JPS63255685A - Length measuring apparatus by laser - Google Patents

Length measuring apparatus by laser

Info

Publication number
JPS63255685A
JPS63255685A JP62088719A JP8871987A JPS63255685A JP S63255685 A JPS63255685 A JP S63255685A JP 62088719 A JP62088719 A JP 62088719A JP 8871987 A JP8871987 A JP 8871987A JP S63255685 A JPS63255685 A JP S63255685A
Authority
JP
Japan
Prior art keywords
light
period
measured
laser
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62088719A
Other languages
Japanese (ja)
Inventor
Koji Nakajima
中嶋 耕二
Katsuhiko Shimada
克彦 島田
Kunihiko Ogawa
邦彦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP62088719A priority Critical patent/JPS63255685A/en
Publication of JPS63255685A publication Critical patent/JPS63255685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable the detection of an absolute position of an object to be measured, by providing a device which calculates a distance to the object from phase data and period data. CONSTITUTION:When an injection current is varied linearly by a modulation circuit 1, a frequency-modulated light is emitted from a semiconductor laser 2. The light emitted from the laser 2 is made to enter a light receiver 7, as a reference light, through a collimator lens 3, a beam splitter 4, a reference mirror 5 and the splitter 4. Meanwhile, a measured light passing through the splitter 4, striking at a moving mirror 6 and reflected therefrom enters the light receiver 7 through the splitter 4. The reference light and the measured light are composed in the light receiver 7 and an electric signal is obtained therefrom. Next, a period Tb is measured in a period counting circuit 8, while a rough measured value is determined from the period Tb in a wave number counting circuit 9 and further the number (n) of cycles one of which is a 1/2 wavelength is determined therein. In a phase detection circuit 10, a phase theta of a beat signal for a prescribed time being synchronized with the modulation signal of the circuit 1 is detected. In a distance detection circuit 11 a distance R is determined from the number (n) of cycles and the phase theta, and it is outputted 12 therefrom.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造工程などにおけるX−Yステージな
ど粒密に位置決めを行なう装置において測長を行なうレ
ーザ測長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser length measuring device that measures length in a device that performs positioning in a precise manner, such as an X-Y stage in a semiconductor manufacturing process.

〔従来の技術〕[Conventional technology]

従来のレーザ測長装置は単一周波または2周波レーザ光
を用い、測定光と基準光との干渉による縞移動変化から
被測定物の変位量を計測していた。
Conventional laser length measuring devices use single-frequency or dual-frequency laser light to measure the amount of displacement of the object to be measured from changes in fringe movement due to interference between measurement light and reference light.

第2図は上述したレーザ測長装置のブロック図、第3図
は縞移動変化を示す図である。
FIG. 2 is a block diagram of the laser length measuring device described above, and FIG. 3 is a diagram showing changes in fringe movement.

このレーザ測長装置は、He−Neなとの単一周波レー
ザ光21を発射し、ビームスプリッタ22で参照鏡23
と移動ステージ31(ステージモータ32で駆動される
)上の移動鏡24に2分し、参照鏡23および移動鏡2
4で反射してきた光をビームスプリッタ22でミキシン
グし、分割ミラー25で分割した後受光器26.27で
検出し、プリアンプ28により第3図に示すような90
°の位相差の出力を得、該出力を可逆カウンタ29でカ
ウントし、CPU30で移動ステージ31の移動量を演
算するものである。
This laser length measuring device emits a single frequency laser beam 21 such as He-Ne, and uses a beam splitter 22 to connect a reference mirror 23 to a reference mirror 23.
and a movable mirror 24 on a movable stage 31 (driven by a stage motor 32), a reference mirror 23 and a movable mirror 2.
4 is mixed by a beam splitter 22, divided by a splitting mirror 25, detected by a light receiver 26, 27, and then detected by a preamplifier 28 as shown in FIG.
An output of a phase difference of degrees is obtained, the output is counted by a reversible counter 29, and the amount of movement of the moving stage 31 is calculated by the CPU 30.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のレーザ測長装置は、単一周波数レーザ光
または2周波レーザ光を用い被測定物の移動量を変位と
して計測しており、検出されるイ1;号はステージ移動
に伴なうくり返し信号でありインクリメンタルな変位計
測であるため、たとえば、なんらかの障害物が光路中を
瞬時たりとも通過した場合、その時点で被測定物の位置
情報か失なわれるという欠点があり、ざらにHa −N
 eなと比較的大きな形状のカスレーザを用い、また光
学系も複雑になるため装置が大型化し、かつ高価になる
という欠点かある。
The above-mentioned conventional laser length measuring device uses a single frequency laser beam or a dual frequency laser beam to measure the amount of movement of the object to be measured as a displacement, and the detected a. Since it is a repetitive signal and incremental displacement measurement, there is a drawback that, for example, if some obstacle passes through the optical path even momentarily, the position information of the object to be measured is lost. N
The e type uses a comparatively large shaped laser beam and has a complicated optical system, which has the disadvantage of making the device larger and more expensive.

本発明の目的は、被測定物の絶対位置を検出てき、した
がって外乱の影響に強いレーザ測長装置を提供すること
にある。
An object of the present invention is to provide a laser length measuring device that can detect the absolute position of an object to be measured and is therefore resistant to the influence of disturbances.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のレーザ測長装置は、 半導体レーザを用い直線的に周波数変調したレーザ光を
放射し、被測定面で反射して来たレーザ光と基準光路を
通るレーザ光をミキシングしてビート信号を検出する装
置と、 前記ビート信号の周期を計数する装置と、変調周期のあ
る一定時刻におけるヒートイ菖号の位相を検出する装置
と、 前記位相データと周期データより被測定物までの距離を
演算する装置とをイfする。
The laser length measurement device of the present invention uses a semiconductor laser to emit linearly frequency-modulated laser light, and generates a beat signal by mixing the laser light reflected from the surface to be measured and the laser light passing through the reference optical path. a device for detecting the beat signal; a device for counting the period of the beat signal; a device for detecting the phase of the Heati irises at a certain time in the modulation period; and a device for calculating the distance to the object to be measured from the phase data and the period data. If the device.

〔作用〕[Effect]

半導体レーザで周波数変調したレーザ光を用い測定光と
基準光をミキシングすることによって発生するビート信
号の周期データから距離の粗測定を行ない、また変調信
ぢに同期した一定時刻での位相測定から密測定を行ない
、両者を合成することにより、高精度な絶対距離測定が
可能になり、したかりて障害物通過の影響もなく、また
光学系も小型、簡単になる。
The distance is roughly measured from the cycle data of the beat signal generated by mixing the measurement light and the reference light using a laser light frequency modulated by a semiconductor laser, and the fine distance is measured from the phase measurement at a fixed time synchronized with the modulated signal. By performing measurements and combining the two, highly accurate absolute distance measurement becomes possible, and therefore there is no influence from passing obstacles, and the optical system can also be made smaller and simpler.

〔実施例) 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明のレーザ測長装置の一実施例のブロック
図である。
FIG. 1 is a block diagram of an embodiment of the laser length measuring device of the present invention.

本実施例は、半導体レーザ2と、半導体レーザ2の出射
光を直線的に周波数変調するだめの注入電流を直線的に
変化させる変調回路工と、レーザ光をコリメートするコ
リメータレンズ3と、参照鏡5と、ステージモータ】4
で駆動される移動ステージ13上に設りられた移動鏡6
と、レーザ光を参照鏡5用、移動鏡6用へと2分し、ま
た反射光をミキシングするだめのビームスプリッタ4と
、ミキシングにより生じるビート信号を検出する受光器
7と、ビート信号の周期Tbを十分に高い周波数のクロ
ックを用いて計測する周期計数回路8と、周期データよ
り移動鏡6の位置の粗測定値nを演算する波数計数回路
9と、変調回路1の変調信号と同期したある時刻でのビ
ート信号の位相θを検出する位相検出回路】0と、波数
データn、位相信号θおよび波長λより移動鏡6の位置
Rを演算する距ra演算回路11と、位置Rを出力する
出力回路12とで構成されている。
This embodiment includes a semiconductor laser 2, a modulation circuit that linearly changes the injection current to linearly frequency modulate the output light of the semiconductor laser 2, a collimator lens 3 that collimates the laser light, and a reference mirror. 5 and stage motor】4
A movable mirror 6 installed on a movable stage 13 driven by
, a beam splitter 4 that splits the laser beam into two for the reference mirror 5 and the movable mirror 6 and mixes the reflected light, a light receiver 7 that detects the beat signal generated by the mixing, and a beat signal period. A period counting circuit 8 that measures Tb using a clock with a sufficiently high frequency, a wave number counting circuit 9 that calculates a rough measurement value n of the position of the movable mirror 6 from the period data, and a wave number counting circuit 9 that is synchronized with the modulation signal of the modulation circuit 1. A phase detection circuit that detects the phase θ of a beat signal at a certain time; a distance ra calculation circuit 11 that calculates the position R of the movable mirror 6 from the wave number data n, the phase signal θ, and the wavelength λ; and outputs the position R. The output circuit 12 is composed of an output circuit 12 and an output circuit 12.

次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

半導体レーザ2は周波数が急激に変化するモードホップ
を起こさない周波数範囲内(約0.1零以下)であれば
注入電流に比例して周波数を変化させることができる。
The semiconductor laser 2 can change the frequency in proportion to the injected current as long as it is within a frequency range (approximately 0.1 zero or less) that does not cause mode hopping where the frequency changes rapidly.

すなわち注入電流を直線的(実際には三角波状に変化さ
せる)変化させわば次式(1)で示される周波数fの周
波数変調された光が半導体レーザ2から出てくる。
That is, by changing the injected current linearly (actually, in a triangular waveform), frequency-modulated light with a frequency f expressed by the following equation (1) is output from the semiconductor laser 2.

r = fo + ft  =・(1)ただし、foは
変調開始点のレーザ光周波数、?は周波数変化率、tは
時間 今、半導体レーザ2からコツメータレンズ3を通りビー
ムプワッタ4で90°方向が曲げられ、参照鏡5に当り
反射され、ビームスプリッタ4を通り受光器7に到る基
準光が次式(2)で表わされるものとする。
r = fo + ft = · (1) where fo is the laser light frequency at the modulation start point, ? is the rate of frequency change, and t is the time.The reference beam from the semiconductor laser 2 passes through the meter lens 3, is bent by 90 degrees at the beam splitter 4, is reflected by the reference mirror 5, passes through the beam splitter 4, and reaches the photoreceiver 7. It is assumed that light is expressed by the following equation (2).

Δ−Δ、exp (−2πj(fo+ft) t ) 
−(2)ただし、八、は基準光の強度 一方、ビームスプリッタ4を通過し、移動鏡6に当り反
射されビームスプリッタ4で90°方向が曲げられ受光
器7に到る測定光は基準光に対する時間遅れをτ、光路
差をRとすれば次式(3)で表わされる。
Δ−Δ, exp (−2πj(fo+ft) t )
-(2) However, 8 is the intensity of the reference light.On the other hand, the measuring light that passes through the beam splitter 4, hits the movable mirror 6, is reflected, is bent by the beam splitter 4 by 90 degrees, and reaches the light receiver 7 is the reference light. Letting τ be the time delay and R be the optical path difference, it is expressed by the following equation (3).

B=B+exp[−2πj  ((fo+f(t−−τ
)  )  (t−τ)コ・・・ (3) たたし、+1.は測定光の強度、 τ=28.#:、 Cは光速 受光器7ては、2.L−準光と測定光のミキシングによ
り次式(4)で表わさねる電気信号V、が得られる。
B=B+exp[-2πj ((fo+f(t--τ
) ) (t-τ)ko... (3) Tatami, +1. is the intensity of the measurement light, τ=28. #:, C is the speed of light receiver 7, and 2. By mixing the L- quasi-light and the measurement light, an electric signal V expressed by the following equation (4) is obtained.

vl−)A十B(2 =A、’+B、’+2A山cos (2yr (fτ+
fτf: −fτ2))・・・(4) たたし、 fτ2 (< fτてあり無視てき、また(
4)式の交流分のみをとり出し受光器7の出力を■2と
すれば次式(5)の信号となる。
vl-)A0B(2 =A,'+B,'+2A mountain cos (2yr (fτ+
fτf: -fτ2))...(4) Then, fτ2 (< fτ has been ignored, and (
If only the alternating current component of the equation (4) is taken out and the output of the light receiver 7 is set to 2, the signal of the following equation (5) will be obtained.

■2−2八1B1cos(4πR/^+ 4πfRt/
C:  )  −(5)たたし、λ・波長 (5)式の第2項がビート信号を表わし、ビート周波数
fbは次式(5)で表わされる。
■2-281B1cos (4πR/^+ 4πfRt/
C: ) - (5) and λ/wavelength The second term of the equation (5) represents the beat signal, and the beat frequency fb is expressed by the following equation (5).

fh = 2R−f/c             −
([1)(6)式かられかるようにビート周波数fbは
測定距離Hに比例する。しかし、周波数工1数では周波
数偏位量を△fとずわば、 C/4△fの量子化誤差が
牛しる。今、八f =50GHzとすればこの量子化誤
差は1.5mmと大きな値となる。周期計数回路8ては
このため周波数を計数するかわりに周期Tb−1/fb
を計測する。今、ビート周期fbに対してI/N(たと
えば10−4から1O−5)の周期Tcのクロックを用
いてM4数すればその量子化誤差△Rは次式(7)%式
% 今、R=10mmで、N=10!′−とすれば量子化誤
差△Rは0.1+1111となり、波長以下の精度が得
られる。波数計数回路9では、周期データT、より粗測
定値R“を求め、さらに172波長を1サイクルとする
サイクル数を求める。
fh = 2R-f/c-
([1) As can be seen from equation (6), the beat frequency fb is proportional to the measurement distance H. However, when the frequency deviation is △f, the quantization error of C/4△f is significant. Now, if 8f = 50 GHz, this quantization error will be as large as 1.5 mm. For this reason, the period counting circuit 8 calculates the period Tb-1/fb instead of counting the frequency.
Measure. Now, if we multiply M4 by using a clock with a period Tc of I/N (for example, 10-4 to 1O-5) for the beat period fb, the quantization error △R is the following formula (7)% formula % Now, R=10mm, N=10! '-, the quantization error ΔR becomes 0.1+1111, and accuracy below the wavelength can be obtained. The wave number counting circuit 9 obtains the period data T, the rough measured value R'', and further calculates the number of cycles in which 172 wavelengths constitute one cycle.

すなわち、サイクル数をn、剰余をαとすればR’/局
λ:n・・・α          ・・・(8)g′
= c/(2−j−rb>             
−(9)位相検出回路10では変調回路1の変調信号に
同期した一定時刻のビート信号の位相θを検出する。
That is, if the number of cycles is n and the remainder is α, then R'/station λ:n...α...(8)g'
= c/(2-j-rb>
(9) The phase detection circuit 10 detects the phase θ of the beat signal at a fixed time synchronized with the modulation signal of the modulation circuit 1.

今、簡単のため(5)式の時刻1=0の位相θを検出す
るものとすわば次式(]0)で位相θが表わされる。
For simplicity, the phase θ at time 1=0 in equation (5) is detected, and the phase θ is expressed by the following equation (]0).

θ= 4πR/λ             −(10
)位相Oはλ/2を周期としたくり返し信号となり、今
、波長人−0,8μmとし、位相θを17100(3,
6°)の精度で検出すれば4Rmの分解能で測定か可能
となる。距離演算回路11ては上記サイクル数nおよび
位相θより距離Rを次式(11)を用い演算し、出力回
路12より出力する。
θ=4πR/λ−(10
) The phase O becomes a repeating signal with a period of λ/2, and now the wavelength is −0.8 μm and the phase θ is 17100 (3,
If it is detected with an accuracy of 6°), it is possible to measure with a resolution of 4Rm. The distance calculation circuit 11 calculates the distance R from the above-mentioned cycle number n and the phase θ using the following equation (11), and outputs it from the output circuit 12.

R=λ/2(n+θ/2rt )         −
(11)〔発明の効果〕 以上説明したように本発明は、小型の半導体レーザを用
い、かつ直線的に周波数変調したレーザ光を用い、距離
に比例したビート信号の周期の測定を行なうと共に変調
信号に同期した一定時刻でのビート信号の位相測定を行
ない、周期データおよび位相データを演算処理すること
により、高精度な距離測定が行なえ、また従来例で述べ
たような変位測定方式ではなく、絶対距離測定方式のた
め、たとえ障害物が光路中を一時的に通過しても通過後
は精密な測定ができ、さらには光学系も比較的簡明であ
り、小型かつ安価な測長器を提供できる効果がある。
R=λ/2(n+θ/2rt) −
(11) [Effects of the Invention] As explained above, the present invention uses a small semiconductor laser and linearly frequency-modulated laser light to measure and modulate the period of a beat signal proportional to distance. By measuring the phase of the beat signal at a fixed time synchronized with the signal and processing the period data and phase data, highly accurate distance measurement can be performed. Since it uses an absolute distance measurement method, even if an obstacle temporarily passes through the optical path, accurate measurements can be made after it passes.Furthermore, the optical system is relatively simple, providing a compact and inexpensive length measuring instrument. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザ測長装置の一実施例のブロック
図、第2図は従来例のブロック図、第3図は第2図の従
来例におりるステージ移動に伴なうプリアンプ出力の変
化を示す図である。 1・・・変調回路、   2・・・半導体レーザ、3・
・・コリメータレンズ、 4・・・ビームスプリッタ、 5・・・参照鏡、    6・・・移動鏡、7・・・受
光器、   8・・・周期計数回路、9・・・波数51
数回路、IO・・・位相検出回路、11・・・距離演算
回路、12・・・出力回路。
Fig. 1 is a block diagram of an embodiment of the laser length measuring device of the present invention, Fig. 2 is a block diagram of a conventional example, and Fig. 3 is a preamplifier output associated with stage movement in the conventional example of Fig. 2. FIG. DESCRIPTION OF SYMBOLS 1... Modulation circuit, 2... Semiconductor laser, 3...
... Collimator lens, 4... Beam splitter, 5... Reference mirror, 6... Moving mirror, 7... Light receiver, 8... Period counting circuit, 9... Wave number 51
Several circuits, IO...phase detection circuit, 11...distance calculation circuit, 12...output circuit.

Claims (1)

【特許請求の範囲】 半導体レーザを用い直線的に周波数変調したレーザ光を
放射し、被測定面で反射して来たレーザ光と基準光路を
通るレーザ光をミキシングしてビート信号を検出する装
置と、 前記ビート信号の周期を計数する装置と、 変調周期のある一定時刻における前記ビート信号の位相
を検出する装置と、 前記位相データと周期データより被測定物までの距離を
演算する装置とを有するレーザ測長装置。
[Claims] A device that detects a beat signal by emitting linearly frequency-modulated laser light using a semiconductor laser and mixing the laser light reflected from a surface to be measured with the laser light passing through a reference optical path. a device for counting the period of the beat signal; a device for detecting the phase of the beat signal at a certain time in the modulation period; and a device for calculating the distance to the object to be measured from the phase data and period data. A laser length measurement device with
JP62088719A 1987-04-13 1987-04-13 Length measuring apparatus by laser Pending JPS63255685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088719A JPS63255685A (en) 1987-04-13 1987-04-13 Length measuring apparatus by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088719A JPS63255685A (en) 1987-04-13 1987-04-13 Length measuring apparatus by laser

Publications (1)

Publication Number Publication Date
JPS63255685A true JPS63255685A (en) 1988-10-21

Family

ID=13950711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088719A Pending JPS63255685A (en) 1987-04-13 1987-04-13 Length measuring apparatus by laser

Country Status (1)

Country Link
JP (1) JPS63255685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475326A2 (en) * 1990-09-10 1992-03-18 Kabushiki Kaisha Topcon Distance measuring device
JPH07103714A (en) * 1993-10-04 1995-04-18 Yaskawa Electric Corp Laser distance measuring method
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475326A2 (en) * 1990-09-10 1992-03-18 Kabushiki Kaisha Topcon Distance measuring device
JPH07103714A (en) * 1993-10-04 1995-04-18 Yaskawa Electric Corp Laser distance measuring method
JP2010539458A (en) * 2007-09-14 2010-12-16 ライカ ジオシステムズ アクチエンゲゼルシャフト Surface measuring method and measuring apparatus
US9127929B2 (en) 2007-09-14 2015-09-08 Leica Geosystems Ag Method and measuring device for gauging surfaces

Similar Documents

Publication Publication Date Title
CA2205937C (en) Electro-optical measuring device for absolute distances
KR900002117B1 (en) Method and apparatus for measuring distance by laser beam
JPH0419512B2 (en)
US4571083A (en) Standing wave interferometer for measuring optical path differences
JP5421013B2 (en) Positioning device and positioning method
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
JP2845700B2 (en) METHOD AND APPARATUS FOR MEASURING POSITION OF MOVING BODY AND TIME OF POSITION MEASUREMENT
JPS63255685A (en) Length measuring apparatus by laser
JP2011027647A (en) Measurement device and measurement method
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
JP2001033209A (en) Range finder
US9857160B1 (en) Multi-mode frequency sweeping interferometer and method of using same
JPH0612333B2 (en) Automatic birefringence measuring device
EP0920599B1 (en) Measuring the effects of the refractive index of a gas using different multiple path interferometry ( superhetrodyne )
JPH11230716A (en) Measuring apparatus for displacement of light waves
KR101792632B1 (en) Spectral-domain Interferometric System For Measurement Of Absolute Distances Free From Non-measurable Range and Directional Ambiguity
TWI715304B (en) Differential optical rangefinder
US6654124B2 (en) Signal modulation compensation for wavelength meter
EP0307451A1 (en) Apparatus and method for locating the direction of an atomic beam.
KR102130576B1 (en) Thickness And Refractive Index Measuring Apparatus Without Non-measuring Ranges
US5493394A (en) Method and apparatus for use in measuring frequency difference between light signals
JPS63128218A (en) Distance measuring method
JPS63266302A (en) Length measuring instrument by laser
JPH0652166B2 (en) Absolute length measuring machine
JPH0921871A (en) Semiconductor laser distance measuring device