JP3813846B2 - Organic waste treatment method and apparatus - Google Patents

Organic waste treatment method and apparatus Download PDF

Info

Publication number
JP3813846B2
JP3813846B2 JP2001234911A JP2001234911A JP3813846B2 JP 3813846 B2 JP3813846 B2 JP 3813846B2 JP 2001234911 A JP2001234911 A JP 2001234911A JP 2001234911 A JP2001234911 A JP 2001234911A JP 3813846 B2 JP3813846 B2 JP 3813846B2
Authority
JP
Japan
Prior art keywords
organic waste
tank
sludge
temperature
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001234911A
Other languages
Japanese (ja)
Other versions
JP2003047928A (en
Inventor
克之 片岡
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001234911A priority Critical patent/JP3813846B2/en
Publication of JP2003047928A publication Critical patent/JP2003047928A/en
Application granted granted Critical
Publication of JP3813846B2 publication Critical patent/JP3813846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は下水、産業排水などの有機性汚水を生物学的に処理する工程における余剰汚泥、下水生汚泥、厨芥などの生分解性有機性廃棄物を、きわめて簡単な装置で、省エネ的に大幅に減少できる新規技術に関する。
【0002】
【従来の技術】
下水、産業排水、屎尿などの活性汚泥処理施設から、大量の有機性汚泥(余剰汚泥、生汚泥など)が毎日発生しており、日本全体で年間1000万トンを上回る。この余剰汚泥の処理処分が、環境問題における最大の問題点になっている。有機性汚泥は難脱水性であるため、多量の脱水助剤(ポリマーなど)を添加し、汚泥脱水機で水分85%程度に脱水し、脱水ケーキを埋立処分するか、又は焼却処分しているが、脱水助剤コスト、脱水ケーキの埋立場所不足、焼却灰の処分場所の不足、焼却設備費、焼却用重油コストの高さなどの多くの問題点を抱えている。
【0003】
このような問題を解決するため、図3のような、人為的加熱と好熱菌による可溶化手段を適用する、汚泥可溶化技術などが種々提案されている。図3においては、汚水20を活性汚泥曝気槽21で生物処理し、その活性汚泥混合液22を沈殿槽23で活性汚泥を沈殿させて処理水24を取り出し、沈殿汚泥25の一部である引き抜き汚泥27に別に培養好熱菌28の接種を行い、それを可溶化装置29に入れ、スチームのような加熱源30で加熱して可溶化を行い、可溶化汚泥31を活性汚泥曝気槽21に戻すようにしている。
好熱菌による汚泥可溶化技術は、該技術の発明者である長谷川らが、次の文献にその詳細を報告している。
文献名
1)桂、長谷川、三浦:好熱性微生物を利用した余剰汚泥が発生しない活性汚泥プロセス:水環境学会誌、第21巻第6号、360−366(1998)
2)長谷川:好熱性細菌による汚泥削減化技術:工業技術会主催「汚泥の無発生化、減容化、削減化技術の最先端」講習会資料。2000年5月16日開催
【0004】
この技術は、有機性汚水の活性汚泥処理工程から、余剰汚泥発生量より多い量の活性汚泥を引き抜き、別個に培養した好熱菌を添加し、スチームなどで温度を65℃程度に加熱し、好熱菌の作用により汚泥を可溶化し、溶解性BOD成分を汚泥細胞から溶出させた後、活性汚泥処理工程に返送する方法である。この文献によれば、活性汚泥を好熱菌によって可溶化するには、別個に培養した好熱菌を汚泥に添加し、かつ汚泥温度を好熱菌の活動に適した温度に(65℃程度)に加温するための、スチームなどの外部熱源が不可欠であることが明記されている。
【0005】
【発明が解決しようとする課題】
しかし、好熱菌による汚泥減量化技術は、スチームなどによる汚泥加熱コストが高く、そのためにボイラが必要で、加温した汚泥から熱回収するための熱交換器を設けたりしなければならず、設備費がアップすること、熱交換器のスケールトラブルなどの欠点もあった。
従来周知の有機性汚泥の「好気性消化法」は、汚泥を単一槽の曝気槽に供給し、常温下において酸素含有ガスで15〜20日間程度ときわめて長時間曝気して、汚泥の生物酸化分解と微生物の内生呼吸が起きるようにして、汚泥を減量化する方法である。好気性消化法において、汚泥は機械的濃縮をされずに重力沈殿濃縮した汚泥を供給するため、生物酸化による昇温効果は非常に少ない状態で運転されている。酸素含有ガスの供給量は、溶存酸素が1〜2mg/リットル程度の好気状態になるように大量に提供される。
【0006】
好気性消化法は、20日という長時間の曝気でも、分解されない汚泥が大量に残り、汚泥減量化率が最大でも50%程度しか得られないこと、冬期は水温が低くなり、大幅に消化率が悪化するという欠点があること、さらに大きな曝気槽容積と、多量の曝気動力が必要である、アンモニア性窒素が除去できないという致命的欠点があるため、日本の下水処理場ではほとんど実用例が無く、見捨てられた方法になっている。したがって、日本の下水処理場では、曝気が不要でメタンガスが回収できる嫌気性消化法が採用されるのが通常である。
【0007】
また、汚泥のコンポスト化の原理を利用した「高温好気発酵法」による生ごみ、有機性汚泥の分解、無機化方法が知られている。この方法は、槽内に木材チップ、籾殻などを充填しておき、これを緩やかに攪拌しながら空気を供給し、水分が少ない生ごみ、有機性汚泥を少しずつ供給し、生物酸化して無機化し、かつ生物酸化熱によって、投入有機性固形物中の水分を蒸発させる技術である。(たとえば、第32回日本水環境学会年講演集p461−(平成10年度):李、千葉、高温好気発酵法による豚舎廃棄物の長期運転時の処理特性)。
【0008】
しかしこの技術は、投入した有機性廃棄物の水分を蒸発させて乾燥することが不可欠であるので、投入した有機物のほぼすべてを生物酸化して酸化熱を発生させないと、水分蒸発潜熱をまかなうことができない。そのため、投入する有機性廃棄物の水分量を極力少なくする必要があり、汚泥の水分が多い場合は、機械脱水機で脱水したケーキを供給するか、又は水分が95%以上の汚泥をそのまま供給する場合は、汚泥量を非常に少なくし、かつ廃油(植物性油など)を補給しなければ酸化熱が不足し、水分を蒸発させることができないという欠点があった。しかも高温好気発酵槽からの排ガスのアンモニア臭が強烈であり、脱臭装置が不可欠である難点があった。
【0009】
本発明は、上記従来技術の問題点を解決し、一切人為的加熱手段を用いることなく、省エネルギ的に、かつ短時間で汚泥などの有機性廃棄物を減量化でき、アンモニア性窒素も除去できる新技術を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明者等は、高濃度汚泥の酸素含有ガスによる曝気処理を新規な態様で適用することにより、上記課題を達成できることを見いだした。
すなわち、本発明は下記の構成からなるものである。
【0011】
(1)有機性固形物濃度を2%以上に濃縮した有機性廃棄物を、機械攪拌機を備えた多段式好気性消化槽に供給し、該多段式好気性消化槽内を機械的に攪拌しながら酸素含有ガスを供給し、好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させ、前記多段式好気性消化槽から流出する有機性廃棄物の処理物を固液分離し、その分離汚泥の一部を前記多段式好気性消化槽の第1槽に循環し、生物学的脱窒素を行うことを特徴とする有機性廃棄物の処理方法。
(2)有機性固形物濃度を2%以上に濃縮した有機性廃棄物を、機械攪拌機を備えた嫌気性処理槽に供給し、該嫌気性処理槽から流出する有機性廃棄物の処理物を機械攪拌機を備えた多段式好気性消化槽に供給し、該多段式好気性消化槽内を機械的に攪拌しながら酸素含有ガスを供給し、好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させ、前記多段式好気性消化槽から流出する有機性廃棄物の処理物を固液分離し、その分離汚泥の一部を前記嫌気性処理槽に循環することを特徴とする有機性廃棄物の処理方法。
【0012】
(3)厨芥などの固形状有機性廃棄物を、有機性汚泥とともに前記多段式好気性消化槽の第1槽に供給することを特徴とする前記(1)記載の有機性廃棄物の処理方法。
(4)有機性廃棄物を有機性固形物濃度が2%以上に濃縮する濃縮装置、酸素含有ガス供給手段を備え、前記濃縮装置からの濃縮有機性廃棄物に好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させる機械攪拌機を備えた多段式好気性消化槽、前記多段式好気消化槽から流出する有機性廃棄物の処理物を固液分離する固液分離装置、及び前記固液分離装置からの分離汚泥の一部を前記好気性消化槽の第1槽循環し、生物学的脱窒素を行うために返送する返送配管を有することを特徴とする有機性廃棄物の処理装置。
(5)有機性廃棄物を有機性固形物濃度が2%以上に濃縮する濃縮装置、前記濃縮装置からの濃縮有機性廃棄物が流入する機械攪拌機を備えた嫌気性処理槽、酸素含有ガス供給手段を備え、前記嫌気性処理槽からの濃縮有機性廃棄物の処理物に好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させる機械攪拌機を備えた多段式好気性消化槽、前記多段式好気消化槽から流出する有機性廃棄物の処理物を固液分離する固液分離装置、及び前記固液分離装置からの分離汚泥の一部を前記嫌気性処理槽へ循環し、生物学的脱窒素を行うために返送する返送配管を有することを特徴とする有機性廃棄物の処理装置。
【0013】
要するに、本発明のポイントは、遠心分離、その他の機械的手段で有機物固形物濃度2%以上に濃縮した余剰活性汚泥のような、有機物固形物濃度の高い有機性廃棄物を、機械攪拌機を備えた多段式好気性消化槽に供給し、槽内を機械的に攪拌しながら酸素含有ガスを少量供給し、溶存酸素が存在する条件で4〜7日程度攪拌し、生物酸化熱によって供給汚泥を40℃以上昇温させて好気性消化及びアンモニア性窒素の亜硝酸化を行い、後段の処理物を前段に循環し、亜硝酸性窒素が第1槽に高濃度に存在するBODを水素供与体として生物学的に脱窒素することにある。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
なお、実施の形態を説明する全図において、同一機能を有するものは同一符号を付けて説明する。
汚水生物処理施設から発生する余剰活性汚泥を対象物にして、図1に本発明の第1実施態様を示す。
遠心分離、浮上濃縮、スクリーン分離などの機械的手段(図示省略)で、余剰活性汚泥を有機物固形物濃度2%以上(好ましくは3%以上)に濃縮した濃縮有機汚泥1を、機械攪拌機を備えた機械攪拌型多段式好気性消化槽2に供給し、槽内を機械的に攪拌しながら酸素含有ガス3(空気、酸素富化空気、純酸素)を少量供給し、溶存酸素が存在する条件で4〜7日程度攪拌する。
【0015】
この結果、先に段落[0004]で説明したような、別個に培養した好熱菌を添加する手段、スチームなどによる人為的加熱を一切使用することなく、槽2内温度が汚泥の自己酸化熱によって、容易に50〜70℃以上に上昇することを見出した。外部から別個に培養した好熱菌を添加するという煩雑な操作は本発明において必要ない。
【0016】
なお、濃縮汚泥を曝気する酸素含有ガス3としては空気で良いが、酸素富化ガス、純酸素を使用すると、排出ガスの持ち去る熱量が減少し、消化槽(以下「攪拌槽」ともいう)2の温度を上昇させやすいので、さらに好ましい。攪拌槽2の温度は非常に重要であり、温度が50℃未満であると、消化率(処理汚泥SS/供給有機物SS)が大きく悪化してしまうが、本発明者等は、流入汚泥固形物濃度が2〜4%の場合、この攪拌槽2(滞留日数3日)に滞留する過程で、槽2内温度が人為的加熱を行うことなく、生物酸化熱だけで温度が40℃以上上昇し、50〜75℃以上になり、有機性汚泥1が酸化分解されてSSが減少し、最終段の好気性消化槽2流出汚泥の固形物濃度は0.5%程度と顕著に減少すること、またアンモニア性窒素が、亜硝酸菌(ニトロゾモナス)によって亜硝酸性窒素に酸化されること、硝酸性窒素は生成しないことを実験的に確認した。この結果、硝酸菌(ニトロバクター)は温度が50℃以上で失活するが、驚くべきことに亜硝酸菌は温度が50〜60℃でも、十分な活性を維持することが見出された。
【0017】
本発明においては、供給汚泥濃度が高濃度で粘性が高く、流動性が悪いので嫌気槽13(図2参照)および好気性消化槽2で、機械的に汚泥を強く攪拌することが重要である。攪拌は攪拌翼による攪拌以外にポンプ循環法でも良い。特にモータ部4が水中に浸漬される水中攪拌機が、モータ発熱を液温上昇に使えるので最適である。
【0018】
本発明によれば、驚くべきことに供給物1の温度が20℃程度の常温でも、濃縮汚泥1の濃度が2%以上の場合、好気性消化槽2内温度が外部からヒーター、スチームなどで一切加温することなく、有機物の生物酸化熱だけの効果によって槽2内温度が40℃以上昇温して、50℃以上の温度まで著しく上昇(供給濃縮汚泥1濃度が3%の場合は、槽2内温度が70℃以上に上昇)することを見出した。この原因は、本発明は「高温好気発酵法」と異なり、水分を蒸発させる必要は全くないので水分蒸発潜熱は不要であり、液温を上昇させるための顕熱だけでよいので、槽2内温度を容易に上昇できるためである。
【0019】
なお、厨芥、廃植物油などの易生分解性有機性廃棄物である厨芥粉砕物6を、嫌気槽13又は好気性消化槽2に供給することによって生物酸化熱発生量が大きく向上し、さらに昇温効果が向上するのでさらに好ましい。厨芥は粉砕後そのまま投入してよい。
この結果、汚泥、厨芥などの厨芥粉砕物6は、高温状態で効果的に生物学的に酸化分解し、SSの大部分が液化して消滅する。また同時に、アンモニアが亜硝酸に酸化される。
曝気する酸素含有ガス3としては、空気以外に酸素富化空気、純酸素を使用しても良い。攪拌槽2からの放熱を極力少なくするために、保温工事を施工しておくことが好ましい。
【0020】
本発明の重要ポイントは、汚泥1濃度を2%以上に高めた状態で多段式好気性消化槽2に供給し、その後好気性消化槽2において、生物酸化熱によって温度を40℃以上昇温させて、好気性消化およびアンモニア性窒素の亜硝酸化を行い、後段の汚泥を前段に循環する点である。
汚泥1の濃度が2%未満の希薄な余剰汚泥を、本発明の消化槽2に供給しても生物酸化熱発生量が少なく、温度上昇効果が非常に少なく、人為的加熱を行わないと汚泥分解・液化効果が減少してしまう。
【0021】
好気性消化槽2を多段にすることによって、後段でアンモニアの亜硝酸化が効果的に進むことが判った。単段にすると、アンモニアの亜硝酸化があまり進まない。この原因は、単段では亜硝酸菌が増殖しにくいためである。段数は3段から5段で十分であり、これ以上段数を増やしても効果の向上は少ない。
後段の好気性消化槽2から汚泥を第1槽に循環させると、亜硝酸性窒素が第1槽に高濃度に存在するBODを水素供与体として、生物学的に脱窒素される。第1槽では、酸素含有ガス3で曝気下状態でも溶存酸素が少ないので、好気的脱窒素が効果的に進む。また後段の好気性消化槽2ほど汚泥SSが減少しているので、前段槽の汚泥SS濃度が減少し、粘性が下がるので機械攪拌動力が削減できる。
【0022】
好気性消化の過程でリンがリン酸イオンとして液側に溶出するので、好気性消化槽2流出液にMgイオンを添加すると、リン酸マグネシウムアンモニウム(MAP)沈殿が析出するので、これを固液分離し、リンを肥料として有価なリン資源として回収できる。
【0023】
好気性消化槽2から流出する汚泥は、膜分離などの固液分離装置8でSSが分離され、分離汚泥9の大部分は、返送汚泥11の返送配管により嫌気槽13又は好気性消化槽2に返送される。分離汚泥の残部は、
イ)凝集剤を添加して汚泥脱水機で脱水する、
ロ)超音波、オゾンなどの汚泥可溶化処理を行い、嫌気槽13又は好気性消化槽2の前段に返送し、可溶化汚泥を生物学的脱窒素のBOD源として利用する、
などの処置をとる。
なお、図1において、10は固液分離装置8からの流出液である。
【0024】
また、図2のように、第1好気消化槽2の前段に嫌気槽13を設け、ここに後段の好気性消化槽2から汚泥を返送し、嫌気的な条件で脱窒素を行うようにしても当然良い。
前記ロ)の方法を適用すると供給有機物を100%消滅できる。
すなわち、好気性消化槽2で分解されなかった汚泥を引き抜き、生物酸化熱によって高温度になっている汚泥を、超音波処理、オゾン酸化、過酸化水素酸化などの物理化学的汚泥可溶化処理(図示省略)を行うと、汚泥の細胞壁が破壊され、汚泥の生分解性非常に向上する。この可溶化処理汚泥を嫌気槽13又は第1好気性消化槽2に循環返送すると、可溶化汚泥が生物分解を受け、SSが減少する。従って、供給した有機物をすべて分解できる。
【0025】
また前記イ)の方法を適用する場合、汚泥温度が60℃程度と高温になっているので、脱水性が非常によく、効果的に脱水できる。好気性消化によってSSが生物学的に分解し減少しているので、脱水ケーキの発生量も少ない。脱水機としてはスクリュウプレスが好適である。
【0026】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこの実施例により何等制限されるものではない。
【0027】
実施例1
汚水生物処理施設から発生する余剰活性汚泥を対象に、図1の工程に基づいて本発明の実証試験を行った。第1表に試験条件を示す。
【0028】
【表1】

Figure 0003813846
【0029】
以上の条件で1ヶ月試験を行った。
この結果、10日後から、系は安定し、定常状態になった。定常状態での消化槽温度は、第1槽71℃、第2槽75℃、第3槽78℃であり、生物酸化熱だけで消化槽温度を高温度に維持できた。
最終段槽流出汚泥のSS濃度は4800mg/リットルであり、供給汚泥SS濃度40000mg/リットルの88%が減少した。
最終段槽からの流出汚泥を膜分離した分離液の水質は、SSゼロ、BOD60mg/リットル、アンモニア性窒素68mg/リットル、全窒素155mg/リットルであった。
【0030】
比較例1
実施例1において、最終段からの汚泥の第1槽への循環を行わなかった以外は、同一条件にして運転した場合の処理水質は、SSゼロ、BOD120mg/リットル、アンモニア性窒素560mg/リットル、全窒素857mg/リットルであった。
【0031】
比較例2
実施例1において攪拌槽を単段にし、滞留時間を3日に設定した以外は、同一条件にして運転した。
この結果、攪拌槽流出汚泥のSSは9800mg/リットルであり、SS減少率は75.5%であった。
【0032】
比較例3
実施例1において、固形物濃度1%の余剰活性汚泥を供給した以外は、同一条件にして運転した結果、攪拌槽の温度は3槽いずれも40℃以下(38〜40℃)であった。最終段消化槽流出汚泥のSS濃度は5600mg/リットルであり、汚泥減少率は30%に過ぎなかった。
【0033】
【発明の効果】
以上のように、本発明によれば、次のような優れた効果が得られる。
1.有機物の生物酸化熱だけを利用して、人為的加熱手段を一切使用することなく、温度50℃以上の高温度で生物酸化を進ませることができるので、SS減少効果が非常に優秀で、かつ汚泥減量化のための設備費、運転費がきわめて安価になり、汚泥減量化処理を実施したいユーザーにとって、非常に有益な技術である。
2.好気性消化槽を多段化したので、亜硝酸化反応が効果的に進む。また、好気性消化の前段に嫌気槽を設けるようにすれば、亜硝酸が生物学的に脱窒素できる。
【0034】
3.高温で生物酸化し、SSが生物学的に大きく減少した汚泥だけを、オゾン、超音波照射などの物理化学的可溶化処理をすればよいので、可溶化処理コスト(処理対象SS量に比例して可溶化コストが増加する)が大きく減少する。
4.生物酸化熱によって高温度にした汚泥を、物理化学的可溶化処理工程に供給できるので、可溶化効果が大きい。(温度が高いほど、超音波、オゾンなどによる可溶化効果が向上する)。
【図面の簡単な説明】
【図1】本発明の有機性廃棄物の処理方法の一実施態様の構成を示すブロック図である。
【図2】本発明の有機性廃棄物の処理方法の別の実施態様の構成を示すブロック図である。
【図3】従来の余剰活性汚泥の可溶化装置の一例の構成を示すブロック図である。
【符号の説明】
1 濃縮有機汚泥
2 機械攪拌型多段式好気性消化槽
3 酸素含有ガス
4 攪拌機
5 モータ
6 有機性廃棄物(厨芥粉砕物)
7 処理汚泥
8 固液分離装置
9 分離汚泥
10 流出液
11 返送汚泥
12 排出汚泥
13 嫌気槽
20 汚水
21 活性汚泥曝気槽
22 活性汚泥混合液
23 沈殿槽
24 処理水
25 沈殿汚泥
26 返送汚泥
27 引き抜き汚泥
28 培養好熱菌
29 可溶化装置
30 加熱源
31 可溶化汚泥[0001]
BACKGROUND OF THE INVENTION
The present invention significantly reduces the amount of biodegradable organic waste such as excess sludge, sewage sludge, and soot in the process of biological treatment of organic sewage such as sewage and industrial wastewater in an energy-saving manner with a very simple device. It relates to new technology that can be reduced.
[0002]
[Prior art]
A large amount of organic sludge (excess sludge, raw sludge, etc.) is generated daily from activated sludge treatment facilities such as sewage, industrial wastewater, and manure, exceeding 10 million tons annually in Japan. The disposal of excess sludge is the biggest problem in environmental problems. Since organic sludge is difficult to dewater, a large amount of dewatering aid (polymer, etc.) is added, dewatered to about 85% with a sludge dewatering machine, and the dewatered cake is landfilled or incinerated. However, it has many problems, such as the cost of dehydration aid, the shortage of landfill for dehydrated cake, the shortage of disposal site for incineration ash, the cost of incineration facilities, and the high cost of heavy oil for incineration.
[0003]
In order to solve such a problem, various sludge solubilization techniques using artificial heating and solubilization means by thermophilic bacteria as shown in FIG. 3 have been proposed. In FIG. 3, the sewage 20 is biologically treated in an activated sludge aeration tank 21, and the activated sludge mixed liquid 22 is precipitated in the sedimentation tank 23 to take out the treated water 24, and is extracted as a part of the precipitated sludge 25. The sludge 27 is separately inoculated with the cultured thermophile 28, placed in a solubilizer 29, heated by a heating source 30 such as steam, solubilized, and the solubilized sludge 31 is placed in the activated sludge aeration tank 21. I try to return it.
As for the sludge solubilization technology by thermophilic bacteria, the inventor of the technology Hasegawa et al. Reports the details in the following literature.
Literature name 1) Katsura, Hasegawa, Miura: Activated sludge process that does not generate surplus sludge using thermophilic microorganisms: Journal of Japan Society on Water Environment, Vol. 21, No. 6, 360-366 (1998)
2) Hasegawa: Sludge reduction technology using thermophilic bacteria: “Leader of sludge generation, volume reduction, cutting-edge technology” workshop material sponsored by the Industrial Technology Association. Held on May 16, 2000 [0004]
This technology extracts the activated sludge in an amount larger than the surplus sludge generation amount from the activated sludge treatment process of organic sewage, adds thermophilic bacteria cultured separately, and heats the temperature to about 65 ° C. with steam, In this method, the sludge is solubilized by the action of thermophilic bacteria and the soluble BOD component is eluted from the sludge cells and then returned to the activated sludge treatment step. According to this document, in order to solubilize activated sludge by thermophilic bacteria, separately cultured thermophilic bacteria are added to sludge, and the sludge temperature is adjusted to a temperature suitable for the activity of thermophilic bacteria (about 65 ° C.). It is specified that an external heat source such as steam is essential for heating.
[0005]
[Problems to be solved by the invention]
However, the sludge reduction technology using thermophilic bacteria has a high sludge heating cost due to steam and the like, and therefore a boiler is required, and a heat exchanger for heat recovery from the heated sludge must be provided. There were also shortcomings such as increased equipment costs and heat exchanger scale problems.
The well-known “aerobic digestion method” of organic sludge supplies sludge to an aeration tank of a single tank, and aerated for a very long time of about 15 to 20 days with an oxygen-containing gas at room temperature. This is a method to reduce sludge by oxidative degradation and endogenous respiration of microorganisms. In the aerobic digestion method, sludge is not mechanically concentrated but is supplied with sludge that has been concentrated by gravity precipitation. The supply amount of the oxygen-containing gas is provided in large quantities so that the dissolved oxygen is in an aerobic state of about 1 to 2 mg / liter.
[0006]
In the aerobic digestion method, a large amount of sludge that cannot be decomposed remains even with aeration for a long time of 20 days, and a sludge reduction rate of only about 50% can be obtained at the maximum. However, there are almost no practical examples in Japan's sewage treatment plants because of the fatal disadvantage that it requires a large aeration tank volume, a large amount of aeration power, and ammonia nitrogen cannot be removed. , It has become an abandoned way. Therefore, an anaerobic digestion method that does not require aeration and can recover methane gas is usually adopted at a sewage treatment plant in Japan.
[0007]
Also known are garbage, organic sludge decomposition, and mineralization methods based on the "high-temperature aerobic fermentation method" using the principle of sludge composting. In this method, wood chips, rice husks, etc. are filled in the tank, and air is supplied while gently agitating the tank. This is a technique for evaporating the water in the input organic solid using the heat of biooxidation. (For example, the 32nd Annual Meeting of the Japan Society on Water Environment p461- (1998): Li, Chiba, treatment characteristics during long-term operation of piggery waste by high-temperature aerobic fermentation).
[0008]
However, since it is indispensable for this technology to evaporate and dry the water in the input organic waste, if all the input organic material is bio-oxidized and does not generate heat of oxidation, it will cover the latent heat of water evaporation. I can't. Therefore, it is necessary to reduce the amount of water in the organic waste to be input as much as possible. If the sludge has a large amount of water, supply the cake dehydrated with a mechanical dehydrator or supply the sludge with a water content of 95% or more as it is. In this case, there is a disadvantage that the amount of sludge is very small and the heat of oxidation is insufficient unless the waste oil (vegetable oil or the like) is replenished, so that the water cannot be evaporated. And the ammonia smell of the exhaust gas from a high temperature aerobic fermenter was intense, and there existed a difficulty that a deodorizing apparatus was indispensable.
[0009]
The present invention solves the above-mentioned problems of the prior art, reduces the amount of organic waste such as sludge in a short time without using any artificial heating means, and removes ammonia nitrogen. The challenge is to provide new technologies that can be used.
[0010]
[Means for Solving the Problems]
The present inventors have found that the above problem can be achieved by applying aeration treatment with oxygen-containing gas of high-concentration sludge in a novel manner.
That is, the present invention has the following configuration.
[0011]
(1) Supply organic waste with organic solids concentration of 2% or more to a multistage aerobic digester equipped with a mechanical stirrer, and mechanically stir the inside of the multistage aerobic digester While supplying an oxygen-containing gas, aerobic digestion and ammonia nitritation are performed, the temperature in the tank is raised by 40 ° C. or more with respect to the supply temperature only by biological oxidation heat without performing artificial heating, The treated organic waste flowing out from the multi-stage aerobic digester is separated into solid and liquid, and a part of the separated sludge is circulated to the first tank of the multi-stage aerobic digester. A method for treating organic waste, characterized by comprising:
(2) Supplying organic waste having an organic solid concentration of 2% or more to an anaerobic treatment tank equipped with a mechanical stirrer, and treating the organic waste discharged from the anaerobic treatment tank Supply to a multi-stage aerobic digester equipped with a mechanical stirrer, supply oxygen-containing gas while mechanically stirring the inside of the multi-stage aerobic digester, to perform aerobic digestion and ammonia nitritation, The temperature inside the tank is raised by 40 ° C. or more with respect to the supply temperature by only bio-oxidation heat without performing artificial heating, and the treated organic waste discharged from the multi-stage aerobic digestion tank is separated into solid and liquid. A method for treating organic waste, wherein a part of the separated sludge is circulated to the anaerobic treatment tank.
[0012]
(3) The organic waste processing method according to (1), wherein solid organic waste such as soot is supplied to the first tank of the multi-stage aerobic digestion tank together with organic sludge. .
(4) A concentrating device for concentrating organic waste to an organic solid concentration of 2% or more, and an oxygen-containing gas supply means. The concentrated organic waste from the concentrating device is subjected to aerobic digestion and ammonia nitrous acid. of to perform the multistage aerobic digester equipped with a mechanical stirrer to raise the temperature 40 ° C. or higher relative feed temperature chamber temperature only biological oxidation heat without artificial heating, the multistage aerobic digestion A solid-liquid separator for solid-liquid separation of the processed organic waste product flowing out from the tank, and a part of the separated sludge from the solid-liquid separator is circulated to the first tank of the aerobic digestion tank ; An organic waste processing apparatus comprising a return pipe for returning to perform denitrification .
(5) Concentrating device for concentrating organic waste to an organic solid concentration of 2% or more, anaerobic treatment tank equipped with a mechanical stirrer into which concentrated organic waste from the concentrating device flows , oxygen-containing gas supply Means for the treatment of concentrated organic waste from the anaerobic treatment tank, aerobic digestion and ammonia nitritation, and supply the temperature inside the tank with only bio-oxidation heat without artificial heating A multi-stage aerobic digester equipped with a mechanical stirrer that raises the temperature by 40 ° C. or higher with respect to the product temperature, a solid-liquid separation device that separates the solid waste from the treated organic waste flowing out of the multi-stage aerobic digester, and An apparatus for treating organic waste, comprising a return pipe for circulating a part of the separated sludge from the solid-liquid separator to the anaerobic treatment tank and returning it for biological denitrification .
[0013]
In short, the point of the present invention is that a mechanical stirrer is provided for organic waste with a high organic solids concentration, such as excess activated sludge concentrated to 2% or higher organic solids concentration by centrifugation or other mechanical means. Supplied to a multi-stage aerobic digestion tank, a small amount of oxygen-containing gas is supplied while mechanically stirring the tank, and stirred for about 4 to 7 days under the condition that dissolved oxygen is present. The temperature is raised to 40 ° C. or more, aerobic digestion and ammonia nitrogen nitritation are performed, the treated product in the latter stage is circulated in the former stage, and BOD containing nitrite nitrogen in the first tank at a high concentration is supplied as a hydrogen donor. As biological denitrification.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments.
A first embodiment of the present invention is shown in FIG. 1 using surplus activated sludge generated from a sewage biological treatment facility as an object.
Concentrated organic sludge 1 obtained by concentrating excess activated sludge to an organic solids concentration of 2% or more (preferably 3% or more) by mechanical means (not shown) such as centrifugal separation, flotation concentration, and screen separation is equipped with a mechanical stirrer. A condition in which dissolved oxygen is present by supplying a small amount of oxygen-containing gas 3 (air, oxygen-enriched air, pure oxygen) while mechanically stirring the inside of the mechanically stirred multistage aerobic digester 2 For about 4-7 days.
[0015]
As a result, the temperature in the tank 2 can be adjusted to the self-oxidation heat of the sludge without using any artificial heating by means such as steam or the like, which is described above in paragraph [0004]. It has been found that the temperature easily rises to 50 to 70 ° C. or higher. The complicated operation of adding thermophilic bacteria cultured separately from the outside is not necessary in the present invention.
[0016]
The oxygen-containing gas 3 for aeration of the concentrated sludge may be air, but if oxygen-enriched gas or pure oxygen is used, the amount of heat taken away by the exhaust gas decreases, and the digestion tank (hereinafter also referred to as “stirring tank”) 2 It is more preferable because it is easy to raise the temperature of The temperature of the stirring tank 2 is very important. If the temperature is lower than 50 ° C., the digestibility (treated sludge SS / supplied organic matter SS) is greatly deteriorated. When the concentration is 2 to 4%, the temperature in the tank 2 rises by 40 ° C. or more with only the bio-oxidation heat without performing artificial heating in the process of staying in the stirring tank 2 (retention days 3 days). The organic sludge 1 is oxidatively decomposed and SS is reduced, and the solids concentration of the aerobic digestion tank 2 effluent sludge in the final stage is remarkably reduced to about 0.5%. In addition, it was experimentally confirmed that ammonia nitrogen was oxidized to nitrite nitrogen by nitrite bacteria (nitrozomonas) and nitrate nitrogen was not generated. As a result, nitrate bacteria (Nitrobacter) were inactivated at temperatures of 50 ° C. or higher, but surprisingly, nitrite bacteria were found to maintain sufficient activity even at temperatures of 50-60 ° C.
[0017]
In the present invention, it is important to mechanically stir the sludge mechanically in the anaerobic tank 13 (see FIG. 2) and the aerobic digestion tank 2 because the supply sludge concentration is high, the viscosity is high, and the fluidity is poor. . Stirring may be performed by a pump circulation method other than stirring by a stirring blade. In particular, an underwater stirrer in which the motor unit 4 is immersed in water is optimal because the motor heat can be used to increase the liquid temperature.
[0018]
Surprisingly, according to the present invention, even when the temperature of the feed 1 is about 20 ° C. and the concentration of the concentrated sludge 1 is 2% or more, the temperature in the aerobic digester 2 is externally increased by a heater, steam, or the like. Without heating at all, the temperature inside the tank 2 is raised by 40 ° C. or more due to the effect of only the bio-oxidation heat of the organic matter, and rises to a temperature of 50 ° C. or more (if the concentration of the supplied concentrated sludge 1 is 3%, It was found that the temperature in the tank 2 rose to 70 ° C. or higher). The reason for this is that, unlike the “high temperature aerobic fermentation method”, the present invention does not need to evaporate the water at all, so the latent heat of water evaporation is unnecessary, and only sensible heat for increasing the liquid temperature is required. This is because the internal temperature can be easily increased.
[0019]
The amount of biooxidation heat generated is greatly improved by supplying the pulverized pulverized material 6, which is an easily biodegradable organic waste such as cocoon and waste vegetable oil, to the anaerobic tank 13 or the aerobic digester 2. This is more preferable because the temperature effect is improved. The koji may be added as it is after pulverization.
As a result, the pulverized product 6 such as sludge and soot is effectively biologically oxidized and decomposed at a high temperature, and most of SS is liquefied and disappears. At the same time, ammonia is oxidized to nitrous acid.
As the oxygen-containing gas 3 to be aerated, oxygen-enriched air or pure oxygen may be used in addition to air. In order to minimize heat radiation from the stirring tank 2, it is preferable to perform heat insulation work.
[0020]
The important point of the present invention is to supply the multi-stage aerobic digester 2 with the sludge 1 concentration increased to 2% or more, and then raise the temperature by 40 ° C. or more by biooxidation heat in the aerobic digester 2. In this way, aerobic digestion and nitritation of ammonia nitrogen are performed, and the latter sludge is circulated to the previous stage.
Even if sludge excess sludge with a concentration of sludge 1 of less than 2% is supplied to the digester 2 of the present invention, the amount of biooxidation heat generation is small, the temperature rise effect is very small, and sludge must be used without artificial heating. Decomposition and liquefaction effect will decrease.
[0021]
It has been found that by making the aerobic digester 2 multi-stage, nitritation of ammonia effectively proceeds in the latter stage. If it is a single stage, ammonia nitritation does not progress much. This is because nitrite bacteria are difficult to grow in a single stage. The number of stages is sufficient from 3 to 5, and even if the number of stages is increased further, the effect is small.
When the sludge is circulated from the aerobic digestion tank 2 in the subsequent stage to the first tank, nitrous acid nitrogen is biologically denitrified using BOD present in a high concentration in the first tank as a hydrogen donor. In the first tank, the aerobic denitrification proceeds effectively because the oxygen-containing gas 3 has little dissolved oxygen even under aeration. Moreover, since sludge SS is decreasing in the aerobic digestion tank 2 in the subsequent stage, the sludge SS concentration in the front tank is decreased and the viscosity is lowered, so that the mechanical stirring power can be reduced.
[0022]
Since phosphorus elutes to the liquid side as phosphate ions during the aerobic digestion process, when magnesium ions are added to the aerobic digestion tank 2 effluent, magnesium ammonium phosphate (MAP) precipitates. It can be separated and recovered as valuable phosphorus resources as fertilizer.
[0023]
The sludge flowing out from the aerobic digestion tank 2 is separated into SS by a solid-liquid separation device 8 such as membrane separation, and most of the separated sludge 9 is anaerobic tank 13 or aerobic digestion tank 2 by a return pipe of the return sludge 11. Will be returned. The remainder of the separated sludge
B) Add flocculant and dehydrate with sludge dehydrator.
B) Perform sludge solubilization treatment with ultrasonic waves, ozone, etc., return to the front stage of the anaerobic tank 13 or the aerobic digestion tank 2, and use the solubilized sludge as a BOD source for biological denitrification.
Take measures such as.
In FIG. 1, reference numeral 10 denotes an effluent from the solid-liquid separator 8.
[0024]
Further, as shown in FIG. 2, an anaerobic tank 13 is provided at the front stage of the first aerobic digester tank 2, and sludge is returned from the aerobic digester tank 2 at the rear stage to perform denitrification under anaerobic conditions. Of course it is good.
Application of the method (b) can eliminate 100% of the supplied organic matter.
That is, the sludge that has not been decomposed in the aerobic digestion tank 2 is extracted, and the sludge that has been heated to high temperature by biological oxidation heat is treated with a physicochemical sludge solubilization treatment such as ultrasonic treatment, ozone oxidation, and hydrogen peroxide oxidation ( When the illustration is omitted, the sludge cell walls are destroyed, and the biodegradability of the sludge is greatly improved. When this solubilized sludge is circulated and returned to the anaerobic tank 13 or the first aerobic digester 2, the solubilized sludge undergoes biodegradation and SS decreases. Therefore, all the supplied organic substances can be decomposed.
[0025]
When the method (a) is applied, since the sludge temperature is as high as about 60 ° C., the dewaterability is very good and the dewatering can be performed effectively. Since SS is biologically degraded and reduced by aerobic digestion, the amount of dehydrated cake generated is small. A screw press is suitable as the dehydrator.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by this Example.
[0027]
Example 1
The verification test of the present invention was conducted based on the process of FIG. 1 for surplus activated sludge generated from a sewage biological treatment facility. Table 1 shows the test conditions.
[0028]
[Table 1]
Figure 0003813846
[0029]
A one-month test was conducted under the above conditions.
As a result, after 10 days, the system became stable and became a steady state. The digester temperature in the steady state was 71 ° C. in the first tank, 75 ° C. in the second tank, and 78 ° C. in the third tank, and the digester temperature could be maintained at a high temperature only by the biooxidation heat.
The SS concentration of the final stage tank outflow sludge was 4800 mg / liter, and 88% of the supplied sludge SS concentration of 40000 mg / liter decreased.
The water quality of the separation liquid obtained by membrane separation of the spilled sludge from the final stage tank was SS zero, BOD 60 mg / liter, ammoniacal nitrogen 68 mg / liter, and total nitrogen 155 mg / liter.
[0030]
Comparative Example 1
In Example 1, except that the sludge from the final stage was not circulated to the first tank, the treated water quality when operating under the same conditions was SS zero, BOD 120 mg / liter, ammoniacal nitrogen 560 mg / liter, Total nitrogen was 857 mg / liter.
[0031]
Comparative Example 2
In Example 1, the operation was performed under the same conditions except that the stirring tank was single-staged and the residence time was set to 3 days.
As a result, the SS of the stirred tank outflow sludge was 9800 mg / liter, and the SS reduction rate was 75.5%.
[0032]
Comparative Example 3
In Example 1, except that surplus activated sludge having a solid concentration of 1% was supplied, the operation was carried out under the same conditions. As a result, the temperature of all three tanks was 40 ° C. or lower (38 to 40 ° C.). The SS concentration of the final stage digester effluent sludge was 5600 mg / liter, and the sludge reduction rate was only 30%.
[0033]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
1. Since only the bio-oxidation heat of organic matter can be used and the bio-oxidation can proceed at a high temperature of 50 ° C or higher without using any artificial heating means, the SS reduction effect is very excellent, and Equipment and operating costs for sludge reduction are extremely low, and this is a very useful technology for users who want to implement sludge reduction treatment.
2. Since the aerobic digester is multistaged, the nitritation reaction proceeds effectively. In addition, if an anaerobic tank is provided before aerobic digestion, nitrous acid can be biologically denitrified.
[0034]
3. Only sludge that has been biologically oxidized at high temperatures and biologically reduced SS has only to be subjected to physicochemical solubilization treatment such as ozone and ultrasonic irradiation, so the solubilization cost (proportional to the amount of SS to be treated) Solubilization costs increase).
4). Since the sludge heated to high temperature by the bio-oxidation heat can be supplied to the physicochemical solubilization process, the solubilization effect is great. (The higher the temperature, the better the solubilization effect by ultrasonic waves, ozone, etc.).
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of a method for treating organic waste according to the present invention.
FIG. 2 is a block diagram showing the configuration of another embodiment of the organic waste processing method of the present invention.
FIG. 3 is a block diagram showing a configuration of an example of a conventional surplus activated sludge solubilizer.
[Explanation of symbols]
1 Concentrated organic sludge 2 Mechanically stirred multi-stage aerobic digester 3 Oxygen-containing gas 4 Stirrer 5 Motor 6 Organic waste (soot ground)
7 treated sludge 8 solid-liquid separator 9 separated sludge 10 effluent 11 return sludge 12 discharged sludge 13 anaerobic tank 20 sewage 21 activated sludge aeration tank 22 activated sludge mixed liquid 23 settling tank 24 treated water 25 precipitated sludge 26 returned sludge 27 drawn sludge 28 Cultured thermophile 29 Solubilizer 30 Heat source 31 Solubilized sludge

Claims (5)

有機性固形物濃度を2%以上に濃縮した有機性廃棄物を、機械攪拌機を備えた多段式好気性消化槽に供給し、該多段式好気性消化槽内を機械的に攪拌しながら酸素含有ガスを供給し、好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させ、前記多段式好気性消化槽から流出する有機性廃棄物の処理物を固液分離し、その分離汚泥の一部を前記多段式好気性消化槽の第1槽に循環し、生物学的脱窒素を行うことを特徴とする有機性廃棄物の処理方法。 Organic waste with organic solids concentration of 2% or more is supplied to a multi-stage aerobic digester equipped with a mechanical stirrer and contains oxygen while mechanically stirring the multi-stage aerobic digester Gas is supplied, aerobic digestion and ammonia nitritation are performed, and the temperature in the tank is raised by 40 ° C. or more with respect to the supply temperature by only the biooxidation heat without performing artificial heating. Solid-liquid separation of the organic waste treated from the aerobic digestion tank, and circulating a part of the separated sludge to the first tank of the multi-stage aerobic digestion tank for biological denitrification A characteristic method for treating organic waste. 有機性固形物濃度を2%以上に濃縮した有機性廃棄物を、機械攪拌機を備えた嫌気性処理槽に供給し、該嫌気性処理槽から流出する有機性廃棄物の処理物を機械攪拌機を備えた多段式好気性消化槽に供給し、該多段式好気性消化槽内を機械的に攪拌しながら酸素含有ガスを供給し、好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させ、前記多段式好気性消化槽から流出する有機性廃棄物の処理物を固液分離し、その分離汚泥の一部を前記嫌気性処理槽に循環することを特徴とする有機性廃棄物の処理方法。Supply organic waste with an organic solid concentration of 2% or more to an anaerobic treatment tank equipped with a mechanical stirrer, and treat the processed organic waste discharged from the anaerobic treatment tank with a mechanical stirrer. It is supplied to a multistage aerobic digester equipped with it, and oxygen-containing gas is supplied while mechanically stirring the inside of the multistage aerobic digester, causing aerobic digestion and ammonia nitritation, and artificial heating The temperature inside the tank is raised by 40 ° C. or more with respect to the supply temperature only by the biooxidation heat without performing the process, and the organic waste processed product flowing out from the multi-stage aerobic digestion tank is separated into solid and liquid. A method for treating organic waste, wherein a part of sludge is circulated to the anaerobic treatment tank. 厨芥などの固形状有機性廃棄物を、有機性汚泥とともに前記多段式好気性消化槽の第1槽に供給することを特徴とする請求項1記載の有機性廃棄物の処理方法。2. The method for treating organic waste according to claim 1, wherein solid organic waste such as soot is supplied to the first tank of the multi-stage aerobic digester together with organic sludge. 有機性廃棄物を有機性固形物濃度が2%以上に濃縮する濃縮装置、酸素含有ガス供給手段を備え、前記濃縮装置からの濃縮有機性廃棄物に好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させる機械攪拌機を備えた多段式好気性消化槽、前記多段式好気消化槽から流出する有機性廃棄物の処理物を固液分離する固液分離装置、及び前記固液分離装置からの分離汚泥の一部を前記好気性消化槽の第1槽循環し、生物学的脱窒素を行うために返送する返送配管を有することを特徴とする有機性廃棄物の処理装置。 Concentrates organic waste to an organic solid concentration of 2% or more , oxygen-containing gas supply means, aerobic digestion and ammonia nitritation of concentrated organic waste from the concentrator Align, multistage aerobic digester equipped with a mechanical stirrer to raise the temperature 40 ° C. or higher relative feed temperature chamber temperature only biological oxidation heat without artificial heating, flowing out of the multi-stage aerobic digester A solid-liquid separation device for solid-liquid separation of the treated organic waste , and a part of the separated sludge from the solid-liquid separation device is circulated to the first tank of the aerobic digestion tank for biological denitrification processor of organic waste, characterized in that it comprises a return piping for returning to perform. 有機性廃棄物を有機性固形物濃度が2%以上に濃縮する濃縮装置、前記濃縮装置からの濃縮有機性廃棄物が流入する機械攪拌機を備えた嫌気性処理槽、酸素含有ガス供給手段を備え、前記嫌気性処理槽からの濃縮有機性廃棄物の処理物に好気性消化およびアンモニアの亜硝酸化を行わせ、人為的加熱を行うことなく生物酸化熱だけで槽内温度を供給物温度に対し40℃以上昇温させる機械攪拌機を備えた多段式好気性消化槽、前記多段式好気消化槽から流出する有機性廃棄物の処理物を固液分離する固液分離装置、及び前記固液分離装置からの分離汚泥の一部を前記嫌気性処理槽へ循環し、生物学的脱窒素を行うために返送する返送配管を有することを特徴とする有機性廃棄物の処理装置。 A concentration device for concentrating organic waste to an organic solid concentration of 2% or more, an anaerobic treatment tank equipped with a mechanical stirrer into which concentrated organic waste from the concentration device flows , and oxygen-containing gas supply means The processed organic waste from the anaerobic treatment tank is subjected to aerobic digestion and ammonia nitritation, and the temperature inside the tank is changed to the supply temperature only by biooxidation heat without performing artificial heating. On the other hand, a multistage aerobic digester equipped with a mechanical stirrer that raises the temperature by 40 ° C. or higher, a solid-liquid separator that separates the processed organic waste discharged from the multistage aerobic digester, and the solid liquid An organic waste treatment apparatus comprising a return pipe for circulating a part of the separated sludge from the separation apparatus to the anaerobic treatment tank and returning it for biological denitrification .
JP2001234911A 2001-08-02 2001-08-02 Organic waste treatment method and apparatus Expired - Fee Related JP3813846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234911A JP3813846B2 (en) 2001-08-02 2001-08-02 Organic waste treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234911A JP3813846B2 (en) 2001-08-02 2001-08-02 Organic waste treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2003047928A JP2003047928A (en) 2003-02-18
JP3813846B2 true JP3813846B2 (en) 2006-08-23

Family

ID=19066438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234911A Expired - Fee Related JP3813846B2 (en) 2001-08-02 2001-08-02 Organic waste treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3813846B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007385A (en) * 2003-05-23 2005-01-13 Sanyo Electric Co Ltd Garbage disposal system
JP2006061743A (en) * 2004-08-24 2006-03-09 Asahi Kasei Clean Chemical Co Ltd Method and apparatus for treating excess sludge
JP4729718B2 (en) * 2005-03-29 2011-07-20 富士電機株式会社 Organic waste treatment methods
JP4778459B2 (en) * 2006-03-03 2011-09-21 アタカ大機株式会社 Construction method of organic waste treatment facility
CN108467169A (en) * 2018-04-20 2018-08-31 中国石油大学(华东) A kind of biological prosthetic skid mounted equipment for oily sludge
TW202317685A (en) * 2021-10-25 2023-05-01 南亞塑膠工業股份有限公司 Method for processing waste fabric containing polyester and elastic fibers

Also Published As

Publication number Publication date
JP2003047928A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
JP4412538B2 (en) Organic waste treatment methods
JP4729718B2 (en) Organic waste treatment methods
JP3662528B2 (en) Organic waste treatment method and apparatus
JP3651836B2 (en) Organic waste treatment methods
JP3763460B2 (en) Biological treatment method and apparatus for organic wastewater
JP3813846B2 (en) Organic waste treatment method and apparatus
JP2003033780A (en) Method for wastewater treatment
JP2005066381A (en) Method and apparatus for treating organic waste water
JP3871531B2 (en) Organic waste treatment method and apparatus
JP3738699B2 (en) Sludge treatment method and treatment apparatus, and sewage treatment method and treatment equipment using the same
JPH10192889A (en) Method for treating organic drainage
JP3409728B2 (en) Organic waste treatment method
JP2004041953A (en) Method and equipment for treating organic waste water
JP2007021367A (en) Method and apparatus for treating organic sludge
TW200521088A (en) Apparatus for anaerrobicly digesting organic waste liquid
JP2002059190A (en) Method of treating sewage and sludge
JP3632914B2 (en) Integrated processing equipment for garbage, human waste and organic sludge
JP2009195783A (en) Organic wastewater treatment method
JP2005324173A (en) Method and apparatus for treating sludge
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
JP3707272B2 (en) Sewage treatment method and apparatus
JPH09253684A (en) Treatment method for organic waste water
JP2001149981A (en) Method for treating sewage and sludge
JP2003071411A (en) Method for treating organic wastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees