JPS6325837B2 - - Google Patents

Info

Publication number
JPS6325837B2
JPS6325837B2 JP15424278A JP15424278A JPS6325837B2 JP S6325837 B2 JPS6325837 B2 JP S6325837B2 JP 15424278 A JP15424278 A JP 15424278A JP 15424278 A JP15424278 A JP 15424278A JP S6325837 B2 JPS6325837 B2 JP S6325837B2
Authority
JP
Japan
Prior art keywords
methane
sludge
methane fermentation
tank
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15424278A
Other languages
Japanese (ja)
Other versions
JPS5581794A (en
Inventor
Toyoyasu Saida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP15424278A priority Critical patent/JPS5581794A/en
Publication of JPS5581794A publication Critical patent/JPS5581794A/en
Publication of JPS6325837B2 publication Critical patent/JPS6325837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は主として天然有機物からなる物質から
嫌気メタン発酵によりメタンガスを高収率を以て
回収する方法に関するものである。 メタン発酵によるし尿、汚泥処理設備は多数稼
動しており、またメタン発酵法は濃厚有機廃水の
処理方法としても有力である。 しかし、メタン発酵は反応速度が遅く、数日乃
至/数十日の反応時間でも未反応有機物が多量に
残存し、さらに原理上メタン発酵に関係する菌に
より分解されない有機物は全くメタンに転換する
ことが不可能である。したがつて原有機物を最大
限にメタンに転換する方法とは云えない。従来は
し尿濃厚有機廃水など直接活性汚泥法による廃水
処理に適用できないものをその前段処理として、
あるいは活性汚泥処理によつて生じた余剰汚泥の
減量処理法として使用されてきたので、このよう
な低分解率でも十分実用になつたのである。なお
蛇足であるが、後段処理として活性汚泥法を使用
しても、原有機物中の生物分解されない有機物、
これは嫌気・好気分解ともほぼ共通して分解され
ないので、処理水中にそのまま残存することによ
り、BODは低下してもCODは残ることになるの
である。 本発明は、従来のメタン発酵の欠点を克服する
ものであり、短時間の初段メタン発酵により生物
分解し易い有機物をまずメタンに転換し、ついで
生物分解し難いもの、就中全く分解されない有機
物を液相部分酸化法により大部分有機酸に転換
し、この有機酸を後段メタン発酵によりさらにメ
タンに転換するのであり、総反応所要時間は短縮
されるにも拘らずメタン転換率は著増し、また、
したがつて未反応有機物は実質的に残存しないの
であり、廃水問題は起らず、むしろ廃水処理法と
しても非常に有力なものとなるのである。また初
段メタン発酵により発生した増殖細菌は液相部分
酸化の段階で分解され、したがつて発生する有機
性汚泥は後段メタン発酵による極めて少量のもの
であり、原物質中の無機分を主体とする水不溶性
スラツジと合計しても極めて少量の汚泥しか発生
しないし、これは無機化汚泥と云つても差し支え
ないのであり、その処理および利用ともに簡易で
ある。 本発明に使用する原物質は有機物であればよい
か、し尿、活性汚泥処理の余剰汚泥、アルコール
発酵蒸溜廃液、洗毛廃水、パルプ廃水、廚芥各種
農産廃棄物などが単独あるいは混合して使用でき
る。原物質が固形状の時はできるだけ細く砕いて
供給するのが良く、反応はすべて水懸濁状で行わ
れるのであり、水分が原料中に少い場合は系内で
循環あるいは別に供給する必要がある。原料が水
を多量に含有する場合は、水の循環、添加の必要
はないが、原料中の有機物濃度は高い方がいずれ
にしても有利である。 初段メタン発酵工程出口の溶解有機物濃度は
BODとして300〜6000mg/程度に保ち、かつ固
形分も少い方がよいので、原料が非常に濃厚な場
合は2段以上に反応槽を分割することによつて所
要反応率に対して槽容積を減少することができ
る。この場合第1段の反応槽中の溶解有機物濃度
(これは第1段反応槽に供給する液の濃度とは異
なり反応しただけ低下している)はBODとして
15000mg/以下、好ましくは10000mg/以下が
よいのであり、これを上回る条件のときは水の添
加が必要となる。しかしこれは後段メタン発酵出
口から循環することが、水経済上、また熱交換器
面積の上からも最も好ましい。 メタン発酵には、30〜40℃の中温発酵と、50〜
57℃の高温発酵が知られているが、高温発酵の方
が反応速度が2乃至3倍速く、またその温度レベ
ルも本発明においてそれらの中間に用いる液相部
分酸化の温度が150℃以上であつて、より近いの
で本発明には好ましい方法である。 メタン発酵過程はまず有機物が通性または偏性
嫌気性細菌である酸生成菌によつて主としてカル
ボン酸に分解され、ついで偏性嫌気性細菌である
メタン細菌によつてメタンと炭酸ガスに分解され
ると云われている。したがつて、本発明の初段メ
タン発酵はこの操作が適用されるが、後段メタン
発酵は既に化学的に生成させられたカルボン酸が
基質となるので、殆んど細菌によるメタンと炭酸
ガスへの分解過程のみで構成されるので、反応所
要時間はそれだけ短縮される。酸生成菌もメタン
細菌も細菌体の増殖は少ないので、汚泥の返送循
環をすることが好ましい。その他、槽内混合撹拌
の管理、PHおよび窒素、リンなどの栄養物の調
節は常法に準じて行えばよい。 液相部分酸化反応工程は従来ジンプロ法などの
ように、汚泥し尿の液相酸化法として知られてい
るものに類似している方法でよい。従来法では酸
化液のBODあるいはCODをできるだけ低下させ
る必要があるが、本発明の場合はできるだけ有機
物の酸化をカルボン酸の段階で止め炭酸ガスまで
酸化されないようにする必要がある。それだけ従
来の液相酸化法より低温度、低圧力、短時間とい
う温和な反応条件にしなければならない。温度が
最も重要な因子であり、圧力はその温度で水が十
分液相に止まる条件を選べばよく、反応時間は長
くしすぎても、余り酸化が進むことはないが、必
要最小限にすることが必要槽容積の点から望まし
い。 温度は酸化する必要のある有機物の種類によつ
て当然異なるが、難分解性のもの程高温にする必
要がある。しかし高温とすれば同時に含まれてい
る易分解性のものは完全に酸化してしまうので、
最適の温度を選ぷ必要がある。普通150乃至300℃
の範囲にあり、この時圧力は20乃至200Kg/cm2
の範囲から選べばよい。以下実施例によつてさら
に詳細に説明する。 実施例 1 下水処理場で発生した初沈澱槽汚泥および曝気
槽余剰汚泥の混合物を第1図に示す装置により処
理した。ライン1から汚泥を55℃に保つた有効容
積350の初段消化槽21に供給し、ライン3か
ら発生ガスを取出し、消化液中のスラツジの一部
は分離器26で分離し消化槽に返送して、初段消
化槽21内の微生物濃度を充分高く維持する。微
生物濃度として正確に分析することは不可能であ
るが大体10g/は必要である。残余の消化液は
ダイアフラムポンプ31により80Kg/cm2G、200
℃に保たれた有効容積4の酸化槽22へ昇温用
熱交換器28を経て送入される。熱交換器28入
口でライン2からの空気が圧縮機32により混合
される。発生ガスは減圧し、冷却器30、ライン
6を経て放出し、冷却器30の凝縮液はライン5
へ戻す。一方、酸化液は減圧し冷却器29、ライ
ン5を経て分離器23に送入され含有する固型分
を過・脱水してケーキはライン7から取出し、
分離液はライン8を経て温度55℃に保つた有効容
積180の後段消化槽24に送入される。発生ガ
スはライン9から取出し、また消化液中に発生し
た微生物は分離器27により消化槽24に戻して
初段消化槽と同様微生物濃度を充分高く維持す
る。極めて微量の余剰汚泥相当分を時々ライン1
1から引抜く。消化槽21および24は撹拌機を
装備して内容をよく撹拌するが、大型装置ではポ
ンプ循環法または発生ガスの底部循環により撹拌
することが好ましい。また熱交換器28は電熱式
であるが、実用装置では酸化槽出口の減圧してな
い気液混合物と熱交換し、気液分離後気体側はタ
ービンなどにより動力を回収して減圧することが
望ましい。 消化槽中の微生物は他の高温消化槽から接種
し、運転を始めて約1ケ月後の定常態時のデータ
を表1に示す。これから判るように、通常のメタ
ン発酵(初段消化)だけではメタン700/日し
か得られず、しかも処理液(消化液4)は汚泥を
分離してもCOD(Cr法)850mg/あり、これは
活性汚泥処理しても殆んど減少しないのに対し、
本実施例ではメタンガス1540/日が得られる。
しかも処理液(分離液10)のCOD(Cr法)は僅
か120mg/、BOD95mg/まで処理されてい
る。さらに通常のメタン発酵法だけでは汚泥が固
型分として22Kg/日、内有機分68%であるのに対
し、本実施例では汚泥固型分1.23Kg/日、内有機
分18%と総量も減少し無機化が遥かに進んでいる
ことが判る。なおメタン発酵槽の総滞溜時間を等
しくするため供給液量を66Kg/日に落して初段消
化だけの実験をしたが、メタンガス発生量は供給
液量100Kgに対して735と殆ど増加をみなかつ
た。 実施例 2 糖密からアルコールを発酵法により製造する工
場のアルコール蒸溜廃液87.5Kg/日を第1図と同
一の装置により処理した。但し、分離器23は省
略した。表2−1および表2−2にその結果を示
す。なお消化槽の運転条件は実施例1と同じであ
るが、酸化槽の運転条件は100Kg/cm2Gおよび230
℃とした。
The present invention relates to a method for recovering methane gas with high yield from substances mainly consisting of natural organic substances by anaerobic methane fermentation. Many facilities for treating human waste and sludge using methane fermentation are in operation, and the methane fermentation method is also a promising method for treating concentrated organic wastewater. However, the reaction rate of methane fermentation is slow, and a large amount of unreacted organic matter remains even after a reaction time of several days to several tens of days.Furthermore, in principle, organic matter that is not decomposed by the bacteria involved in methane fermentation is completely converted to methane. is not possible. Therefore, this cannot be said to be a method that maximizes the conversion of raw organic matter into methane. As a preliminary treatment for wastewater that cannot be conventionally applied to wastewater treatment using the direct activated sludge method, such as human waste-concentrated organic wastewater,
Alternatively, it has been used as a method for reducing excess sludge produced by activated sludge treatment, so even such a low decomposition rate has become sufficiently practical. As a side note, even if the activated sludge method is used as a post-processing process, organic matter in the raw organic matter that cannot be biodegraded,
This is similar to both anaerobic and aerobic decomposition and is not decomposed, so if it remains in the treated water, COD will remain even if BOD is reduced. The present invention overcomes the drawbacks of conventional methane fermentation, and first converts easily biodegradable organic matter into methane through a short initial stage methane fermentation, and then converts organic matter that is difficult to biodegrade, especially organic matter that is not decomposed at all, into methane. The liquid phase partial oxidation method converts most of the organic acid into organic acid, and this organic acid is further converted into methane in the subsequent methane fermentation, and although the total reaction time is shortened, the methane conversion rate is significantly increased. ,
Therefore, virtually no unreacted organic matter remains, and there is no problem with wastewater, and in fact, it is a very effective method for treating wastewater. In addition, the proliferating bacteria generated in the first stage methane fermentation is decomposed during the liquid phase partial oxidation stage, and therefore the organic sludge generated is a very small amount due to the second stage methane fermentation, and is mainly composed of inorganic components in the raw material. Even when combined with water-insoluble sludge, only a very small amount of sludge is generated, and this can be safely called mineralized sludge, which is easy to process and utilize. The raw material used in the present invention may be any organic substance, or human waste, surplus sludge from activated sludge treatment, alcohol fermentation distillation waste, hair washing waste water, pulp waste water, various agricultural wastes, etc. may be used singly or in combination. can. When the raw material is in solid form, it is best to crush it as finely as possible before supplying it, and all reactions take place in water suspension, so if there is little water in the raw material, it is necessary to circulate it within the system or supply it separately. be. When the raw material contains a large amount of water, there is no need to circulate or add water, but it is advantageous in any case to have a high concentration of organic matter in the raw material. The concentration of dissolved organic matter at the outlet of the first stage methane fermentation process is
It is better to keep the BOD at around 300 to 6000mg/and also have a small solid content, so if the raw material is very concentrated, divide the reaction tank into two or more stages to increase the tank volume for the required reaction rate. can be reduced. In this case, the concentration of dissolved organic matter in the first-stage reaction tank (this is different from the concentration of the liquid supplied to the first-stage reaction tank, which decreases by the amount of reaction) is expressed as BOD.
The amount is preferably 15,000 mg/or less, preferably 10,000 mg/or less, and when conditions exceed this, it is necessary to add water. However, it is most preferable from the viewpoint of water economy and the area of the heat exchanger to circulate this from the outlet of the latter stage methane fermentation. Methane fermentation involves medium-temperature fermentation at 30-40°C and
High-temperature fermentation at 57°C is known, but the reaction rate is 2 to 3 times faster with high-temperature fermentation, and the temperature level of the liquid phase partial oxidation used in the present invention is 150°C or higher. This is the preferred method for the present invention because it is closer. In the methane fermentation process, organic matter is first decomposed into carboxylic acids by acid-producing bacteria, which are facultative or obligate anaerobic bacteria, and then decomposed into methane and carbon dioxide by methanobacteria, which are obligate anaerobic bacteria. It is said that. Therefore, this operation is applied to the first-stage methane fermentation of the present invention, but since the second-stage methane fermentation uses the chemically generated carboxylic acid as the substrate, most of the process is performed by bacteria to convert methane and carbon dioxide. Since it consists only of a decomposition process, the time required for the reaction is shortened accordingly. Since bacterial growth of both acid-producing bacteria and methane bacteria is low, it is preferable to return and circulate the sludge. In addition, management of mixing and agitation in the tank, and adjustment of pH and nutrients such as nitrogen and phosphorus may be performed according to conventional methods. The liquid phase partial oxidation reaction step may be a method similar to a conventional method known as a liquid phase oxidation method for sludge and human waste, such as the Zinpro method. In the conventional method, it is necessary to reduce the BOD or COD of the oxidizing liquid as much as possible, but in the case of the present invention, it is necessary to stop the oxidation of organic substances at the carboxylic acid stage and prevent oxidation to carbon dioxide gas. This requires milder reaction conditions such as lower temperature, lower pressure, and shorter time than the conventional liquid phase oxidation method. Temperature is the most important factor, and the pressure should be selected so that the water remains in a liquid phase at that temperature. Even if the reaction time is too long, oxidation will not progress too much, but it should be kept to the minimum necessary. This is desirable from the viewpoint of required tank volume. The temperature naturally varies depending on the type of organic substance that needs to be oxidized, but the more difficult it is to decompose, the higher the temperature needs to be. However, if the temperature is high, the easily decomposed substances contained at the same time will be completely oxidized.
You need to choose the optimal temperature. Normally 150 to 300℃
The pressure is in the range of 20 to 200Kg/cm 2 G.
You can choose from the range. The present invention will be explained in more detail below with reference to Examples. Example 1 A mixture of initial settling tank sludge and aeration tank excess sludge generated in a sewage treatment plant was treated with the apparatus shown in FIG. Sludge is supplied from line 1 to the first-stage digestion tank 21 with an effective volume of 350 kept at 55°C, generated gas is taken out from line 3, and a part of the sludge in the digestive fluid is separated by a separator 26 and returned to the digestion tank. In this way, the concentration of microorganisms in the first stage digestion tank 21 is maintained at a sufficiently high level. Although it is impossible to accurately analyze the microbial concentration, approximately 10 g/min is required. The remaining digestive fluid is pumped to 80Kg/ cm2G , 200kg by diaphragm pump 31.
It is fed through a heating heat exchanger 28 to an oxidation tank 22 with an effective volume 4 maintained at a temperature of .degree. Air from line 2 is mixed by compressor 32 at the inlet of heat exchanger 28 . The generated gas is depressurized and discharged through the cooler 30 and line 6, and the condensate from the cooler 30 is discharged through the line 5.
Return to. On the other hand, the oxidizing liquid is depressurized and sent to the separator 23 via the cooler 29 and line 5, and the solid content therein is filtered and dehydrated, and the cake is taken out from line 7.
The separated liquid is sent via line 8 to a post-digestion tank 24 having an effective volume of 180 and maintained at a temperature of 55°C. The generated gas is taken out from the line 9, and the microorganisms generated in the digestive fluid are returned to the digestion tank 24 by the separator 27 to maintain a sufficiently high concentration of microorganisms as in the first-stage digestion tank. An extremely small amount of excess sludge is sometimes pumped into line 1.
Pull it out from 1. The digesters 21 and 24 are equipped with a stirrer to thoroughly stir the contents, but in large-scale equipment, it is preferable to use a pump circulation method or bottom circulation of generated gas to stir the contents. The heat exchanger 28 is an electric heating type, but in practical equipment, it exchanges heat with the gas-liquid mixture that has not been depressurized at the outlet of the oxidation tank, and after gas-liquid separation, the gas side can be depressurized by recovering power using a turbine or the like. desirable. The microorganisms in the digester were inoculated from another high-temperature digester, and Table 1 shows the steady state data about one month after the start of operation. As you can see, only 700 methane/day can be obtained by normal methane fermentation (initial digestion), and even if the treated liquid (digested liquid 4) is separated from the sludge, the COD (Cr method) is 850 mg/day. Although activated sludge treatment causes almost no reduction,
In this example, 1540 methane gas can be obtained per day.
Moreover, the COD (Cr method) of the treated liquid (separated liquid 10) is only 120 mg/, and the BOD is treated to 95 mg/. Furthermore, with the normal methane fermentation method alone, the sludge has a solid content of 22 kg/day and an internal organic content of 68%, whereas in this example, the sludge solid content is 1.23 kg/day and an internal organic content of 18%, which is a total amount of It can be seen that the amount has decreased and mineralization has progressed far. In addition, in order to equalize the total residence time in the methane fermentation tank, we reduced the feed liquid amount to 66 kg/day and conducted an experiment only for the first stage digestion, but the amount of methane gas generated was 735 for a feed liquid amount of 100 kg, which showed almost no increase. Ta. Example 2 87.5 kg/day of alcohol distillation waste liquid from a factory that produces alcohol from molasses by fermentation was treated using the same apparatus as shown in FIG. However, the separator 23 was omitted. The results are shown in Tables 2-1 and 2-2. The operating conditions of the digestion tank are the same as in Example 1, but the operating conditions of the oxidation tank are 100 Kg/cm 2 G and 230 Kg/cm 2 G.
℃.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するための工程図
である。 21……初段消化槽、22……酸化槽、23…
…分離器、24……後段消化槽、26……分離
器、27……分離器、28……熱交換器、29…
…冷却器、30……冷却器、31……ダイアフラ
ムポンプ、32……圧縮機。
FIG. 1 is a process diagram for carrying out the method of the present invention. 21... First stage digestion tank, 22... Oxidation tank, 23...
...Separator, 24...Late stage digestion tank, 26...Separator, 27...Separator, 28...Heat exchanger, 29...
...Cooler, 30...Cooler, 31...Diaphragm pump, 32...Compressor.

Claims (1)

【特許請求の範囲】[Claims] 1 主として天然有機物からなる物質を嫌気性メ
タン発酵により処理した後、酸素を含む気体と
150〜300℃および20〜200Kg/cm2の範囲内の温度
圧力にて接触せしめ、さらに嫌気性メタン発酵に
より処理することを特徴とするメタンガスの回収
方法。
1 After treating substances mainly consisting of natural organic matter through anaerobic methane fermentation, they are treated with oxygen-containing gas and
A method for recovering methane gas, which comprises contacting at a temperature and pressure within the range of 150 to 300°C and 20 to 200 Kg/cm 2 and further processing by anaerobic methane fermentation.
JP15424278A 1978-12-15 1978-12-15 Recovery method for methane gas Granted JPS5581794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15424278A JPS5581794A (en) 1978-12-15 1978-12-15 Recovery method for methane gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15424278A JPS5581794A (en) 1978-12-15 1978-12-15 Recovery method for methane gas

Publications (2)

Publication Number Publication Date
JPS5581794A JPS5581794A (en) 1980-06-20
JPS6325837B2 true JPS6325837B2 (en) 1988-05-26

Family

ID=15579935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15424278A Granted JPS5581794A (en) 1978-12-15 1978-12-15 Recovery method for methane gas

Country Status (1)

Country Link
JP (1) JPS5581794A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58300A (en) * 1981-06-25 1983-01-05 Niigata Eng Co Ltd Treatment of sludge
JPS59136196A (en) * 1983-01-26 1984-08-04 Takuma Sogo Kenkyusho:Kk Sludge treatment
JP3651836B2 (en) * 1999-11-09 2005-05-25 日立造船株式会社 Organic waste treatment methods
JP4409928B2 (en) * 2003-12-15 2010-02-03 三菱化工機株式会社 Organic waste treatment methods
FR2942792B1 (en) * 2009-03-06 2012-06-29 Otv Sa PROCESS FOR OBTAINING IMPUTRICABLE SLUDGE AND ENERGY AND CORRESPONDING INSTALLATION

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884464A (en) * 1972-02-14 1973-11-09
JPS5223854A (en) * 1975-08-15 1977-02-23 Oji Paper Co Ltd Two-stage disposal process of pulp drainage
JPS5255255A (en) * 1975-10-31 1977-05-06 Showa Denko Kk Process for removing harmful materials from a chemical industrial drai n water
JPS5358375A (en) * 1976-11-09 1978-05-26 Taiyo Kogyo Co Ltd Process for disposing manure
JPS5373863A (en) * 1976-12-13 1978-06-30 Kubota Ltd Method of treating digestion separation liquid
JPS5586593A (en) * 1978-12-25 1980-06-30 Kubota Ltd Treating method of waste water of garbage incinerating plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884464A (en) * 1972-02-14 1973-11-09
JPS5223854A (en) * 1975-08-15 1977-02-23 Oji Paper Co Ltd Two-stage disposal process of pulp drainage
JPS5255255A (en) * 1975-10-31 1977-05-06 Showa Denko Kk Process for removing harmful materials from a chemical industrial drai n water
JPS5358375A (en) * 1976-11-09 1978-05-26 Taiyo Kogyo Co Ltd Process for disposing manure
JPS5373863A (en) * 1976-12-13 1978-06-30 Kubota Ltd Method of treating digestion separation liquid
JPS5586593A (en) * 1978-12-25 1980-06-30 Kubota Ltd Treating method of waste water of garbage incinerating plant

Also Published As

Publication number Publication date
JPS5581794A (en) 1980-06-20

Similar Documents

Publication Publication Date Title
EP1461292B1 (en) Method for stabilizing and conditioning urban and industrial wastewater sludge
US5492624A (en) Waste treatment process employing oxidation
US4022665A (en) Two phase anaerobic digestion
US4318993A (en) Two phase anaerobic digester system
US5540839A (en) Process for degrading organic matter
US8444861B2 (en) Method and apparatus using hydrogen peroxide and microwave system for slurries treatment
US5141646A (en) Process for sludge and/or organic waste reduction
JPH06504202A (en) Method and apparatus for biological treatment of solid organic materials
JP5726576B2 (en) Method and apparatus for treating organic waste
JP3762668B2 (en) Anaerobic fermentation method and apparatus
JPS6325838B2 (en)
JPS6325837B2 (en)
JP2587301B2 (en) Methane fermentation treatment method
JP2006255538A (en) Method and apparatus for treatment of food waste
JP2563004B2 (en) Treatment of wastewater containing methanol
JP3813846B2 (en) Organic waste treatment method and apparatus
JP3871531B2 (en) Organic waste treatment method and apparatus
JP2005125322A (en) Treatment method and apparatus for organic waste
JPH0254160B2 (en)
KR100227186B1 (en) Anaerobic treatment method of organic wastewater and fermenter using it
JP3800990B2 (en) Anaerobic digestion method and apparatus of organic sludge
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP3937625B2 (en) Biological treatment method for organic waste
JPS62279893A (en) Ph control of acid producing reactor in methane fermentation
JPS644840B2 (en)