JPH04296408A - Oxide superconducting wire rod and manufacture thereof - Google Patents

Oxide superconducting wire rod and manufacture thereof

Info

Publication number
JPH04296408A
JPH04296408A JP3062832A JP6283291A JPH04296408A JP H04296408 A JPH04296408 A JP H04296408A JP 3062832 A JP3062832 A JP 3062832A JP 6283291 A JP6283291 A JP 6283291A JP H04296408 A JPH04296408 A JP H04296408A
Authority
JP
Japan
Prior art keywords
wire
oxide
oxide superconductor
superconducting wire
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3062832A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Kanai
恒行 金井
Yuichi Kamo
友一 加茂
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3062832A priority Critical patent/JPH04296408A/en
Publication of JPH04296408A publication Critical patent/JPH04296408A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide an oxide superconducting wire rod and a manufacturing method suitable for manufacturing the wire rod haivng the same large critical current density as a short wire rod even in a long wire rod. CONSTITUTION:In an oxide superconducting wire rod consisting of a metal sheath and an oxide superconductor included therein, the oxide superconducting wire rod characterized in that a composition formula of the oxide superconductor to be filled in the metal sheath is stipulated and oxygen amount emitted at the time of melting is suppressed and a manufacturing method thereof. One example of aforesaid composition formula: BiaSrbCacCu2AgyO7.O-s provided that 1.7<=a<=2.3 1.7<=b<=2.3 0.8<=c<=1.2 1.7<=d<=2.3 0<=y<=0.3 0.5<=s<=1.0.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、酸化物超電導線材に係
わり、特に超電導コイル等に用いるのに好適な高い臨界
電流密度を有する酸化物超電導線材及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire, and more particularly to an oxide superconducting wire having a high critical current density suitable for use in superconducting coils, etc., and a method for manufacturing the same.

【0002】0002

【従来の技術】従来、超電導材料としてはNb3Snや
Nb3Ge等の金属間化合物が知られており、実用化さ
れている。これら金属間化合物は超電導状態が得られる
臨界温度(Tc)は最も高いNb3 Geでも23Kで
あり、冷却には液体ヘリウムを用いることが必要であっ
た。ところが1987年になってY−Ba−Cu−O系
酸化物はTcが約90Kと従来の金属間化合物に比べ飛
躍的に高いことが見い出されて以来、Bi−Sr−Ca
−Cu−O,Tl−Ba−Ca−Cu−O系超電導体が
次々発見された。これら超電導体の臨界温度は液体窒素
の沸点である77Kを大きく上回っており、超電導状態
を得るのに液体ヘリウムを用いずに安価な液体窒素を用
いることができる。この酸化物超電導体の応用としては
、電子デバイス,超電導コイル等の広範な用途が考えら
れる。
BACKGROUND OF THE INVENTION Hitherto, intermetallic compounds such as Nb3Sn and Nb3Ge have been known as superconducting materials and have been put to practical use. The critical temperature (Tc) at which a superconducting state can be obtained in these intermetallic compounds is 23 K even for Nb3Ge, which is the highest, and it is necessary to use liquid helium for cooling. However, in 1987, it was discovered that Y-Ba-Cu-O based oxide has a Tc of approximately 90K, which is dramatically higher than that of conventional intermetallic compounds.
-Cu-O, Tl-Ba-Ca-Cu-O superconductors have been discovered one after another. The critical temperature of these superconductors is much higher than 77 K, which is the boiling point of liquid nitrogen, and inexpensive liquid nitrogen can be used instead of liquid helium to obtain a superconducting state. This oxide superconductor can be used in a wide range of applications such as electronic devices and superconducting coils.

【0003】酸化物超電導線材の超電導コイル等への応
用では、この酸化物超電導線材の長尺化が大きな課題と
なっている。例えば、日経超電導(1990.6.25
発行)によれば、Bi系のBi2Sr2Ca1Cu2O
x材料を880℃程度の温度で部分溶融処理をしたもの
では、数センチm長さの短尺線材では4.2K で30
Tという大きな磁場の下でも、電流密度として21万A
/cm2 程度の値が得られることが報告されている。 しかしながら、これらを数十m長さの長尺線材とし、こ
の線材でコイルを製造すると、4.2Kの極低温であっ
ても0.2T程度の磁場しか発生できない。このため、
酸化物超電導線材のコイル化を考えると、短尺線材と同
等の特性を長尺線材に於いて如何に可能にするかが大き
な問題であることが分かってきた。
[0003] In applying oxide superconducting wires to superconducting coils, etc., increasing the length of the oxide superconducting wires has become a major issue. For example, Nikkei Superconductivity (1990.6.25
According to the publication), Bi-based Bi2Sr2Ca1Cu2O
When the material is partially melted at a temperature of about 880°C, a short wire of several centimeters in length is heated to 30°C at 4.2K.
Even under a large magnetic field of T, the current density is 210,000 A.
It has been reported that a value on the order of /cm2 can be obtained. However, if these are made into long wires several tens of meters in length and a coil is manufactured using this wire, only a magnetic field of about 0.2T can be generated even at an extremely low temperature of 4.2K. For this reason,
When considering the coiling of oxide superconducting wires, it has become clear that a major problem is how to make long wires have the same properties as short wires.

【0004】0004

【発明が解決しようとする課題】上記従来技術は、部分
溶融法によって酸化物超電導相を部分的に溶解させた後
、冷却過程で酸化物超電導相の結晶を成長させると同時
に粒界の接合性を改善することによって、高い臨界電流
密度(Jc)を得ていた。しかしながら、この技術を長
尺線材に適用しようとすると、部分溶融時に液相が線材
端部から流れ出し、臨界電流密度が低くなることが分か
ってきた。
[Problems to be Solved by the Invention] The above-mentioned conventional technology partially dissolves the oxide superconducting phase by a partial melting method, and then grows crystals of the oxide superconducting phase in the cooling process, while at the same time improving the bonding properties of the grain boundaries. By improving this, a high critical current density (Jc) was obtained. However, when this technique is applied to a long wire, it has been found that the liquid phase flows out from the end of the wire during partial melting, lowering the critical current density.

【0005】本発明の目的は、長尺線材においても短尺
線材と同様の大きな臨界電流密度を有する、酸化物超電
導線材及びその線材を製造するのに好適な製造方法を提
供することにある。
An object of the present invention is to provide an oxide superconducting wire in which a long wire has a critical current density similar to that of a short wire, and a manufacturing method suitable for manufacturing the wire.

【0006】[0006]

【課題を解決するための手段】上記目的は、酸化物超電
導線材において、金属シースに充填する酸化物超電導体
原料粉末中の酸素量を適正な値に制御することにより達
成できる。
[Means for Solving the Problems] The above object can be achieved in an oxide superconducting wire by controlling the amount of oxygen in the oxide superconductor raw material powder filled into the metal sheath to an appropriate value.

【0007】従来の超電導線材用の酸化物粉末の合成で
は、大気中あるいは酸素中で行われ、この粉末を金属シ
ース中に詰め、線引き圧延した後部分溶融させると、線
材端部から酸化物超電導体を形成すべき多量の材料が流
失するという問題があった。このため、前述のように長
尺線材を製造すると臨界電流密度が非常に小さくなり、
高磁場を発生するマグネットの製造は不可能であった。
Conventional synthesis of oxide powder for superconducting wire is carried out in the air or in oxygen, and when this powder is packed into a metal sheath, drawn and rolled, and then partially melted, oxide superconductivity is produced from the ends of the wire. There was a problem that a large amount of material from which the body was to be formed was washed away. For this reason, when manufacturing long wire rods as mentioned above, the critical current density becomes extremely small.
It has been impossible to manufacture magnets that generate high magnetic fields.

【0008】本発明者らは種々検討した結果、線材を長
尺化した場合に線材端部から多量の材料が吹き出すのは
、部分溶融時に酸化物超電導材料から酸素の放出が起こ
り、この酸素ガスの圧力のために溶融物がシース外部に
押し出されるためであることがわかった。更に、酸化物
超電導線材において、金属シースに内包される酸化物超
電導体粉末の過剰酸素量が、特許請求項1から3の(1
)〜(3)で表記された組成式において、Bi系では0
.5〜1.0、Tl系では、0.1〜1.9、Y系では
0.1〜0.6の範囲内に抑えることにより達成できる
ことがわかり、本発明に至った。
As a result of various studies, the present inventors found that the reason why a large amount of material blows out from the end of the wire when the wire is lengthened is because oxygen is released from the oxide superconducting material during partial melting, and this oxygen gas It was found that this was because the melt was forced out of the sheath due to the pressure of . Furthermore, in the oxide superconducting wire, the amount of excess oxygen in the oxide superconductor powder included in the metal sheath is set forth in (1) of claims 1 to 3.
) to (3), in the Bi system, 0
.. It was found that this can be achieved by suppressing it within the ranges of 5 to 1.0, 0.1 to 1.9 for Tl systems, and 0.1 to 0.6 for Y systems, leading to the present invention.

【0009】過剰酸素量を上記範囲に抑えるための具体
的な手段としては、■金属シースに充填する前の酸化物
超電導体粉末が、Y−Ba−Cu−O、Bi−Sr−C
a−Cu−O及びTl−Ba−Ca−Cu−O系酸化物
材料に銀を含ませる、■酸化物超電導体の粉末を製造す
る工程の熱処理条件として、その熱処理雰囲気における
融点と熱処理温度との差が60℃以下に抑える、のいず
れか一つ以上の手段を用いることによって、達成できる
As a specific means for suppressing the amount of excess oxygen within the above range, (1) the oxide superconductor powder before being filled into the metal sheath is made of Y-Ba-Cu-O, Bi-Sr-C;
The melting point and heat treatment temperature in the heat treatment atmosphere are as follows: This can be achieved by using one or more of the following means to suppress the difference in temperature to 60°C or less.

【0010】金属シースに充填する前の酸化物超電導粉
末の処理方法として、上記範囲が好ましい理由を次に示
す。
The reason why the above range is preferable as a method for treating the oxide superconducting powder before filling it into the metal sheath is as follows.

【0011】図1は、Bi2Sr2Ca1Cu2Agy
O7.5+δ(y=0及び0.2)組成の粉末を、大気
中或いはAr雰囲気中で、種々の温度で熱処理した粉末
の重量変化を熱分析装置によって調べた結果である。図
から明らかなように、大気中で焼成したものでは500
℃と950℃までの重量減少が2%以上あるのに対して
、Ar雰囲気中で処理したもの、及び銀添加したもので
は重量変化は1.5%以下となることがわかる。図2に
、過剰酸素量δを縦軸に、横軸に各試料の熱処理雰囲気
における融点と熱処理温度の差ΔTをプロットした。Δ
Tが小さいほど、過剰酸素量δは小さくなり、部分溶融
時の放出酸素量は少なくなることが分かる。銀を添加す
るとこの効果は更に大きくなることが分かる。図3には
酸素分圧と融点との関係を示した。
FIG. 1 shows Bi2Sr2Ca1Cu2Agy
These are the results of examining the weight changes of powders having a composition of O7.5+δ (y=0 and 0.2) heat-treated at various temperatures in air or Ar atmosphere using a thermal analyzer. As is clear from the figure, 500
℃ to 950° C. is 2% or more, whereas the weight change is 1.5% or less in those treated in an Ar atmosphere and those to which silver is added. In FIG. 2, the excess oxygen amount δ is plotted on the vertical axis, and the difference ΔT between the melting point of each sample in the heat treatment atmosphere and the heat treatment temperature is plotted on the horizontal axis. Δ
It can be seen that the smaller T is, the smaller the excess oxygen amount δ is, and the smaller the amount of oxygen released during partial melting. It can be seen that this effect becomes even greater when silver is added. FIG. 3 shows the relationship between oxygen partial pressure and melting point.

【0012】一方、これら前処理した粉末を銀シースに
詰め線引きした後、部分溶融熱処理を行い、これら線材
端部からの材料の流れ出し状況、及び4.2K におけ
る超電導特性を測定した。その結果、上記過剰酸素量δ
が、0.5〜1.0の範囲内にあるものでは、線材端部
からの材料の流れ出しが全く認められず、良好な超電導
線材を得ることが出来た。図2より、酸化物超電導体の
粉末を製造する工程の熱処理条件として、その熱処理雰
囲気に於ける融点と熱処理温度との差を60℃以下に抑
えることにより、このような過剰酸素量を有する超電導
粉末が得られることがわかる。
On the other hand, after filling these pretreated powders in a silver sheath and drawing them into wires, a partial melting heat treatment was performed, and the flow of the material from the ends of these wires and the superconducting properties at 4.2K were measured. As a result, the above excess oxygen amount δ
However, when it was within the range of 0.5 to 1.0, no material flowed out from the ends of the wire, and a good superconducting wire could be obtained. From Figure 2, we can see that by suppressing the difference between the melting point in the heat treatment atmosphere and the heat treatment temperature to 60°C or less as the heat treatment conditions in the process of manufacturing oxide superconductor powder, superconductors with such an excess amount of oxygen can be produced. It can be seen that a powder is obtained.

【0013】これら線材のJcを測定したところ、銀添
加量y=0.4 添加したものでは、銀を全く添加して
いないもの、或いは銀をy=0.4 以下添加したもの
に比べてJc値は約1/2と小さな値になることがわか
った。このことより、金属シースに充填前の酸化物超電
導粉末の処理方法として上記範囲が好ましいことがわか
る。
When the Jc of these wire rods was measured, it was found that the Jc of the wire rods with silver added at y = 0.4 was higher than those with no silver added or those with silver added at y = 0.4 or less. It was found that the value was as small as about 1/2. This shows that the above range is preferable as a method for treating the oxide superconducting powder before being filled into the metal sheath.

【0014】本発明の一実施例を、Bi−Sr−Ca−
Cu−O系材料を用い、銀を添加し、不活性雰囲気中で
酸化物超電導材料を合成した場合について示す。
[0014] One embodiment of the present invention is a Bi-Sr-Ca-
A case is shown in which an oxide superconducting material is synthesized in an inert atmosphere using a Cu-O-based material and adding silver.

【0015】Bi2Sr2Ca1Cu2Ag0.2Ox
の組成となるように、Bi2O3,SrO,CaO,C
uO及びAg2O 粉末を秤量した後、混合、粉砕して
アルミナるつぼに入れ、アルゴンガスを500cc/m
in 程度流しながら、780ー840℃の温度で10
時間程度予備焼成し、再び粉砕、予備焼成を2回程度繰
り返し、酸化物超電導粉末を製造した。この酸化物超電
導粉末を銀シース中に入れ、封入した後、線引きして直
径0.7mmφ 程度に減少させた。この長さ100m
のAgシース線材に絶縁被覆を行った後(望ましくは、
ポリチタノカルボシランを数μm厚さにコーテングし2
50℃程度の温度で焼き付け処理した線材)、ステンレ
ス製の巻き枠(内径10mm,望ましくはアルミナ、ジ
ルコニア等の絶縁性の高い皮膜を表面に設けたもの)に
巻いた。このコイルを、大気中で880℃で10分程度
、Bi系超電導材料を部分溶融させた後、815℃まで
冷却し凝固させた後数十時間保持して、室温まで冷却し
た。このコイルを焼成炉から取り出し、線材端部からの
材料の流れ出しを観察した結果、溶融物の流れ出しは全
く認められなかった。このコイルを4.2K の液体ヘ
リウム温度まで冷却して、通電したところ、Ic=10
3Aの電流を流すことができ、2.3T の中心磁場を
発生することができた。このため、本発明品は従来品に
比べ著しく優れた性質を有していることが分かる。
[0015] Bi2Sr2Ca1Cu2Ag0.2Ox
Bi2O3, SrO, CaO, C
After weighing the uO and Ag2O powders, they were mixed, ground and placed in an alumina crucible, and argon gas was added at 500cc/m.
10 minutes at a temperature of 780-840℃ while flowing
Preliminary firing was performed for about an hour, and the pulverization and preliminary firing were repeated about two times to produce an oxide superconducting powder. This oxide superconducting powder was placed in a silver sheath, sealed, and then drawn to reduce the diameter to approximately 0.7 mmφ. This length is 100m
After applying insulation coating to the Ag sheath wire (preferably,
Coated with polytitanocarbosilane to a thickness of several μm2
A wire rod baked at a temperature of about 50° C.) was wound around a stainless steel winding frame (inner diameter 10 mm, preferably coated with a highly insulating film such as alumina or zirconia on the surface). The Bi-based superconducting material of this coil was partially melted at 880° C. for about 10 minutes in the atmosphere, cooled to 815° C. to solidify, and then held for several tens of hours to cool to room temperature. When this coil was taken out of the firing furnace and the flow of material from the end of the wire was observed, no flow of molten material was observed. When this coil was cooled to a liquid helium temperature of 4.2K and energized, Ic=10
It was possible to pass a current of 3A and generate a central magnetic field of 2.3T. Therefore, it can be seen that the product of the present invention has significantly superior properties compared to the conventional product.

【0016】なお、酸化物超電導体としてBi系を取り
上げたが、Y−Ba−Cu−O系、Tl−Ba−Ca−
Cu−O系においても同様に適用できる。また、金属シ
ースに充填する酸化物粉末として銀添加材を用い更に不
活性雰囲気中で熱処理を行ったが、酸化物超電導体の粉
末を製造する工程の熱処理条件として、その熱処理雰囲
気における融点と熱処理温度との差を60℃以下であれ
ば、必ずしも不活性雰囲気である必要はない。
[0016]Although Bi-based oxide superconductors have been taken up, Y-Ba-Cu-O-based, Tl-Ba-Ca-
The same applies to Cu-O systems. In addition, heat treatment was performed in an inert atmosphere using a silver additive as the oxide powder filled in the metal sheath, but the melting point in the heat treatment atmosphere and heat treatment conditions were An inert atmosphere is not necessarily required as long as the difference in temperature is 60° C. or less.

【0017】本発明の酸化物超電導線材が従来技術によ
るものと比較して、高い磁場の発生が可能になったのは
、金属シースに充填される酸化物超電導体粉末の過剰酸
素量が適正値に制御されたため、部分溶融時の酸素放出
量が抑制され、部分溶融時の線材端部からの超電導体の
流れ出しが無くなったためである。
The reason why the oxide superconducting wire of the present invention is able to generate a higher magnetic field than that of the conventional technology is that the amount of excess oxygen in the oxide superconductor powder filled in the metal sheath is at an appropriate value. This is because the amount of oxygen released during partial melting was suppressed, and the superconductor no longer flowed out from the end of the wire during partial melting.

【0018】[0018]

【作用】本発明は、酸化物超電導線材において、金属シ
ースに内包される酸化物超電導体の粉末を製造する工程
の熱処理条件として、その熱処理雰囲気における融点と
熱処理温度との差を60℃以下に抑えることにより、部
分溶融時に放出される酸素量を抑え、酸化物超電導線材
の長尺化を可能にしたものである。これを実現するため
には、酸化物超電導体を金属シースに充填する前に、■
金属シースに充填する前の酸化物超電導体粉末が、Y−
Ba−Cu−O、Bi−Sr−Ca−Cu−O及びTl
−Ba−Ca−Cu−O系酸化物材料に銀を含ませる、
■酸化物超電導体の粉末を製造する工程の熱処理条件と
して、その熱処理雰囲気に於ける融点と熱処理温度との
差が60℃以下に抑える、のいずれか一つ以上の手段を
用いることが望ましい。このようにして、長尺線材に於
いても短尺線材と同等の高いJcが得られるのは、部分
溶融時における酸素に放出が上記手段で抑制できるため
、線材端部からの超電導材料の流れ出しが無いためであ
る。
[Operation] The present invention provides heat treatment conditions for the process of producing oxide superconductor powder contained in a metal sheath for oxide superconducting wires by reducing the difference between the melting point in the heat treatment atmosphere and the heat treatment temperature to 60°C or less. By suppressing the amount of oxygen released during partial melting, it is possible to make the oxide superconducting wire longer. To achieve this, before filling the metal sheath with the oxide superconductor,
The oxide superconductor powder before being filled into the metal sheath is Y-
Ba-Cu-O, Bi-Sr-Ca-Cu-O and Tl
-Including silver in Ba-Ca-Cu-O based oxide material,
(2) As the heat treatment conditions for the process of manufacturing oxide superconductor powder, it is desirable to use one or more of the following means to suppress the difference between the melting point in the heat treatment atmosphere and the heat treatment temperature to 60° C. or less. In this way, a high Jc equivalent to that of a short wire can be obtained even in a long wire because the release of oxygen during partial melting can be suppressed by the above means, and the superconducting material flowing out from the end of the wire can be suppressed. This is because there is no such thing.

【0019】一般に、酸化物は固相から液相に変化する
とき、結晶中に存在する酸素を放出する。従って、この
放出酸素をできる限り少なくしようとすれば、酸素分圧
の低い条件下で、すなわち、不活性雰囲気或いは真空中
で、焼成することが結晶格子中酸素を少なくできる。粉
末表面に吸着している酸素もこの処理によって大幅に少
なくなることが予想される。また、銀の添加によって部
分溶融時における放出酸素量が少なくなるのは、次の2
つの理由が考えられる。第1は、添加されたAgがCu
との共存により液相中で                Ag+1/2O2→A
g2O                      
 (4)なる酸化反応が生ずるためである。第2の理由
は、銀が、超電導体結晶中のBiサイトに置換し、部分
溶融時の主たる酸素放出サイトであるBi−Bi層間の
絶対酸素量を減少させるためと考えられる。
Generally, when an oxide changes from a solid phase to a liquid phase, it releases oxygen present in the crystal. Therefore, in order to reduce the amount of released oxygen as much as possible, firing under conditions of low oxygen partial pressure, that is, in an inert atmosphere or vacuum, can reduce the amount of oxygen in the crystal lattice. It is expected that the amount of oxygen adsorbed on the powder surface will also be significantly reduced by this treatment. Also, the reason why the amount of released oxygen during partial melting decreases due to the addition of silver is due to the following two reasons.
There are two possible reasons. First, the added Ag is Cu
Ag+1/2O2→A in the liquid phase due to coexistence with
g2O
This is because the oxidation reaction (4) occurs. The second reason is considered to be that silver substitutes at Bi sites in the superconductor crystal and reduces the absolute amount of oxygen between the Bi-Bi layer, which is the main oxygen release site during partial melting.

【0020】このようにして、酸化物超電導体を金属シ
ースに充填する前に、■金属シースに充填する前の酸化
物超電導体粉末が、Y−Ba−Cu−O、Bi−Sr−
Ca−Cu−O及びTl−Ba−Ca−Cu−O系酸化
物材料に銀を含ませる、■酸化物超電導体の粉末を製造
する工程の熱処理条件として、その熱処理雰囲気に於け
る融点と熱処理温度との差が60℃以下に抑える、のい
ずれか一つ以上の手段を用いることによって、部分溶融
時における酸素の放出が上記手段で抑制できるため、線
材端部からの超電導材料の流れ出しが無く、長尺線材に
於いても短尺線材と同等の高いJcが得られるのである
In this way, before the oxide superconductor is filled into the metal sheath, (1) the oxide superconductor powder before being filled into the metal sheath is
Melting point and heat treatment in the heat treatment atmosphere as heat treatment conditions for the process of manufacturing oxide superconductor powder, in which Ca-Cu-O and Tl-Ba-Ca-Cu-O based oxide materials are impregnated with silver. By using one or more of the following means to suppress the difference in temperature to 60°C or less, the release of oxygen during partial melting can be suppressed by the above means, so there is no flow of superconducting material from the ends of the wire. Even with long wire rods, high Jc equivalent to that of short wire rods can be obtained.

【0021】[0021]

【実施例】以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

【0022】実施例1 Bi2Sr2Ca1Cu2AgyOx(y=0,0.1
,0.2,0.4)の組成になるようにBi2O3,S
rO,CaO,CuO及びAg2 O粉末を秤量した後
、混合、粉砕してアルミナるつぼに入れ、第1表に示し
た種々の熱処理条件下で、10時間程度の仮焼成を2回
行なった後、粉砕し、それぞれの組成を有する試料番号
1ー8の酸化物超電導体粉末を得た。この粉末を、外径
6mm、内径4.5mmのAgシース中に封入した後、
線引きし、直径0.7mmφ まで減少させ、20m長
さのAgシース線材を製造した。この線材の表面をアセ
トン脱脂した後、キシレン溶媒100mlに対し35g
のポリチタノカルボシランを溶かしたポリチタノカルボ
シラン溶液を、約5μm厚みにAgシース表面にコーテ
イングした。このAgシースにポリマーコーテイングし
た線材を、250℃で30分大気中での焼き付け処理を
行った。
Example 1 Bi2Sr2Ca1Cu2AgyOx (y=0,0.1
,0.2,0.4) Bi2O3,S
After weighing rO, CaO, CuO, and Ag2O powders, they were mixed, ground, and placed in an alumina crucible, and pre-calcined twice for about 10 hours under various heat treatment conditions shown in Table 1. This was ground to obtain oxide superconductor powders of sample numbers 1 to 8 having respective compositions. After encapsulating this powder in an Ag sheath with an outer diameter of 6 mm and an inner diameter of 4.5 mm,
The wire was drawn and the diameter was reduced to 0.7 mmφ to produce a 20 m long Ag sheath wire. After degreasing the surface of this wire with acetone, 35 g per 100 ml of xylene solvent
A polytitanocarbosilane solution prepared by dissolving polytitanocarbosilane was coated on the surface of the Ag sheath to a thickness of about 5 μm. This Ag sheath was coated with a polymer and baked in the air at 250° C. for 30 minutes.

【0023】この同一組成を有する線材を4本を一組と
し、100μmのアルミナ絶縁皮膜を設けたステンレス
製のコイルの巻き枠(内径10mm、外径60mm、コ
イル長さ25mm)に200ターン巻いたコイルを製造
し、上記、材料組成の異なるコイルを2個ずつ合計8個
作った。これらの組成の異なるコイルを、大気中で88
0℃まで3時間で昇温速度し、10分保持し、更に81
5℃まで1分で降温した後、この温度で20時間保持し
、その後10時間で室温まで冷却した。4.2Kの温度
でこのコイルに通電した結果を表1に示す。
A set of four wire rods having the same composition was wound 200 turns around a stainless steel coil winding frame (inner diameter 10 mm, outer diameter 60 mm, coil length 25 mm) provided with a 100 μm alumina insulation film. Coils were manufactured, and two coils each having different material compositions were made, making a total of eight coils. These coils with different compositions were exposed to 88°C in the atmosphere.
The temperature was increased to 0°C in 3 hours, held for 10 minutes, and further heated to 81°C.
The temperature was lowered to 5° C. in 1 minute, maintained at this temperature for 20 hours, and then cooled to room temperature over 10 hours. Table 1 shows the results of energizing this coil at a temperature of 4.2K.

【0024】[0024]

【表1】[Table 1]

【0025】表1より、酸化物超電導体の粉末を製造す
る工程の熱処理条件として、その熱処理雰囲気に於ける
融点と熱処理温度との差が60℃以下に抑えることによ
り、過剰酸素量δを0.5〜1.0の範囲内にでき、本
発明品は比較品に比べ4.2Kでのコイル発生磁場が格
段に大きいことがわかる。これは線材端部からの超電導
材料の流れ出しが無くなったためである。
From Table 1, as the heat treatment conditions for the process of manufacturing oxide superconductor powder, by suppressing the difference between the melting point in the heat treatment atmosphere and the heat treatment temperature to 60°C or less, the excess oxygen amount δ can be reduced to 0. It can be seen that the magnetic field generated by the coil at 4.2K is much larger in the product of the present invention than in the comparative product. This is because the superconducting material no longer flows out from the end of the wire.

【0026】実施例2 実施例1と同様の方法でTl2Ba2Ca2Cu3Ag
yOx(y=0,0.1)の組成になるようにTl2O
3,BaO,CaO,CuO及びAg2 O粉末を秤量
した後、混合、粉砕してアルミナるつぼに入れ、第2表
に示す熱処理条件で10時間程度の仮焼成を2回行なっ
た後、粉砕し、試料番号9ー12を有する酸化物超電導
体粉末を得た。この粉末を、外径6mm、内径4.5m
m のAgシース中に封入した後、線引きし、直径0.
7mmφ まで減少させ、20m長さのAgシース線材
を製造した。 この線材の表面をアセトン脱脂した後、実施例1と同様
の方法で、キシレン溶媒100mlに対し35gのポリ
チタノカルボシランを溶かしたポリチタノカルボシラン
溶液を、約5μm厚みにAgシース表面にコーテイング
した。このAgシースにポリマーコーテイングした線材
を、250℃で30分大気中での焼き付け処理を行った
Example 2 Tl2Ba2Ca2Cu3Ag was prepared in the same manner as in Example 1.
Tl2O to have a composition of yOx (y=0, 0.1)
3. After weighing BaO, CaO, CuO and Ag2O powders, they were mixed, crushed, placed in an alumina crucible, pre-calcined twice for about 10 hours under the heat treatment conditions shown in Table 2, and then crushed. Oxide superconductor powder having sample number 9-12 was obtained. This powder has an outer diameter of 6 mm and an inner diameter of 4.5 m.
After encapsulating it in a Ag sheath with a diameter of 0.5 m, it is drawn into a wire with a diameter of 0.2 m.
The diameter was reduced to 7 mmφ to produce a 20 m long Ag sheath wire. After degreasing the surface of this wire with acetone, in the same manner as in Example 1, a polytitanocarbosilane solution prepared by dissolving 35g of polytitanocarbosilane in 100ml of xylene solvent was applied to the surface of the Ag sheath to a thickness of approximately 5 μm. Coated. This Ag sheath was coated with a polymer and baked in the air at 250° C. for 30 minutes.

【0027】この同一組成を有する線材を4本一組とし
、100μmのアルミナ絶縁皮膜を設けたステンレス製
のコイルの巻き枠(内径10mm,外径60mm,コイ
ル長さ25mm)に200ターン巻いたコイルを製造し
、上記、材料組成の異なるコイルを2個ずつ合計4個作
った。これらの組成の異なるコイルを、大気中で885
℃まで3時間で昇温速度し、10分保持し、更に840
℃まで1分で降温した後、この温度で20時間保持し、
その後10時間で室温まで冷却した。77Kの温度でこ
のコイルに通電した結果を表2に示す。
A set of four wire rods having the same composition was wound for 200 turns around a stainless steel coil winding frame (inner diameter 10 mm, outer diameter 60 mm, coil length 25 mm) provided with a 100 μm alumina insulation film. A total of four coils, two each having different material compositions, were manufactured. These coils with different compositions were exposed to 885 cm in the atmosphere.
℃ in 3 hours, held for 10 minutes, and further heated to 840℃.
After cooling down to ℃ in 1 minute, hold at this temperature for 20 hours,
Thereafter, the mixture was cooled to room temperature over 10 hours. Table 2 shows the results of energizing this coil at a temperature of 77K.

【0028】[0028]

【表2】[Table 2]

【0029】表2より、本発明品は比較品に比べ77K
でのコイル発生磁場が格段に大きいことがわかる。これ
は実施例1と同様に線材端部からの超電導材料の流れ出
しが無くなったためである。なお、Tl系には超電導に
なる結晶相としてTl2Ba2Ca2Cu3Oxの他に
、Tl2Ba2Ca1Cu2Ox、Tl1Ba2Ca2
Cu3Ox、Tl1Ba2Ca1Cu2Ox相があるが
、これらいずれに於いても本発明の方法が有効である。
From Table 2, the product of the present invention is 77K lower than the comparative product.
It can be seen that the magnetic field generated by the coil is significantly larger. This is because, as in Example 1, the superconducting material no longer flows out from the end of the wire. In addition, in addition to Tl2Ba2Ca2Cu3Ox, Tl2Ba2Ca1Cu2Ox and Tl1Ba2Ca2 exist as crystal phases that become superconducting in the Tl system.
There are Cu3Ox and Tl1Ba2Ca1Cu2Ox phases, and the method of the present invention is effective in any of these phases.

【0030】実施例3 実施例1,2と同様の方法でYBa2Cu3AgyOx
(y=0,0.1)の組成になるようにY2O3,Ba
O,CuO及びAg2O 粉末を秤量した後、混合、粉
砕してアルミナるつぼに入れ、表3に示す熱処理条件で
10時間程度の仮焼成を2回行なった後、粉砕し、試料
番号13ー16を有する酸化物超電導体粉末を得た。こ
の粉末を、外径6mm、内径4.5mm のAgシース
中に封入した後、線引きし、直径0.7mmφ まで減
少させ、20m長さのAgシース線材を製造した。この
線材の表面をアセトン脱脂した後、実施例1と同様の方
法で、キシレン溶媒100mlに対し35gのポリチタ
ノカルボシランを溶かしたポリチタノカルボシラン溶液
を、約5μm厚みにAgシース表面にコーテイングした
。このAgシースにポリマーコーテイングした線材を、
250℃で30分大気中での焼き付け処理を行った。
Example 3 YBa2Cu3AgyOx was prepared in the same manner as in Examples 1 and 2.
Y2O3,Ba so that the composition becomes (y=0,0.1)
After weighing O, CuO, and Ag2O powders, they were mixed, crushed, placed in an alumina crucible, and pre-calcined twice for about 10 hours under the heat treatment conditions shown in Table 3, and then crushed to give sample number 13-16. An oxide superconductor powder having the following properties was obtained. This powder was encapsulated in an Ag sheath with an outer diameter of 6 mm and an inner diameter of 4.5 mm, and then wire-drawn to reduce the diameter to 0.7 mm to produce an Ag sheath wire with a length of 20 m. After degreasing the surface of this wire with acetone, in the same manner as in Example 1, a polytitanocarbosilane solution prepared by dissolving 35g of polytitanocarbosilane in 100ml of xylene solvent was applied to the surface of the Ag sheath to a thickness of approximately 5 μm. Coated. This Ag sheath is coated with a polymer,
Baking treatment was performed in the air at 250° C. for 30 minutes.

【0031】この同一組成を有する線材を4本一組とし
、100μmのアルミナ絶縁皮膜を設けたステンレス製
のコイルの巻き枠(内径10mm、外径60mm、コイ
ル長さ25mm)に200ターン巻いたコイルを製造し
、上記、材料組成の異なるコイルを2個ずつ合計4個作
った。これらの組成の異なるコイルを、大気中で100
0℃まで3時間で昇温速度し、10分保持し、更に94
0℃まで1分で降温した後、この温度で20時間保持し
、その後10時間で室温まで冷却した。77Kの温度で
このコイルに通電した結果を表3に示す。
A set of four wires having the same composition was wound 200 turns around a stainless steel coil winding frame (inner diameter 10 mm, outer diameter 60 mm, coil length 25 mm) provided with a 100 μm alumina insulation film. A total of four coils, two each having different material compositions, were manufactured. 100 coils with different compositions were
The temperature was increased to 0°C in 3 hours, held for 10 minutes, and further heated to 94°C.
The temperature was lowered to 0° C. in 1 minute, maintained at this temperature for 20 hours, and then cooled to room temperature over 10 hours. Table 3 shows the results of energizing this coil at a temperature of 77K.

【0032】[0032]

【表3】[Table 3]

【0033】表3より、本発明品は比較品に比べ77K
でのコイル発生磁場が格段に大きいことがわかる。これ
は実施例1,2と同様に線材端部からの超電導材料の流
れ出しが無くなったためである。なお、Y系超電導体に
は、希土類の種類を変更することによっても同様の特性
を有する超電導コイルを製造することができる。
From Table 3, the product of the present invention is 77K lower than the comparative product.
It can be seen that the magnetic field generated by the coil is significantly larger. This is because, as in Examples 1 and 2, the superconducting material no longer flows out from the ends of the wire. Note that a superconducting coil having similar characteristics can be manufactured by changing the type of rare earth element in the Y-based superconductor.

【0034】[0034]

【発明の効果】以上のように、本発明によれば、長尺線
材においても短尺線材と同様の大きな臨界電流密度を有
する酸化物超電導線材を容易に得ることができ、酸化物
超電導線材の工業化に際して大きな効果がある。
As described above, according to the present invention, it is possible to easily obtain an oxide superconducting wire having a critical current density as large as that of a short wire even in a long wire, and to industrialize the oxide superconducting wire. It has a big effect on

【図面の簡単な説明】[Brief explanation of drawings]

【図1】金属シースに充填する前の粉末の熱処理条件の
違いによる、部分溶融時の重量変化の違いを示す図。
FIG. 1 is a diagram showing differences in weight change during partial melting due to differences in heat treatment conditions of powder before being filled into a metal sheath.

【図2】過剰酸素量δと試料の熱処理雰囲気における融
点と熱処理温度の差ΔTとの関係を示す図。
FIG. 2 is a diagram showing the relationship between the excess oxygen amount δ and the difference ΔT between the melting point and the heat treatment temperature in the heat treatment atmosphere of the sample.

【図3】酸素分圧と試料の融点との関係を示す図。FIG. 3 is a diagram showing the relationship between oxygen partial pressure and melting point of a sample.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属シースと、それに内包された酸化物超
電導体とから構成される酸化物超電導線材において、金
属シースに充填される酸化物超電導体原料粉末が、下記
の組成式BiaSrbCacCudAgyO7.0+δ
ただし、1.7≦a≦2.3 1.7≦b≦2.3 0.8≦c≦1.2 1.7≦d≦2.3 0≦y≦0.3 0.5≦δ≦1.0 で表されることを特徴とする酸化物超電導線材。
1. An oxide superconducting wire consisting of a metal sheath and an oxide superconductor encapsulated therein, wherein the oxide superconductor raw material powder filled in the metal sheath has the following compositional formula: BiaSrbCacCudAgyO7.0+δ
However, 1.7≦a≦2.3 1.7≦b≦2.3 0.8≦c≦1.2 1.7≦d≦2.3 0≦y≦0.3 0.5≦δ An oxide superconducting wire characterized in that ≦1.0.
【請求項2】金属シースと、それに内包された酸化物超
電導体とから構成される酸化物超電導線材において、金
属シースに充填される酸化物超電導体原料粉末が、下記
の組成式TlaBabCacCudAgyO2.5+δ
ただし、0.3≦a≦1.2 0.6≦b≦1.2 0.4≦c≦0.8 0.9≦d≦1.2 0≦y≦0.2 0.1≦δ≦1.9 で表されることを特徴とする酸化物超電導線材。
2. In an oxide superconducting wire consisting of a metal sheath and an oxide superconductor encapsulated therein, the oxide superconductor raw material powder filled in the metal sheath has the following compositional formula TlaBabCacCudAgyO2.5+δ
However, 0.3≦a≦1.2 0.6≦b≦1.2 0.4≦c≦0.8 0.9≦d≦1.2 0≦y≦0.2 0.1≦δ An oxide superconducting wire characterized in that ≦1.9.
【請求項3】金属シースと、それに内包された酸化物超
電導体とから構成される酸化物超電導線材において、金
属シースに充填される酸化物超電導体原料粉末が、下記
の組成式YaBabCucAgyO6.0+δただし、
0.8≦a≦1.2 1.8≦b≦2.2 2.8≦c≦3.2 0≦y≦0.2 0.1≦δ≦0.6 で表されることを特徴とする酸化物超電導線材。
3. In an oxide superconducting wire consisting of a metal sheath and an oxide superconductor encapsulated therein, the oxide superconductor raw material powder filled in the metal sheath has the following compositional formula: YaBabCucAgyO6.0+δ ,
0.8≦a≦1.2 1.8≦b≦2.2 2.8≦c≦3.2 0≦y≦0.2 0.1≦δ≦0.6 oxide superconducting wire.
【請求項4】請求項1,2及び3記載の酸化物超電導線
材が、酸化物超電導体の粉末を製造する工程と、該酸化
物超電導粉末を金属シースに充填する工程と、該金属シ
ースを線引きする工程と、得られた前記線材を線材内部
の酸化物超電導体が部分溶融する以上の温度で熱処理す
る酸化物超電導線材を製造する工程において、前記酸化
物超電導体の粉末を製造する工程の熱処理条件として、
その熱処理雰囲気における融点と熱処理温度との差が6
0℃以下であることを特徴とする酸化物超電導線材の製
造方法。
4. The oxide superconducting wire according to claims 1, 2, and 3 comprises a step of manufacturing an oxide superconductor powder, a step of filling a metal sheath with the oxide superconductor powder, and a step of filling the metal sheath with the oxide superconductor powder. In the step of producing an oxide superconducting wire in which the wire is drawn and the obtained wire is heat-treated at a temperature higher than that at which the oxide superconductor inside the wire partially melts, the step of producing powder of the oxide superconductor is performed. As heat treatment conditions,
The difference between the melting point and the heat treatment temperature in the heat treatment atmosphere is 6
A method for producing an oxide superconducting wire, characterized in that the temperature is 0°C or lower.
【請求項5】請求項1,2及び3記載の酸化物超電導線
材が、酸化物超電導体の粉末を製造する工程と、該酸化
物超電導粉末を金属シースに充填する工程と、該金属シ
ースを線引きする工程と、線引きの後に一回以上の圧延
を行う工程と、得られた前記線材を線材内部の酸化物超
電導体が部分溶融する以上の温度で熱処理する酸化物超
電導線材を製造する工程において、前記酸化物超電導体
の粉末を製造する工程で、熱処理条件としてその熱処理
雰囲気における融点と熱処理温度との差が60℃以下で
あることを特徴とする酸化物超電導線材の製造方法。
5. The oxide superconducting wire according to claims 1, 2, and 3 comprises a step of producing an oxide superconductor powder, a step of filling a metal sheath with the oxide superconductor powder, and a step of filling the metal sheath with the oxide superconductor powder. In the step of manufacturing an oxide superconducting wire, the steps include a step of drawing a wire, a step of rolling one or more times after the wire drawing, and a step of heat-treating the obtained wire at a temperature higher than that at which the oxide superconductor inside the wire partially melts. . A method for manufacturing an oxide superconducting wire, characterized in that in the step of manufacturing the oxide superconductor powder, the difference between the melting point in the heat treatment atmosphere and the heat treatment temperature is 60° C. or less as a heat treatment condition.
【請求項6】請求項1,2及び3記載の酸化物超電導線
材が、酸化物超電導体の粉末を製造する工程と、該酸化
物超電導粉末を金属シースに充填する工程と、該金属シ
ースを線引きする工程と、線引きの後に一回以上の圧延
する工程と、得られた前記線材を、線材内部の酸化物超
電導体が部分溶融する以上の温度で熱処理する酸化物超
電導線材を製造する工程と、更に、線引き或いは圧延を
複数回繰り返す工程を経た後、前記線材を、線材内部の
酸化物超電導体が部分溶融する以上の温度で熱処理する
酸化物超電導線材を製造する工程において、前記酸化物
超電導体の粉末を製造する工程で、熱処理条件としてそ
の熱処理雰囲気における融点と熱処理温度との差が60
℃以下であることを特徴とする酸化物超電導線材の製造
方法。
6. The oxide superconducting wire according to claims 1, 2, and 3 comprises a step of producing an oxide superconductor powder, a step of filling a metal sheath with the oxide superconductor powder, and a step of filling the metal sheath with the oxide superconductor powder. a step of drawing the wire; a step of rolling one or more times after the wire drawing; and a step of producing an oxide superconducting wire by heat-treating the obtained wire at a temperature higher than that at which the oxide superconductor inside the wire partially melts. Further, in the step of manufacturing an oxide superconducting wire, the wire is heat-treated at a temperature higher than that at which the oxide superconductor inside the wire partially melts after undergoing a step of repeating drawing or rolling a plurality of times. In the process of manufacturing body powder, the heat treatment condition is such that the difference between the melting point in the heat treatment atmosphere and the heat treatment temperature is 60%.
A method for producing an oxide superconducting wire, characterized in that the temperature is below °C.
【請求項7】請求項4,5及び6記載の金属シースに充
填する酸化物超電導体の粉末を製造する工程において、
熱処理雰囲気として不活性雰囲気中で行うことを特徴と
する酸化物超電導線材の製造方法。
7. In the step of producing oxide superconductor powder to be filled in the metal sheath according to claims 4, 5 and 6,
A method for producing an oxide superconducting wire, characterized in that the heat treatment is carried out in an inert atmosphere.
JP3062832A 1991-03-27 1991-03-27 Oxide superconducting wire rod and manufacture thereof Pending JPH04296408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062832A JPH04296408A (en) 1991-03-27 1991-03-27 Oxide superconducting wire rod and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062832A JPH04296408A (en) 1991-03-27 1991-03-27 Oxide superconducting wire rod and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04296408A true JPH04296408A (en) 1992-10-20

Family

ID=13211689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062832A Pending JPH04296408A (en) 1991-03-27 1991-03-27 Oxide superconducting wire rod and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04296408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621610A2 (en) * 1993-04-21 1994-10-26 Vacuumschmelze Gmbh Process for heat treatment of high temperature superconductors in silver-containing tubes
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621610A2 (en) * 1993-04-21 1994-10-26 Vacuumschmelze Gmbh Process for heat treatment of high temperature superconductors in silver-containing tubes
EP0621610A3 (en) * 1993-04-21 1995-10-11 Vacuumschmelze Gmbh Process for heat treatment of high temperature superconductors in silver-containing tubes.
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production

Similar Documents

Publication Publication Date Title
KR970004554B1 (en) Apparatus and systems comprising a superconductive body and method for producing such body
JP2672334B2 (en) Superconductor manufacturing method
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
US4968663A (en) Ductile, single phase-continuous super-conducting oxide conductors
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
KR910009198B1 (en) Method of manufacturing superconductive products
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
JP2727565B2 (en) Superconductor manufacturing method
JPH06275146A (en) Composite superconducting wire
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JPH09129053A (en) Manufacture of oxide superconductive wire material
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
JPS63299012A (en) Superconductive fiber and its manufacture
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH05101719A (en) Oxide superconductive wire rod and manufacture thereof
JP3524530B2 (en) Method and apparatus for manufacturing oxide superconductor structure
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH07122125A (en) Oxide superconducting wire rod and manufacture thereof
JPH03112810A (en) Production of oxide superconducting film
JP3450488B2 (en) Boron-containing metal oxide superconducting wire
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH06203669A (en) Manufacture of bi oxide superconductor