JPS63257125A - Manufacture of superconductive wire - Google Patents

Manufacture of superconductive wire

Info

Publication number
JPS63257125A
JPS63257125A JP62090185A JP9018587A JPS63257125A JP S63257125 A JPS63257125 A JP S63257125A JP 62090185 A JP62090185 A JP 62090185A JP 9018587 A JP9018587 A JP 9018587A JP S63257125 A JPS63257125 A JP S63257125A
Authority
JP
Japan
Prior art keywords
wire
metals
group
alloy wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62090185A
Other languages
Japanese (ja)
Inventor
Goro Yamauchi
五郎 山内
Kishio Arita
紀史雄 有田
Masato Mino
正人 三野
Shigemori Miyata
宮田 恵守
Shigeyuki Tsurumi
重行 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62090185A priority Critical patent/JPS63257125A/en
Publication of JPS63257125A publication Critical patent/JPS63257125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the flexibility by heat-treating an alloy wire containing three metal groups consisting of specific multiple kinds of metals respectively in the atmosphere containing oxygen and making the whole surface the oxide of the constituting metal elements of the alloy wire. CONSTITUTION:One or more kinds of metals selected from a group of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, En, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Al, one or more kinds of metals selected from a group of Be, Mg, Ca, Sr, Ba, Ra, and one or more kinds of metals selected from a group of Cu, Ag, Au are mixed with the atom % ratio of about 1:2:3 respectively, this mixture is heated and melted. The molten alloy is sprayed into a cooling medium to form an alloy wire, it is heat-treated in the atmosphere containing oxygen, and the whole surface of the alloy wire is made the oxide of the constituting metal elements of this alloy wire. The flexibility is thereby improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、可とう性に富み、臨界電流密度が大きく、か
つ組成の均一性が高く、かつ作製工程の少ない超伝導線
材およびその作製方法に関するものであり、その超伝導
性は酸化物超伝導体により為されるものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a superconducting wire material that is highly flexible, has a large critical current density, has a highly uniform composition, and requires few manufacturing steps, and a method for manufacturing the same. The superconductivity is achieved by an oxide superconductor.

(従来の技術) Nb:+Ge等の合金系の超伝導材料よりもTc(超伝
導状態となる臨界温度)の高い酸化物系の超伝導材料が
見出されて以来、超伝導磁石や超伝導線材への′応用の
観点から、酸化物超伝導材料を線材化する試みが行われ
ている。しかしながら、合金と異なり酸化物は、塑性変
形能が乏しく線材にすることは困難である。すなわち、
超伝導電流は試料表面近傍しか流れないので応用の観点
からは表面積が大となるよう線径を細くしなければなら
ないが酸化物の線引化技術は金属や合金はど容易ではな
い。さらに高いTcを実現するためには、超伝導相の単
相のみを出現させる必要があるが、現実には状態図に示
されるような相分離をすることが多く、均一な超伝導相
の単相のみを出現させることは困難である。さらに、特
に可とう性が必要とされる場合、酸化物のみでは可とう
性が不足する場合がある。
(Prior art) Since the discovery of oxide-based superconducting materials with a higher Tc (critical temperature for becoming superconducting) than alloy-based superconducting materials such as Nb:+Ge, superconducting magnets and superconducting From the viewpoint of application to wire rods, attempts are being made to turn oxide superconducting materials into wire rods. However, unlike alloys, oxides have poor plastic deformability and are difficult to make into wire rods. That is,
Superconducting current only flows near the surface of the sample, so from an application standpoint the wire diameter must be made small to increase the surface area, but wire drawing technology for oxides is not easy for metals and alloys. In order to achieve even higher Tc, it is necessary to make only a single superconducting phase appear, but in reality, phase separation as shown in the phase diagram often occurs, and a single homogeneous superconducting phase occurs. It is difficult to make only the phases appear. Furthermore, especially when flexibility is required, oxides alone may not provide sufficient flexibility.

このような技術的困難が存在するので、酸化物超伝導線
材が実現するには至っていない。
Because of these technical difficulties, oxide superconducting wires have not yet been realized.

(発明が解決しようとする問題点) 本発明は、従来困難とされていた酸化物超伝導体の線材
を与え、その線材化、均一相化を実現するとともに可と
う性の向上をも実現する方法を与えようとするものであ
る。
(Problems to be Solved by the Invention) The present invention provides a wire of an oxide superconductor, which has been considered difficult in the past, and realizes making the wire into a wire and having a uniform phase, as well as improving flexibility. It attempts to provide a method.

(問題点を解決するための手段) 本発明は、Sc、Y、La、Ce、Pr、Nd。(Means for solving problems) The present invention applies to Sc, Y, La, Ce, Pr, and Nd.

Pm、Sm、En、Gd、  Tb、Dy、Ho。Pm, Sm, En, Gd, Tb, Dy, Ho.

Er、Tm、Yb、Lu、Ac、Alからなる群から選
ばれた一種または複数種の金属(1)と、Be、Mg、
Ca、Sr、Ba、Raからなる群から選ばれた一種ま
たば複数種の金属(II)、Cu、Ag、Auからなる
群から選ばれた一種または複数種の金属(III)を各
々原子%比で概略l:2:3の割合で含む合金線材の少
なくとも表面全体が該合金線材の構成金属元素の酸化物
であることを特徴とする超伝導線材であり、上記金属を
各々原子%比で概略1:2:3の割合で混合し、この混
合物を加熱し、均一に溶融する工程と、溶融した合金を
ノズルより、冷却媒体中に噴出させ合金線材とする工程
と、該合金線材を酸素を含むふん囲気中で熱処理する工
程からなることを特徴とする超伝導線材の作製方法から
なる。この時、特に可とう性が要求される場合には、合
金線材の表面のみ超伝導酸化物層とし、中心部は合金層
のままとする。
One or more metals (1) selected from the group consisting of Er, Tm, Yb, Lu, Ac, Al, Be, Mg,
atomic % of one or more metals (II) selected from the group consisting of Ca, Sr, Ba, and Ra, and one or more metals (III) selected from the group consisting of Cu, Ag, and Au. It is a superconducting wire characterized in that at least the entire surface of the alloy wire contains an oxide of the constituent metal elements of the alloy wire in a ratio of approximately 1:2:3, and each of the above metals is contained in an atomic % ratio. A process of mixing in a ratio of approximately 1:2:3, heating this mixture and melting it uniformly, a process of jetting the molten alloy from a nozzle into a cooling medium to make an alloy wire, and a process of making the alloy wire into an oxygen A method for producing a superconducting wire characterized by comprising a step of heat treatment in an atmosphere containing . At this time, if flexibility is particularly required, the superconducting oxide layer is formed only on the surface of the alloy wire, and the alloy layer remains in the center.

(実施例) [実施例1] La、Ba、Cuを原子%比でl :2:3の割合で混
合し、るつぼ中に入れ、1100℃に加熱し均一な溶融
状態となった後、20μmφのノズルより、この溶融金
属を水中へ噴出させる。水中で冷却固化した合金線材を
1気圧酸素中950℃にて、5時間の酸化処理を施し、
酸化物線材とした。この酸化物線材の電気抵抗の温度変
化を測定したところ、45°Kにて電気抵抗が零となり
、超伝導状態を確認した。
(Example) [Example 1] La, Ba, and Cu were mixed in an atomic % ratio of l:2:3, placed in a crucible, and heated to 1100°C to become a uniform molten state. This molten metal is jetted into the water from a nozzle. The alloy wire rod cooled and solidified in water was subjected to oxidation treatment at 950°C in 1 atm oxygen for 5 hours.
It was made into an oxide wire. When the temperature change in the electrical resistance of this oxide wire was measured, the electrical resistance became zero at 45°K, confirming a superconducting state.

し実施例2コ Y、Ha、Cuを原子%比で1 :2:3の割合で混合
し、るつぼ中に入れ、1500℃に加熱し、均一な溶融
状態となった後、50μmφのノズルより、この溶融金
属を液体窒素中に噴出させる。
Example 2 Y, Ha, and Cu were mixed in an atomic percent ratio of 1:2:3, placed in a crucible, heated to 1500°C, and after reaching a uniform molten state, the mixture was heated through a 50 μmφ nozzle. , the molten metal is jetted into liquid nitrogen.

液体窒素中で冷却固化した合金線材を0.2気圧酸素中
、1000℃にて3時間の酸化処理を施し、この線材の
表面近傍のみ超伝導酸化物層とし、内部は合金線材のま
まとした。
The alloy wire, which had been cooled and solidified in liquid nitrogen, was oxidized for 3 hours at 1000°C in 0.2 atmospheres of oxygen to form a superconducting oxide layer only near the surface of the wire, leaving the inside as the alloy wire. .

溶融合金液体が液体窒素中へと噴出される過程で急冷さ
れるため、合金構成成分は相分離を起こすことなく強制
固溶状態の合金線材となり、その後の熱処理で均一組成
の超伝導酸化物皮膜の形成が可能となる。
Since the molten alloy liquid is rapidly cooled during the process of being ejected into liquid nitrogen, the alloy constituents become an alloy wire in a forced solid solution state without phase separation, and the subsequent heat treatment creates a superconducting oxide film with a uniform composition. It becomes possible to form

このようにして得られた、超伝導線材の電気抵抗の温度
依存性を4端子法で測定したところ、96°にで電気抵
抗が零となり超伝導状態となるのを確認した。さらに、
この線材の引張試験を行ったところ、52 kg/m+
a”の強度が得られ、さらに、この線材を万力にはさみ
、最初の位置より左右に90°ずつ10回の繰り返し曲
げを行ったが、折れることなく可とう性に富む線材であ
ることが認められた。
When the temperature dependence of the electrical resistance of the superconducting wire thus obtained was measured using a four-terminal method, it was confirmed that the electrical resistance became zero at 96°, resulting in a superconducting state. moreover,
When this wire was subjected to a tensile test, it was 52 kg/m+
The wire rod was held in a vise and bent 10 times 90 degrees left and right from the initial position, but it was found that the wire was highly flexible without breaking. Admitted.

[実施例3] その他の金属の組み合わせにより、本発明の方法で超伝
導線材を作製し、超伝導状態となる臨界温度(Tc)を
測定した結果を次表に示す。
[Example 3] Superconducting wires were fabricated by the method of the present invention using combinations of other metals, and the critical temperatures (Tc) at which the wires became superconducting were measured. The results are shown in the following table.

表 金属1(1−III)と作製された超伝導線材の超
伝導臨界温度(’I’c) 表に示さない組み合わせにおいても、40〜100にで
超伝導となる線材が得られた。組成比の(1:2:3)
からのずれは特性の多少の劣化をもたらすが、本質的な
効果においては変化がない。
Table: Superconducting Critical Temperature ('I'c) of Metal 1 (1-III) and Superconducting Wire Fabricated Even in combinations not shown in the table, wires that became superconducting at temperatures of 40 to 100 were obtained. Composition ratio (1:2:3)
A deviation from this results in some deterioration of the characteristics, but there is no change in the essential effect.

原料の混合は各金属の特性を考慮して、行うことが好ま
しい。たとえば、溶融工程において、失われやすい蒸気
圧の高い金属は多めの混合比とする    ゛等である
。線材化後に所定の組成比となることが目的だからであ
る。
It is preferable to mix the raw materials in consideration of the characteristics of each metal. For example, metals with high vapor pressure that are easily lost during the melting process should be mixed at a higher mixing ratio. This is because the purpose is to have a predetermined composition ratio after being made into a wire.

(発明の効果) 以上述べたとおり、本発明は変形能の乏しい酸化物超伝
導体を線引き加工工程を大幅に省略して線材化を達成し
たのみならず、均一な超伝導酸化物相を実現し、さらに
、可とう性が要求される場合には、心線部を合金線、そ
の周囲を超伝導酸化物皮膜で覆い、可とう性に富んだ超
伝導線材かできる。
(Effects of the Invention) As described above, the present invention not only achieves the production of wire rods by significantly omitting the wire drawing process for oxide superconductors with poor deformability, but also realizes a uniform superconducting oxide phase. However, if flexibility is required, a highly flexible superconducting wire can be obtained by covering the core with an alloy wire and surrounding it with a superconducting oxide film.

また、超伝導電流が線材の表面近傍のみを流れることに
着目すれば、線径を細くし、表面積を大とすることが効
率化につながるが、そのためには溶融合金噴出部のノズ
ル径を小さくするのみで良い。
Also, if we focus on the fact that superconducting current flows only near the surface of the wire, reducing the wire diameter and increasing the surface area will lead to higher efficiency, but in order to do this, the nozzle diameter of the molten alloy spouting part must be reduced. Just do it.

このように、本発明は従来困難であった酸化物超伝導体
の線材化を加工工程を省略して実現したものであり、超
伝導体の超伝導ケーブル、超伝導磁石等への広範な応用
を一気に可能とするものである。
In this way, the present invention realizes the production of wires from oxide superconductors, which was difficult in the past, by omitting the processing process, and allows for a wide range of applications of superconductors to superconducting cables, superconducting magnets, etc. This makes it possible all at once.

Claims (2)

【特許請求の範囲】[Claims] (1)Sc、Y、La、Ce、Pr、Nd、Pm、Sm
、En、Gd、Tb、Dy、Ho、Er、Tm、Yb、
Lu、Ac、Alからなる群から選ばれた一種または複
数種の金属( I )と、Be、Mg、Ca、Sr、Ba
、Raからなる群から選ばれた一種または複数種の金属
(II)、Cu、Ag、Auからなる群から選ばれた一種
または複数種の金属(III)を各々原子%比で概略1:
2:3の割合で含む合金線材の少なくとも表面全体が該
合金線材の構成金属元素の酸化物であることを特徴とす
る超伝導線材。
(1) Sc, Y, La, Ce, Pr, Nd, Pm, Sm
, En, Gd, Tb, Dy, Ho, Er, Tm, Yb,
One or more metals (I) selected from the group consisting of Lu, Ac, Al, Be, Mg, Ca, Sr, Ba
, one or more metals (II) selected from the group consisting of Ra, and one or more metals (III) selected from the group consisting of Cu, Ag, and Au, each in an atomic % ratio of approximately 1:
A superconducting wire comprising an alloy wire in a ratio of 2:3, at least the entire surface of which is an oxide of a metal element constituting the alloy wire.
(2)Sc、Y、La、Ce、Pr、Nd、Pm、Sm
、En、Gd、Tb、Dy、Ho、Er、Tm、Yb、
Lu、Ac、Alからなる群から選ばれた一種または複
数種の金属( I )と、Be、Mg、Ca、Sr、Ba
、Raからなる群から選ばれた一種または複数種の金属
(II)、Cu、Ag、Auからなる群から選ばれた一種
または複数種の金属(III)を各々原子%比で概略1:
2:3の割合で混合し、この混合物を加熱し、均一に溶
融する工程と、溶融した合金をノズルより、冷却媒体中
に噴出させ合金線材とする工程と、該合金線材を酸素を
含むふん囲気中で熱処理する工程からなることを特徴と
する超伝導線材の作製方法。
(2) Sc, Y, La, Ce, Pr, Nd, Pm, Sm
, En, Gd, Tb, Dy, Ho, Er, Tm, Yb,
One or more metals (I) selected from the group consisting of Lu, Ac, Al, Be, Mg, Ca, Sr, Ba
, one or more metals (II) selected from the group consisting of Ra, and one or more metals (III) selected from the group consisting of Cu, Ag, and Au, each in an atomic % ratio of approximately 1:
A step of mixing at a ratio of 2:3 and heating this mixture to uniformly melt it, a step of jetting the molten alloy into a cooling medium from a nozzle to make an alloy wire rod, and a step of blowing the alloy wire rod under oxygen-containing dung gas. A method for producing a superconducting wire, comprising a step of heat treatment in an ambient atmosphere.
JP62090185A 1987-04-13 1987-04-13 Manufacture of superconductive wire Pending JPS63257125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090185A JPS63257125A (en) 1987-04-13 1987-04-13 Manufacture of superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090185A JPS63257125A (en) 1987-04-13 1987-04-13 Manufacture of superconductive wire

Publications (1)

Publication Number Publication Date
JPS63257125A true JPS63257125A (en) 1988-10-25

Family

ID=13991425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090185A Pending JPS63257125A (en) 1987-04-13 1987-04-13 Manufacture of superconductive wire

Country Status (1)

Country Link
JP (1) JPS63257125A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277514A (en) * 1987-05-08 1988-11-15 Koujiyundo Kagaku Kenkyusho:Kk Oxide superconductive material
JPH0226825A (en) * 1988-07-16 1990-01-29 Ngk Spark Plug Co Ltd Superconducting ceramic material
US4968663A (en) * 1989-02-27 1990-11-06 Polytechnic University Ductile, single phase-continuous super-conducting oxide conductors
JPH04198018A (en) * 1990-11-28 1992-07-17 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277514A (en) * 1987-05-08 1988-11-15 Koujiyundo Kagaku Kenkyusho:Kk Oxide superconductive material
JPH0226825A (en) * 1988-07-16 1990-01-29 Ngk Spark Plug Co Ltd Superconducting ceramic material
US4968663A (en) * 1989-02-27 1990-11-06 Polytechnic University Ductile, single phase-continuous super-conducting oxide conductors
JPH04198018A (en) * 1990-11-28 1992-07-17 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor and production thereof

Similar Documents

Publication Publication Date Title
JP2601504B2 (en) Preparation of superconducting oxide and superconducting oxide / metal composite
JP2674979B2 (en) Superconductor manufacturing method
US4861751A (en) Production of high temperature superconducting materials
US4968663A (en) Ductile, single phase-continuous super-conducting oxide conductors
JPS63257125A (en) Manufacture of superconductive wire
JPS63313416A (en) Superconductive wire rod and its manufacture
US5294601A (en) High-temperature superconductor comprising barium sulfate, strontium sulfate or mixtures thereof and a process for its preparation
KR910009198B1 (en) Method of manufacturing superconductive products
JPS63257124A (en) Manufacture of superconductive wire
JPS63257126A (en) Manufacture of superconductive wire
JP2566942B2 (en) Method for producing compound superconducting wire
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JPH08315655A (en) Superconducting wire and manufacture thereof
JP2589084B2 (en) Method for producing oxide-based superconducting wire or tape
JP3709532B2 (en) Manufacturing method of oxide superconductor
JPH05310420A (en) Superconductive preform and superconductive fiber
JP3466758B2 (en) Boron-containing metal oxide wire and method for producing metal oxide wire
JP2727565B2 (en) Superconductor manufacturing method
JP3709531B2 (en) Manufacturing method of oxide superconductor
JPH01143744A (en) Production of oxide superconducting fine wire
JPH0799013A (en) Hollow high temperature superconductor and manufacture thereof
JPH03112810A (en) Production of oxide superconducting film
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH04362076A (en) Production of bismuth series superconductor