then, a second platinum $ electrode (1-4) is formed (FIG. 2(a)). A part of the second electrode is made of Au with no catalytic activity and is drawn out to the outside of the porous body. Next, remove the Si at the bottom of the thin film by etching the hole 1-6S-.
(Fig. 2(b)). Next, a porous body (1-5) was formed to form an element (FIG. 2(C)). The base ridge is DC
It was formed by sputtering. Solid 4 solution is 8m
It was formed by 1-LF sputtering using 2 targets of o/e96 Y, O, and p spliced ZRO and ceramic.

ガス、fl過制限体である多孔質体(1−5)は。The porous body (1-5) is a gas, fl overlimiting body.

粒匝lμ程度の安定比ジルコニア粒子と無機バインダ2
スラリー状にしたものを塗付、乾燥、熱処理して形成し
た。厚さは約10μmであった。多孔質体形成麦ダイヤ
モンドカッターで基板を切断分離し、センサ素子とした
。π1図 得られた素子は3.5mmX3.5mm、厚
さ0:25mmであった。Si穴は直径2.5mmφで
あった。この素子を約330℃の電気炉で加熱し、第1
の電極1−2を正に第2の電極1−4を負に1.3ボル
トを印加し、炉中の酸素雰囲気を変化させたところ、第
3図の如き特性が得られた。酸素a度O〜30俤でIL
はほぼ酸素a度に比例する事が判明した。
Stable ratio of zirconia particles and inorganic binder 2 with a particle diameter of about lμ
It was formed by applying a slurry, drying it, and heat-treating it. The thickness was approximately 10 μm. The substrate was cut and separated using a porous body forming diamond cutter to obtain sensor elements. π1 Diagram The obtained element had dimensions of 3.5 mm x 3.5 mm and a thickness of 0:25 mm. The Si hole had a diameter of 2.5 mmφ. This element is heated in an electric furnace at about 330°C, and the first
When the oxygen atmosphere in the furnace was changed by applying 1.3 volts to the positive electrode 1-2 and the negative voltage to the second electrode 1-4, the characteristics shown in FIG. 3 were obtained. IL with oxygen a degree O ~ 30 yen
was found to be approximately proportional to oxygen a degree.

他の実施例として、第1の′yt極2穴形成麦、固体電
解質と反対面の面から形成した。第4図にその工程2示
した゛。穴形成時のエツチングによる第1の一1tff
iの労化を防ぐことができる。
As another example, a first 'yt electrode with two holes was formed from the side opposite to the solid electrolyte. Figure 4 shows step 2. The first one 11tff by etching during hole formation
It is possible to prevent i from becoming labor intensive.

さらに、池の実施例として、前述した実施列とほぼ同様
な工程をとり、多孔質体1−52穴内部に作成し、素子
を形成した。#c5図に素子構造を示す。この場合スラ
リーを例えば注射器に7より所足直供給することで、多
孔質体のfIr、成が停易となった。尚電圧印加方向は
−g2図に示した夷m例と反対である。
Furthermore, as an example of a pond, a process similar to that of the above-mentioned example was taken, and an element was formed inside the porous body 1-52 hole. Figure #c5 shows the element structure. In this case, by directly supplying the slurry into a syringe, for example, the formation of the porous body was facilitated. Note that the direction of voltage application is opposite to the example shown in Figure -g2.

さらに、他の実施例として、前述した各実施例に3いて
、多孔質体’2.有機金礪(金属アルコ中シト)を塗付
、熱処理する事で形成した。すなわチ、エトキシ・ジル
コニウムとエトキシカルシウム2所定1.有機溶剤に溶
かしたものをスピナーで塗付、500℃で熱処理し厚さ
2000Aの多孔質体を形成した。この素子にBいても
実t!a列と同様的30%までほぼリニヤ−な1. L
が得られた。有機金属の金部をAjtGalSIIZr
+tSbtSntTalTioZr*V*あるいは24
以上の有機金#4を混合したものでも同様であった。
Furthermore, as another example, in each of the above-mentioned examples, porous body '2. It was formed by applying organic gold (metallic alcohol) and heat-treating it. In other words, ethoxy zirconium and ethoxy calcium 2 prescribed 1. A solution dissolved in an organic solvent was applied using a spinner and heat treated at 500°C to form a porous body with a thickness of 2000A. Even if there is B in this element, it is true! 1. Almost linear up to 30% similar to column a. L
was gotten. Organometallic gold part AjtGalSIIZr
+tSbtSntTalTioZr*V* or 24
The same result was obtained when the above organic gold #4 was mixed.

この甥佇、膜厚2均一にする事が可能となり。With this method, it is possible to make the film thickness 2 uniform.

菓子間のバラツギが少なくできる。Variations between sweets can be reduced.

さらに、池の実施例として、実施列に2いて。Furthermore, as an example of pond, there are 2 in the implementation column.

多孔質体を物理蒸看法により作成した。すなわち8 m
olec4 Y2O2入りzro、iターゲットとしR
Fスパッタリングにより膜厚1000A作成した。この
素子に2いてもlLは約30憾までほぼIJ ニア−で
あった。また、 Aj!0.2スパツタリングした場合
、あるいは電子銃蒸着したものでもほぼリニアーであっ
た。この素子では多孔質体形lff1K熱処理が必要で
ないので工程が簡便になる。
A porous body was created by physical vaporization. i.e. 8 m
olec4 Y2O2 containing zro, i target R
A film with a thickness of 1000A was created by F sputtering. Even with this element, 1L was approximately near IJ up to about 30 liters. Also, Aj! Even when 0.2 sputtering or electron gun evaporation was performed, it was almost linear. Since this element does not require a porous body lff1K heat treatment, the process is simplified.

また、前述した各実施例に2いて、穴を形成した誂、同
様なエツチング法により、穴と連通する凹部1−72形
成した。この素子列を第6図に示す。この場仕、凹部を
通して透過してきた酸素を素子外に排出あるいは多孔質
体へ供給できるので。
Further, in each of the above-mentioned embodiments, a recess 1-72 communicating with the hole was formed by the same etching method as the hole in which the hole was formed. This element array is shown in FIG. In this case, the oxygen that has permeated through the recesses can be discharged to the outside of the element or supplied to the porous body.

別の例えばヒーター付基板への接着を容易にする事がで
き素子加熱が@頃となる。
For example, it can be easily bonded to a substrate with a heater, and the element can be heated at around @.

さらに、前述した各実施例に3いて、Si基板にBある
いはP等をドープし4電性としたものを用いた。この4
曾ボ1の電極と、St丞板は庫気的に接続するので、裾
板から一方のt ttのリードeとり出すことができ、
索子構造が簡便になる。
Furthermore, in each of the above embodiments, a Si substrate doped with B, P, etc. to make it tetraelectric was used. This 4
Since the electrode of the bottom 1 and the bottom plate are connected in a hygroscopic manner, one of the leads of t tt can be taken out from the bottom plate.
The cord structure becomes simpler.

さらに、前述した各実施例にBいて少なくともt@の一
方を相対する尺より小さい面積とした。
Furthermore, in each of the above-mentioned embodiments, at least one side of t@ was made smaller in area than the opposing scale.

この場合、rR素透過析出による3i基板、′4填部界
面での労化を防ぐことができる。
In this case, it is possible to prevent strain at the interface between the 3i substrate and the '4 filling part due to rR elementary transmission precipitation.

また、さらに、前述した各実施例て2いてSi基板にあ
らかじめszo、t−5riを形成したものを用いた。
Further, in each of the above-mentioned Examples 2, a Si substrate on which szo and t-5ri were formed in advance was used.

第7図にはこの実施例の一部を示した。FIG. 7 shows a part of this embodiment.

gXlの電極からのリードはその一部を引き出しても良
いし、(第7図(a) ) 、一部sho、と除去し。
A part of the lead from the gXl electrode may be drawn out (FIG. 7(a)), or a part may be removed.

導電性礒板と接続されていることもできる(第7図1b
) 、 (C) )。′尊重性基板を用い、後から第1
の電極を形成する場合にはそのまま屡続できる。こうす
る事により、固体電解質の宮着性を上昇する事ができた
。またStO,が電気絶縁性であるのでヒータの僅出し
た基板に素子を接着して用いることも可能となる。
It can also be connected to a conductive plate (Fig. 7 1b).
), (C)). 'Using a respectful board, the first
When forming an electrode, the process can be continued as is. By doing this, it was possible to improve the adhesion properties of the solid electrolyte. Furthermore, since StO is electrically insulating, it is also possible to use the element by adhering it to the substrate where the heater is slightly exposed.

さらに、前述した%実施列に2いて、多孔質体に防ぎガ
スを処理できる機能を有する物質2用いた。すなわち、
ここでばNtop用いた。この場合、ガス中にCOが冴
まれるような場合にはNiOがCOを識化し、不斉電位
宅生による。工りの誤動作を防ぐことができた。他の耐
熱性酸化物も同様な模能を・汀する。また、貴金鎮Pt
、Pd、 Ir等P微敏言む4合も防害ガスを処理でき
る。
Furthermore, substance 2 was used which was in the above-mentioned % implementation column and had the function of preventing gas from forming into a porous body. That is,
Here, Ntop was used. In this case, when CO is present in the gas, NiO recognizes CO and generates an asymmetric potential. We were able to prevent machining malfunctions. Other refractory oxides exhibit similar behavior. Also, Kijinjin Pt.
, Pd, Ir, etc. can also be used to treat harmful gases.

さらに、前述した各実施例ではZ r O,−Y、 O
,系を用いたが、zro、−CaO系、zro、−MI
iO系。
Furthermore, in each of the above-mentioned examples, Z r O, -Y, O
, system was used, but zro, -CaO system, zro, -MI
iO system.

ZrO,−M、O,(Mは希土ランタナイド) 、B 
’!O1を主成分とする系、CeO,を主成分とする系
が酸素センサとして用いつる。またLaF、系を用いれ
ば全・く同様にF、ガスセンサとして* S r −C
e −Y−0系や、5r−ce−yb−o系ではH,、
H,0として作動する。すなわち用いる固体電解質内を
透過するイオンのガスセンサとなる。
ZrO, -M, O, (M is rare earth lanthanide), B
'! A system mainly composed of O1 and a system mainly composed of CeO are used as oxygen sensors. Also, if a LaF system is used, it can be used in the same way as an F gas sensor.* S r -C
In the e-Y-0 system and the 5r-ce-yb-o system, H,,
It operates as H,0. In other words, it becomes a gas sensor for ions passing through the solid electrolyte used.

さらに、他の実施例として、StO,を形成したSi基
板?用い、ヒータを素子に形成した。その構造を第7図
に示す。この場会、別な基板を必要とぜず、71D熱が
容易となる。
Furthermore, as another example, a Si substrate formed with StO? A heater was formed in the element using the following method. Its structure is shown in FIG. In this case, 71D heating is easy without the need for a separate substrate.

〔発明の効果〕〔Effect of the invention〕

本発明の構成をとる事により、薄膜の固体1解質を使用
することができ、そのt気抵抗を減少させ、その結果従
来の1/2〜1/3なる小型のセンサ素子が得られる。
By adopting the configuration of the present invention, it is possible to use a thin film of solid solute, and its tresistance is reduced, resulting in a small sensor element that is 1/2 to 1/3 that of the conventional sensor element.

図、43図は本発明素子の酸1g#度と1流の関係卵 を示す緑図、篤8,9図は従来製素子の断面図である。Figure 43 shows the relationship between 1 g of acid and 1st flow of the element of the present invention. The green figure and Atsushi figures 8 and 9 are cross-sectional views of conventional elements.

1−1・・・Sik板、1−2・・・第1の電極、1−
3・・・固体電解質膜、1−4・・・第2の電極、1−
5・・・多孔質体、1−6・・・穴、1−7・・・連通
凹部、1−8・・・StO,膜。
1-1... Sik plate, 1-2... First electrode, 1-
3... Solid electrolyte membrane, 1-4... Second electrode, 1-
5... Porous body, 1-6... Hole, 1-7... Communication recess, 1-8... StO, membrane.

代理人 弁理士  則 近 Wl  右同      
  松  山  光  2第4図 第6図
Agent Patent Attorney Nori Kon Wl Same as right
Matsuyama Hikaru 2 Figure 4 Figure 6

Claims (6)

【特許請求の範囲】[Claims] (1)穴を有するシリコンからなるSi基板と、穴の一
端を封じるように形成された気体イオン透過性固体電解
質膜と、該固体電解質膜上のSi基板と反対側の面に形
成された第1の電極と、前記固体電解質膜のSi基板の
穴側に設けられた第2の電極と、前記第1あるいは第2
の電極の一部あるいは全部を覆うように形成される多孔
質体からなるガス透過制限体と、を主な構成要素とする
ことを特徴とする限界電流式ガスセンサ。
(1) A Si substrate made of silicon having a hole, a gas ion permeable solid electrolyte membrane formed to seal one end of the hole, and a third electrode formed on the surface of the solid electrolyte membrane opposite to the Si substrate. 1 electrode, a second electrode provided on the hole side of the Si substrate of the solid electrolyte membrane, and the first or second electrode.
A limiting current type gas sensor characterized in that the main component thereof is a gas permeation restricting body made of a porous material formed to cover part or all of an electrode.
(2)穴に連通する凹部を有するシリコン基板を用いる
特許請求の範囲第1項記載の限界電流式ガスセンサ。
(2) The limiting current type gas sensor according to claim 1, which uses a silicon substrate having a recess that communicates with the hole.
(3)ガス制限体に被検ガス以外の防害ガスを処理でき
る機能を有する物質からなる特許請求の範囲第1項記載
の限界電流式ガスセンサ。
(3) The limiting current type gas sensor as set forth in claim 1, wherein the gas restrictor is made of a substance that has a function of treating harmful gases other than the test gas.
(4)導電性のSi基板を用いることを特徴とする特許
請求の範囲第1項記載の限界電流式ガスセンサ。
(4) The limiting current type gas sensor according to claim 1, characterized in that a conductive Si substrate is used.
(5)Si基板の一部あるいは全部が絶縁物で覆われて
いる特許請求の範囲第1項記載の限界電流式ガスセンサ
(5) The limiting current type gas sensor according to claim 1, wherein part or all of the Si substrate is covered with an insulator.
(6)少なくとも一方の電極サイズより小さくすること
を特徴とする特許請求の範囲第1項記載の限界電流式ガ
スセンサ。
(6) The limiting current type gas sensor according to claim 1, wherein the size of at least one of the electrodes is smaller than the size of at least one of the electrodes.
JP62093163A 1987-04-17 1987-04-17 Limiting current type gas sensor Pending JPS63259459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62093163A JPS63259459A (en) 1987-04-17 1987-04-17 Limiting current type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62093163A JPS63259459A (en) 1987-04-17 1987-04-17 Limiting current type gas sensor

Publications (1)

Publication Number Publication Date
JPS63259459A true JPS63259459A (en) 1988-10-26

Family

ID=14074898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62093163A Pending JPS63259459A (en) 1987-04-17 1987-04-17 Limiting current type gas sensor

Country Status (1)

Country Link
JP (1) JPS63259459A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198352A (en) * 1989-01-27 1990-08-06 Fujikura Ltd Sensor element of oxygen sensor
JPH0552803A (en) * 1991-08-21 1993-03-02 Fujikura Ltd Manufacture of oxygen sensor
JPH05157729A (en) * 1991-12-07 1993-06-25 Mitsuteru Kimura Oxygen sensor
JPH0684604A (en) * 1991-09-19 1994-03-25 Mitsuteru Kimura Microheater
JPH06160336A (en) * 1992-11-20 1994-06-07 Fujikura Ltd Limiting current type oxygen sensor
EP1226090A1 (en) * 1999-10-19 2002-07-31 Seju Engineering Co., Ltd. Gas sensor and fabrication method thereof
WO2014136329A1 (en) * 2013-03-08 2014-09-12 ローム株式会社 Limiting current gas sensor, method for producing limiting current gas sensor, and sensor network system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166854A (en) * 1983-03-14 1984-09-20 Toyota Central Res & Dev Lab Inc Limiting current type oxygen sensor
JPS61147154A (en) * 1984-12-20 1986-07-04 Matsushita Electric Ind Co Ltd Thin-film oxygen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166854A (en) * 1983-03-14 1984-09-20 Toyota Central Res & Dev Lab Inc Limiting current type oxygen sensor
JPS61147154A (en) * 1984-12-20 1986-07-04 Matsushita Electric Ind Co Ltd Thin-film oxygen sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198352A (en) * 1989-01-27 1990-08-06 Fujikura Ltd Sensor element of oxygen sensor
JPH0552803A (en) * 1991-08-21 1993-03-02 Fujikura Ltd Manufacture of oxygen sensor
JPH0684604A (en) * 1991-09-19 1994-03-25 Mitsuteru Kimura Microheater
JPH05157729A (en) * 1991-12-07 1993-06-25 Mitsuteru Kimura Oxygen sensor
JPH06160336A (en) * 1992-11-20 1994-06-07 Fujikura Ltd Limiting current type oxygen sensor
EP1226090A1 (en) * 1999-10-19 2002-07-31 Seju Engineering Co., Ltd. Gas sensor and fabrication method thereof
EP1226090A4 (en) * 1999-10-19 2003-07-16 Seju Engineering Co Ltd Gas sensor and fabrication method thereof
US6997040B1 (en) 1999-10-19 2006-02-14 Seju Engineering Co., Ltd. Gas sensor and fabrication method thereof
WO2014136329A1 (en) * 2013-03-08 2014-09-12 ローム株式会社 Limiting current gas sensor, method for producing limiting current gas sensor, and sensor network system
JP2014196995A (en) * 2013-03-08 2014-10-16 ローム株式会社 Limiting current type gas sensor, method for manufacturing limiting current type gas sensor and sensor network system

Similar Documents

Publication Publication Date Title
JPS63259459A (en) Limiting current type gas sensor
JPH08122287A (en) Measuring device and method of concentration of gas component
JPH0249468B2 (en)
CN110361430B (en) Sensor element for a potentiometric sensor
JPH0533742B2 (en)
KR100347580B1 (en) Manufacturing method of oxygen sensor element
JP2805811B2 (en) Combustion control sensor
JPH1062380A (en) Oxygen partial pressure measuring sensor having two measuring areas
JPH0735726A (en) Gas component detecting element
JP2565897B2 (en) Limiting current type gas sensor
CN112415064B (en) Method for producing a sensor element for a potentiometric sensor
JPH0746087B2 (en) Oxygen sensor
JP4408684B2 (en) Gas sensor and manufacturing method thereof
JPH03120456A (en) Oxygen sensor
JPS63265159A (en) Oxygen sensor
JP2643501B2 (en) Limit current type oxygen sensor
JPH02201257A (en) Oxygen sensor
JPH03222206A (en) Solid-state electrolytic film
JPH03277959A (en) Gas-concentration sensor
JPH0234605Y2 (en)
JP2605420B2 (en) Limit current type oxygen sensor
JPH06294768A (en) Limiting current type oxygen sensor
JPS5930059A (en) Air/fuel ratio sensor
JPH08220063A (en) Carbon dioxide gas sensor
JPH02179462A (en) Oxygen sensor