JPS63255817A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS63255817A
JPS63255817A JP62090241A JP9024187A JPS63255817A JP S63255817 A JPS63255817 A JP S63255817A JP 62090241 A JP62090241 A JP 62090241A JP 9024187 A JP9024187 A JP 9024187A JP S63255817 A JPS63255817 A JP S63255817A
Authority
JP
Japan
Prior art keywords
ratio
recording
coercive force
magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62090241A
Other languages
Japanese (ja)
Inventor
Masaki Aoki
正樹 青木
Hideo Torii
秀雄 鳥井
Hideaki Komoda
英明 菰田
Nobuyuki Aoki
青木 延之
Keiichi Ochiai
落合 圭一
Ikuo Ota
大田 伊久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62090241A priority Critical patent/JPS63255817A/en
Publication of JPS63255817A publication Critical patent/JPS63255817A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit high-density perpendicular magnetic recording by specifying the coercive force of hexagonal ferrite powder to 200-600 oersted and specifying the ratio of the amt. of residual magnetization of a perpendicular component and the amt. of residual magnetization of an intra-surface component to >=2.0. CONSTITUTION:The hexagonal ferrite powder 13 having a large ratio of grain size and thickness and low coercive force and a coating type medium consisting of an org. binder and having good perpendicular orientational property are used. The ratio of the residual magnetic flux density of the perpendicular component of the magnetization curve of the hexagonal ferrite powder and the residual magnetic flux density of the intra-surface component is >=2.0; the grain size is 0.05-0.3mum; the ratio of the grain size and the thickness is 15-25; and the coercive force is 200-600 oersted. The relatively small coercive force and the high-density recording with the medium having the good perpendicular orientational are thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高密度の垂直磁気記録を可能とする磁気記録
媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic recording medium that enables high-density perpendicular magnetic recording.

従来の技術 近年磁気記録は、高密度化、ディジタル化の方向へ進み
つつある。磁気記録の方式として従来は磁気記録媒体の
面内に磁化の容易軸を持っているいわゆる面内磁化によ
る磁気記録方式が主であった。しかしながら本方式では
、記録密度を上げれば上げるほど磁気記録媒体内の磁化
方向が互いに反発し合うように並ぶため高密度化を計る
のが困難になってきている。そこで最近磁気記録の新し
い方式として、磁気記録媒体の内面に対して垂直方向に
磁化容易軸を持っているいわゆる垂直磁化による磁気記
録方式が開発され、記録密度が飛躍的に増大することが
可能となった。(例えば、岩崎:垂直磁化を用いた高密
度磁気記録:日経エレクトロニクス 1978年8月7
日号。P100〜111)このような垂直磁気記録方式
においては、用いる磁性粉は記録媒体の表面に対して垂
直な方向に磁化容易軸を有していることが必要である。
BACKGROUND OF THE INVENTION In recent years, magnetic recording has been moving toward higher density and digitalization. Conventionally, the main magnetic recording method has been a magnetic recording method using so-called in-plane magnetization, which has an easy axis of magnetization within the plane of the magnetic recording medium. However, in this method, as the recording density is increased, the magnetization directions within the magnetic recording medium are arranged so as to repel each other, making it difficult to achieve high density. Recently, a new method of magnetic recording, called perpendicular magnetization, in which the axis of easy magnetization is perpendicular to the inner surface of the magnetic recording medium, has been developed, making it possible to dramatically increase the recording density. became. (For example, Iwasaki: High-density magnetic recording using perpendicular magnetization: Nikkei Electronics August 7, 1978
Day number. P100-111) In such a perpendicular magnetic recording system, the magnetic powder used must have an axis of easy magnetization in a direction perpendicular to the surface of the recording medium.

現在のところ、コバルト−クロム(Co −Cr)合金
膜が支持基体の表面にスパッタ法によって形成されたも
のがある。(例えば、岩崎、山崎:垂直磁気異法性を持
つGo −Crスパッタ膜について:第7回応用磁気学
会学術講演会、4PA−7,1975年)またCo −
Cr以外にもバリウムフェライトの塗布型の垂直磁気記
録媒体も開発されつつある。(例えば特開昭60−69
822号公報) 発明が解決しようとする問題点 しかしこれらの磁気記録媒体の場合、垂直配向性は良好
であるが、Co −Cr合金膜は、Co −Crと磁気
ヘッドとが摺動する際に記録媒体と磁気ヘッド双方の摩
耗が激しくなること及び記録媒体自体が可とう性に劣り
、ヘッドの走行もスムースに行かないという欠点がある
At present, there are some in which a cobalt-chromium (Co-Cr) alloy film is formed on the surface of a supporting base by sputtering. (For example, Iwasaki, Yamazaki: On Go - Cr sputtered films with perpendicular magnetic anisotropy: 7th Academic Conference of the Japan Society of Applied Magnetics, 4PA-7, 1975) Also, Co -
In addition to Cr, coated perpendicular magnetic recording media made of barium ferrite are also being developed. (For example, JP-A-60-69
(No. 822 Publication) Problems to be Solved by the Invention However, although these magnetic recording media have good perpendicular alignment, the Co--Cr alloy film has problems when the Co--Cr and the magnetic head slide. There are disadvantages in that both the recording medium and the magnetic head are subject to severe wear, the recording medium itself has poor flexibility, and the head does not run smoothly.

又従来から硬質磁性材料として知られている例えばBa
Fe、□01.(バリウムフェライト)などの六方晶系
フェライトは、六角の平板状をなしており、かつ磁化容
易軸も平板の面に垂直であるから、この大方晶系フェラ
イトを記録媒体用の磁性粉末として用いることができれ
ば、塗布法により記録媒体層を形成することが可能とな
り、Co −Crスパッタ膜の場合のように、ヘッドの
摩耗や、ヘッドの走行性も良好な物が得られると考えら
れる。
Also, conventionally known hard magnetic materials such as Ba
Fe, □01. Hexagonal ferrite such as (barium ferrite) has a hexagonal flat plate shape, and the axis of easy magnetization is perpendicular to the plane of the flat plate, so this macrogonal ferrite can be used as magnetic powder for recording media. If this is possible, it will be possible to form a recording medium layer by a coating method, and it is thought that a product with good head wear and head runnability, as in the case of a Co--Cr sputtered film, will be obtained.

しかしながら上記従来例の大方晶系フェライトは、保磁
力Hcが高く、板状比(六角の平板状の最大の対角線の
長さDと厚みtの比D/l)が15以下であるため、現
在実用化されている安価で耐摩耗性、走行性の優れたM
n−Zn系のヘッド(マンガン−亜鉛フェライトヘッド
)では、十分な記録再生ができないばかりか、高い保磁
力と高い板状比のために塗布法による成膜過程において
、粒子相互が凝集し易く、したがって垂直配向性が悪く
高記録密度が可能な垂直磁気記録媒体を得ることができ
なかった。すなわち磁化曲線における、垂直成分の残留
磁束密度(Br上)と面内成分の残留磁束密度(Br 
’ )との比CBr工/ 3r’ )が2以下となり垂
直磁化膜となりにくい欠点があった。
However, the macrogonal ferrite of the conventional example has a high coercive force Hc and a plate ratio (ratio D/l of the maximum diagonal length D of a hexagonal plate shape to the thickness t) of 15 or less. Practical M that is inexpensive and has excellent wear resistance and running performance.
In the n-Zn type head (manganese-zinc ferrite head), not only is it not possible to perform sufficient recording and reproduction, but due to the high coercive force and high platelet ratio, particles tend to aggregate with each other during the film formation process using the coating method. Therefore, it has been impossible to obtain a perpendicular magnetic recording medium that has poor perpendicular alignment and is capable of high recording density. That is, in the magnetization curve, the residual magnetic flux density of the vertical component (on Br) and the residual magnetic flux density of the in-plane component (on Br
The ratio CBr/3r') was less than 2, which had the disadvantage that it was difficult to form a perpendicularly magnetized film.

問題点を解決するための手段 本発明は、前記問題点を解決するため、従来のスパッタ
法で得られる連続合金膜状の媒体でなく、粒径と厚みの
比が大きくしかも保磁力の低い六方晶系フェライト粉と
有機バインダー系よりなる垂直配向性の良好な塗布型媒
体を用いることにより優れた高密度記録媒体が得られる
ことを見出した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses a hexagonal medium that has a large grain size to thickness ratio and a low coercive force, instead of using a continuous alloy film-like medium obtained by conventional sputtering methods. It has been found that an excellent high-density recording medium can be obtained by using a coated medium with good vertical alignment made of crystalline ferrite powder and an organic binder system.

作用 発明者らは、保磁力が比較的ちいさく、垂直配向性の優
れた六方晶系フェライト塗布型媒体が優れた高密度記録
媒体になることを見出した。すなわち本発明の磁気記録
媒体は、保磁力がちいさく垂直配向性が優れている(磁
化曲線の垂直成分の残留磁束密度と面内成分の残留磁束
密度の比が大)ため、高密度記録領域(短波長領域)で
の記録再生特性が優れている。これは、従来の長手記録
(面内記録)では、高密度記録を達成しようとすると大
きい反磁界に対抗して高い保磁力の媒体、反磁界を減ら
すために薄くかつ磁化の低い媒体が必要なのに対して、
垂直記録では、高記録密度(短波長記録)程度、磁界が
すくなくなるので保磁力を低くできかつ媒体の厚みを薄
(する必要がないためである。
The inventors have discovered that a hexagonal ferrite coated medium with a relatively small coercive force and excellent vertical alignment can be an excellent high-density recording medium. In other words, the magnetic recording medium of the present invention has a small coercive force and excellent vertical alignment (the ratio of the residual magnetic flux density of the perpendicular component to the residual magnetic flux density of the in-plane component of the magnetization curve is large), so it can be used in high-density recording areas ( Excellent recording and reproducing characteristics in the short wavelength region). This is because in conventional longitudinal recording (in-plane recording), in order to achieve high-density recording, a medium with a high coercive force is required to resist a large demagnetizing field, and a thin medium with low magnetization is required to reduce the demagnetizing field. for,
This is because in perpendicular recording, the magnetic field is small at high recording densities (short wavelength recording), so the coercive force can be lowered and there is no need to make the medium thinner.

この高密度記録を達成するためには、垂直配向性の優れ
た媒体が必要であり、本発明の保磁力の低い、しかも垂
直配向性の高い媒体が最も高密度記録に適していると言
える。特に共沈法で得られた六方晶系粒子の粒径が0.
05〜0.3μmで粒径と厚みとの比が15〜25の粉
体は、塗布した時に垂直配向しやすく優れた磁性粉体と
言える。
In order to achieve this high-density recording, a medium with excellent vertical alignment is required, and it can be said that the medium of the present invention with low coercive force and high vertical alignment is most suitable for high-density recording. In particular, the particle size of the hexagonal crystal particles obtained by the coprecipitation method is 0.
Powder having a diameter of 0.05 to 0.3 μm and a ratio of particle size to thickness of 15 to 25 can be said to be an excellent magnetic powder that is easily vertically aligned when applied.

実施例 以下、本発明の一実施例について図面に基づいて説明す
る。図は本発明の一実施例における垂直磁気記録媒体の
概略図を示すものである。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. The figure shows a schematic diagram of a perpendicular magnetic recording medium in an embodiment of the present invention.

図において11は支持基体、12は磁性層、13は六方
晶フェライト粒子、14は有機バインダーである。
In the figure, 11 is a support substrate, 12 is a magnetic layer, 13 is hexagonal ferrite particles, and 14 is an organic binder.

まずCu −Zrで一部置換し共沈法で得られた平均粒
径0.1μm、板状粒子の厚さ0.05μm(板状比2
0)のバリウムフェライト粉100重量部と、結合剤と
して、塩化ビニル酢酸ビニル共重合体10重量部、ポリ
ウレタン樹脂10重量部、ポリイソシアネ−)1.5重
量部、レシチン1重量部、ステアリン酸0.5重量部、
メチルエチルケトン125重量部、トルエン120重量
部から成る組成物をボールミルで約80時間混合分散し
て磁性塗料を調製した。この磁性塗料を厚さ13μmの
ポリエステルフィルム上に乾燥厚が4μmとなるように
塗布、乾燥し、表面処理を行なった後、所定の幅に裁断
して磁気テープを作った。
First, the average particle diameter was 0.1 μm and the thickness of plate-like particles was 0.05 μm (plate ratio 2
100 parts by weight of the barium ferrite powder of 0), 10 parts by weight of vinyl chloride vinyl acetate copolymer, 10 parts by weight of polyurethane resin, 1.5 parts by weight of polyisocyanate, 1 part by weight of lecithin, and 0.0 parts by weight of stearic acid as a binder. 5 parts by weight,
A magnetic paint was prepared by mixing and dispersing a composition consisting of 125 parts by weight of methyl ethyl ketone and 120 parts by weight in a ball mill for about 80 hours. This magnetic paint was applied onto a 13 μm thick polyester film to a dry thickness of 4 μm, dried, surface treated, and then cut into a predetermined width to produce a magnetic tape.

このテープを媒体面に垂直な方向の磁化曲線と平行な方
向の磁化曲線をVST (振動試料型磁力計)によって
磁気的特性(垂直配向度)を測定した。結果は、表1、
試料番号1に示す。次にこのテープの記録、再生試験を
行なった。ただし、媒体・ヘッド相対速度37.5m/
sec記録再生ヘッドはMn −Znフェライトヘッド
でギャップ長0.28mトランク幅35μm巻数20タ
ーン、記録周波数7.5MHzである。結果は同じく表
1、試料番号1に示す。
The magnetic properties (degree of vertical orientation) of this tape were measured using a VST (vibrating sample magnetometer) using a magnetization curve in a direction perpendicular to the medium surface and a magnetization curve in a direction parallel to the medium surface. The results are shown in Table 1.
Shown in sample number 1. Next, this tape was subjected to recording and playback tests. However, the media/head relative speed is 37.5 m/
The sec recording/reproducing head is a Mn-Zn ferrite head with a gap length of 0.28 m, a trunk width of 35 μm, a number of turns of 20 turns, and a recording frequency of 7.5 MHz. The results are also shown in Table 1, sample number 1.

以下同様にして磁性粉の保磁力、粒径と粒径と厚さの比
、および垂直配向性が変化した時の再生出力がどうなる
かを、表1の試料番号2〜27に示す。また試料番号2
8〜32は、本願発明以外の比較例である。
Sample numbers 2 to 27 in Table 1 show what happens to the reproduction output when the coercive force, particle size to particle size to thickness ratio, and vertical orientation of the magnetic powder are changed in the same manner. Also sample number 2
8 to 32 are comparative examples other than the present invention.

ここで垂直配向性はVSMより媒体の面内と垂直の両ヒ
ステリシス曲線(B−Hカーブ)を求め媒体の垂直方向
の残留磁化CBr (JL ) )および面内(水平)
方向の残留磁化(Br (“)〕を求めこれらの比(B
r (JL ) /Br (” ) )の値を取った。
Here, the vertical orientation is determined by calculating both the in-plane and perpendicular hysteresis curves (B-H curves) of the medium using VSM, and the residual magnetization CBr (JL) in the perpendicular direction of the medium and the in-plane (horizontal)
Find the residual magnetization (Br (“)) in the direction and calculate the ratio (B
The value of r(JL)/Br('')) was taken.

* ただし、試験番号28〜32は比較例〔垂直方向の
残留磁化が水平方向の残留磁化にくらべて大きければ大
きいほど優れた垂直磁化膜といえる、Br (1) /
Br (“)〉2〕なお特許請求の範囲において、六方
晶フェライトの保磁力を200〜6000eに限定した
のは、2000e以下であると保磁力が低すぎて記録減
磁がおこるためであり、6000e以上であると保磁力
が高すぎてMz −Znフェライトヘッドで十分に記録
ができないためである。
* However, test numbers 28 to 32 are comparative examples [the larger the residual magnetization in the vertical direction is compared to the residual magnetization in the horizontal direction, the better the perpendicularly magnetized film, Br (1) /
Br (“)〉2] In the claims, the reason why the coercive force of the hexagonal ferrite is limited to 200 to 6000e is because if it is less than 2000e, the coercive force is too low and recording demagnetization occurs. This is because if it is 6000e or more, the coercive force is too high and sufficient recording cannot be performed with the Mz-Zn ferrite head.

また六方晶フェライト粉体の平均粒径を0.05〜0.
3μmでかつ粒径と厚みの比が15〜25に限定したの
は、平均粒径が0.05μm以下では、飽和磁化が充分
に大きくなく高い再生出力が得にくいこと、又0.3μ
m以上になると記録再生時にノイズの発生が大きくなっ
て好ましくないためである。又粒径と厚みの比が15以
下であると垂直に配向しに(くなりそのために充分な再
生出力が得にくいこと、25以上になると、記録再生時
にノイズの発生が大きくなって好ましくないためである
Further, the average particle size of the hexagonal ferrite powder is 0.05 to 0.
The reason why the grain size and thickness ratio was limited to 3 μm and 15 to 25 was because if the average grain size is 0.05 μm or less, the saturation magnetization is not large enough and it is difficult to obtain high reproduction output.
This is because if it exceeds m, noise will increase during recording and reproduction, which is undesirable. Also, if the ratio of grain size to thickness is less than 15, the particles tend to be vertically oriented (which makes it difficult to obtain sufficient reproduction output), and if the ratio is more than 25, noise will increase during recording and reproduction, which is undesirable. It is.

発明の効果 以上述べてきたように、本発明によれば、六方晶フェラ
イトの保磁力が比較的ちいさく、しかも垂直配向性の良
好な媒体において高密度記録を達成するのにきわめて有
益な発明である。
Effects of the Invention As described above, the present invention is extremely useful for achieving high-density recording in a medium in which the hexagonal ferrite has a relatively small coercive force and has good vertical alignment. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における六方晶フェライト塗布型
垂直磁気記録媒体の概略図である。 11・・・・・・支持基体、12・・・・・・磁性層、
13・・・・・・六方晶フェライト粒子、14・・・・
・・有機バインダー。 代理人の氏名 弁理士 中尾敏男 はか1名11−−一
叉将基体 12−一羞1
The figure is a schematic diagram of a hexagonal ferrite coated perpendicular magnetic recording medium according to an embodiment of the present invention. 11...Supporting base, 12...Magnetic layer,
13... Hexagonal ferrite particles, 14...
...Organic binder. Name of agent: Patent attorney Toshio Nakao Haka 1 person 11--Ichimasho base 12-Ichimi 1

Claims (2)

【特許請求の範囲】[Claims] (1)支持基体とその表面に塗布された磁性粉と有機バ
インダー層とから成る磁気記録媒体であって、磁性粉が
六方晶系フェライト粉からなり、その保磁力で200〜
600エールステッドで、かつ垂直成分の残留磁化量と
面内成分の残留磁化量の比が2.0以上であることを特
徴とする磁気記録媒体。
(1) A magnetic recording medium consisting of a supporting substrate, magnetic powder coated on the surface thereof, and an organic binder layer, in which the magnetic powder consists of hexagonal ferrite powder, and its coercive force is 200 to 200
600 Oersted, and the ratio of the amount of residual magnetization of the perpendicular component to the amount of residual magnetization of the in-plane component is 2.0 or more.
(2)六方晶フェライト粉の粒径が0.05〜0.3μ
mでかつ粒径と厚みの比が15〜25であることを特徴
とする特許請求の範囲第(1)項記載の磁気記録媒体。
(2) Particle size of hexagonal ferrite powder is 0.05 to 0.3μ
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a particle diameter of m and a ratio of particle size to thickness of 15 to 25.
JP62090241A 1987-04-13 1987-04-13 Magnetic recording medium Pending JPS63255817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090241A JPS63255817A (en) 1987-04-13 1987-04-13 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090241A JPS63255817A (en) 1987-04-13 1987-04-13 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63255817A true JPS63255817A (en) 1988-10-24

Family

ID=13992998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090241A Pending JPS63255817A (en) 1987-04-13 1987-04-13 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63255817A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196518A (en) * 1984-10-18 1986-05-15 Victor Co Of Japan Ltd Magnetic recording medium
JPS621113A (en) * 1985-06-27 1987-01-07 Toshiba Corp Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196518A (en) * 1984-10-18 1986-05-15 Victor Co Of Japan Ltd Magnetic recording medium
JPS621113A (en) * 1985-06-27 1987-01-07 Toshiba Corp Magnetic recording medium

Similar Documents

Publication Publication Date Title
US4606971A (en) Magnetic recording medium
JP3919047B2 (en) Perpendicular magnetic recording medium
JP2644322B2 (en) Magnetic recording media
JPH03256223A (en) Magnetic transfering method
JP2001101644A (en) Vertical magnetic recording medium and magnetic recording device
JPS63255817A (en) Magnetic recording medium
US4722862A (en) Magnetic recording medium
JP2561455B2 (en) Magnetic recording / reproducing device
JPH07105525A (en) Magnetic recording medium
JPH0349025A (en) Magnetic recording medium
JPS62219321A (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP3012190B2 (en) Magnetic recording media
JPS63275103A (en) Magnetic recording medium
JPH0746417B2 (en) Magnetic recording medium
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH05314467A (en) Magnetic recording medium
US20010050829A1 (en) Magnetic recording and reproducing system including a ring head of materials having different saturation flux densities
JP2977618B2 (en) Magnetic recording method
JPH0362313A (en) Magnetic recording medium and its production
JP3143681B2 (en) Magnetic recording media
JPH0349024A (en) Magnetic recording medium
JPH08180364A (en) Magnetic recording medium
JPH04236403A (en) Magnetic powder for magnetic recording medium and magnetic recording medium using same
JPH09326113A (en) Magnetic recording medium and magnetic recording and reproducing system