JPS63128218A - Distance measuring method - Google Patents

Distance measuring method

Info

Publication number
JPS63128218A
JPS63128218A JP27433586A JP27433586A JPS63128218A JP S63128218 A JPS63128218 A JP S63128218A JP 27433586 A JP27433586 A JP 27433586A JP 27433586 A JP27433586 A JP 27433586A JP S63128218 A JPS63128218 A JP S63128218A
Authority
JP
Japan
Prior art keywords
distance
wavelength
light
wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27433586A
Other languages
Japanese (ja)
Inventor
Sumihiko Kawashima
川島 純彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP27433586A priority Critical patent/JPS63128218A/en
Publication of JPS63128218A publication Critical patent/JPS63128218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To measure a distance to an object by radiating an electromagnetic wave to the object existing in an unknown place and allowing its reflected wave to be made incident on a receiving part, and also, allowing an electromagnetic wave of the same wavelength to be made incident on the receiving part existing in a place of a known distance, and detecting the interference intensity which is generated thereby. CONSTITUTION:A light beam from a spectroscope 6 is split by a beam splitter 7, and one light beam is brought to a light quantity detection 8 and goes to a signal S1 through an amplifier 12, and inputted to a dividing circuit 14. The other light beam is split into two directions by a beam splitter 9, and one light beam travels toward a fixed reflecting mirror 10, and the other light beam travels toward an object 15 whose distance is measured. Subsequently, both the light beams are reflected by the reflecting mirror 10 and the object 15, and the intensity of an interference light generated on the splitter 9 is brought to a light quantity detection 11, and its light goes to a signal S2 through an amplifier 13 and inputted to the circuit 14. A signal S3 which is brought to the signal S1 and S2 is inputted to a CPU16, and by analyzing the signal S3, the maximum value or the minimum value generated by an interference is detected. At that time, wavelength information from the spectroscope 6 is inputted to the CPU16, and a wavelength when the intensity takes an extreme value is detected. By the detected wavelength and a known distance (d), a measuring distance (x) can be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電磁波又は超音波の干渉作用を利用して対象
物までの距離を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of measuring the distance to an object using the interference effect of electromagnetic waves or ultrasonic waves.

[従来の技術] 現在、対象物までの距離を測定する技術としては各種原
理を利用したものが開発されている。
[Prior Art] Currently, technologies using various principles have been developed to measure the distance to an object.

例えば超音波を利用して距離を測定する装置として、超
音波レベル計が実用化されている。これは超音波におけ
る対象物までの往復時間を測定することによって対象物
までの距離を求めるものである。しかしながら当該技術
は精度的に問題があり、±1%程度(フルスケール)の
誤差を包含する結果が考えられ、しかも距離が短くなれ
ばなる程精度が悪くなるという傾向がある。
For example, an ultrasonic level meter has been put into practical use as a device for measuring distance using ultrasonic waves. This method determines the distance to an object by measuring the round trip time to the object using ultrasonic waves. However, this technique has a problem with accuracy, and it is possible that the result includes an error of about ±1% (full scale), and the accuracy tends to deteriorate as the distance becomes shorter.

また、数mm程度の短い距離を測定する技術として、静
電容量式、光反射式、渦電流式等が各種実用化されてい
るが、いずれも読取単位は10μm程度であり、それ以
上の精度は期待できないというのが実情である。
In addition, various technologies such as capacitance type, light reflection type, and eddy current type have been put into practical use as technologies for measuring short distances of about several mm, but the reading unit for all of them is about 10 μm, and higher accuracy is required. The reality is that we cannot expect it.

一方、距離測定技術に類似した技術として、電磁波を用
いるマイケルソン干渉計の原理を応用して、対象物の移
動距離を測定する技術も開発されている。当該技術は、
光の波長単位の高精度で前記移動距離を測定できるもの
であるが、あくまで対象物の移動した距離を求めるもの
であって、対象物との静的距離を求めるといった技術と
は根本的に異なるものである。
On the other hand, as a technology similar to distance measurement technology, a technology has also been developed that applies the principle of a Michelson interferometer that uses electromagnetic waves to measure the distance traveled by an object. The technology is
Although it is possible to measure the distance traveled with high accuracy in units of wavelengths of light, it is only used to determine the distance an object has moved, and is fundamentally different from techniques that measure static distance from the object. It is something.

[発明が解決しようとする問題点] 本発明はこの様な状況のもとでなされたものであって、
その目的とするところは、対象物との距離をより高度に
測定できる方法を提供することにある。
[Problems to be solved by the invention] The present invention was made under these circumstances, and
The purpose is to provide a method that can more accurately measure the distance to an object.

[問題点を解決する為の手段] 上記目的を達成し得た本発明とは、電磁波又は超音波を
対象物に照射して対象物までの距離を測定する方法にお
いて、発信部から未知のところにある対象物に単一波長
の電磁波又は超音波を照射してその反射波を受信部に入
射させると共に、上記発信部から既知の距離のところに
ある受信部に前記と同一波長の電磁波又は超音波を入射
させ、上記両入射波の干渉によって生じる電磁波又は超
音波の強度が極値をとる少なくとも2つの波長を測定し
、極値を示したときの波長、上記未知距離及び既知距離
の関係から上記未知距離を求める点に要旨を有するもの
である。
[Means for Solving the Problems] The present invention, which has achieved the above object, is a method for measuring the distance to an object by irradiating the object with electromagnetic waves or ultrasonic waves. An electromagnetic wave or ultrasonic wave of a single wavelength is irradiated onto an object located at Inject a sound wave and measure at least two wavelengths at which the intensity of the electromagnetic wave or ultrasonic wave generated by the interference of both incident waves takes an extreme value, and from the relationship between the wavelength at which the extreme value is shown, the unknown distance and the known distance. The gist lies in finding the unknown distance.

上記の方法は予め分光器等を用いて得られた既知の単一
波長の電磁波等を順次入射させるものであったが、複数
の波長成分を有する複合電磁波等を入射させ、干渉後に
特定の波長を選び出して同様に検出する方法も本発明の
要旨とするものである。
The above method involves sequentially injecting electromagnetic waves of a known single wavelength obtained using a spectrometer, etc., but by injecting a complex electromagnetic wave having multiple wavelength components, it is possible to obtain a specific wavelength after interference. The gist of the present invention is also a method of selecting and detecting the same.

[作用] 本発明の前記構成において重要な役割りを果たす電磁波
又は超音波(以下、電磁波で代表する)の干渉について
、その基本的原理を図面に従って説明する。
[Operation] The basic principle of interference of electromagnetic waves or ultrasonic waves (hereinafter referred to as electromagnetic waves), which plays an important role in the configuration of the present invention, will be explained with reference to the drawings.

まず第2図において、1は照射装置(発信部A)、2は
受信装置(受信部C)、3は対象物(入射点B)、4.
5は照射波の経路、6は対象物3からの反射波の経路で
ある。
First, in FIG. 2, 1 is an irradiation device (transmission section A), 2 is a reception device (reception section C), 3 is an object (incidence point B), 4.
5 is the path of the irradiated wave, and 6 is the path of the reflected wave from the object 3.

今照射装置1から出された電磁波が、経路4を通って対
象物3の入射点Bに入射角度θで入射し、その後反射角
度θ(=入射角度)で反射し、経路6を通フて受信装置
2に達したとする。この様にして受信装置2に達した電
磁波は、照射装置1から経路5を通って直接受信装置2
に達する電磁波と干渉を生じる。
The electromagnetic wave just emitted from the irradiation device 1 enters the incident point B of the target object 3 through a path 4 at an incident angle θ, then reflects at a reflection angle θ (=incident angle), and passes through a path 6. Suppose that the signal reaches the receiving device 2. The electromagnetic waves that have reached the receiving device 2 in this way are directly transmitted to the receiving device 2 from the irradiation device 1 through the path 5.
It causes interference with electromagnetic waves that reach the area.

ここで照射装置1の発信部Aから対象物3までの距離を
X、対象物3から受信装置2の受信部Cまでの距離をx
+b、照射装置1の発信部Aから受信装置2の受信部C
までの距離をaとすると、照射装置1から別々の経路(
A−B−C,A→C)を経て受信装置2に達する電磁波
の距離差δは下記(1)式の様に表わせる。
Here, the distance from the transmitter A of the irradiation device 1 to the object 3 is x, and the distance from the object 3 to the receiver C of the receiver 2 is x.
+b, from the transmitter A of the irradiation device 1 to the receiver C of the receiver 2
If the distance from the irradiation device 1 to
The distance difference δ of the electromagnetic waves reaching the receiving device 2 via A-B-C, A→C) can be expressed as in the following equation (1).

δ=AB+BC−AC いま、波長を連続的に変化させて照射した場合に、受信
装置2で受信される強度が波長λmのときに極大(又は
極小)となり、次にλm+1のときに再び極大(又は強
心)になったとすると、前記距離差δと波長λm、λm
+1の間には下記(2)。
δ=AB+BC-AC Now, when the wavelength is continuously changed and irradiation is performed, the intensity received by the receiving device 2 becomes maximum (or minimum) when the wavelength is λm, and then becomes maximum (or minimum) again when the wavelength is λm+1. or cardiomyopathy), the distance difference δ and the wavelengths λm, λm
Between +1 is (2) below.

(3)の関係が成立する。The relationship (3) holds true.

λm〉λm+1のとぎ δ =n λm に (n+1)  λm+1  (n
−1,2,・・・) ・・・ (2)λm+1 >λm
のとき δ = n  λm+1  =  (n+1  )  
 λm  (n−1,2−)  −(3)(1) 、 
(2) 、 (31式より、下記(4) 、 (5)式
が求められる。
To λm〉λm+1, δ = n λm (n+1) λm+1 (n
-1, 2,...) ... (2) λm+1 > λm
When δ = n λm+1 = (n+1)
λm (n-1,2-)-(3)(1),
From equations (2) and (31), the following equations (4) and (5) are obtained.

λm〉λm+1のとき λm+1〉λmのとき 上記(4) 、 (5)式は、一般的に下記(6)式の
様に表わすことができる。
When λm>λm+1 When λm+1>λm The above equations (4) and (5) can generally be expressed as the following equation (6).

尚上記(6)式を求める一連の手順では、反射における
電磁波の位相変化については何ら考慮しなかったけれど
も、電磁波が対象物3上で反射する際にπ(rad)の
位相の変化を生じたとしても同様に上記(6)式は求め
られる。
In addition, in the series of steps for calculating equation (6) above, we did not take into account the phase change of the electromagnetic wave upon reflection, but when the electromagnetic wave reflected on the object 3, a phase change of π (rad) occurred. However, the above equation (6) can be obtained in the same way.

一方、上記(6)式は、波長を変化させたとぎの干渉に
よる強度が、いずれも極大値(又は極小値)となる隣接
する2つの波長λm、λm+1によって、距離Xを表わ
したけれども、極大値から極小値又は極小値から極大値
となる様な隣接する2つの波長λ°m、λ’+n+1に
よっても距laxを表わすことができる。この場合、距
@Xは下記(7)式で表わされる。
On the other hand, in Equation (6) above, although the distance The distance lax can also be expressed by two adjacent wavelengths λ°m and λ'+n+1 that vary from the minimum value to the maximum value or from the minimum value to the maximum value. In this case, the distance @X is expressed by the following equation (7).

−b)                ・・・(7)
さて、次に(6) 、 (7)式の一般式について考え
る。いま波長を連続的に変化させて照射した場合に、受
信装置2で受信される強度が波長λ” mのときに極値
をとり、次に更に変化させていったときに極大、極小の
点をr回通り、波長λ”marで再び極値をとったとす
る。
-b) ...(7)
Now, let's consider the general formulas (6) and (7). Now, if the wavelength is continuously changed and irradiation is performed, the intensity received by the receiving device 2 will reach the extreme value when the wavelength is λ" m, and then when the wavelength is changed further, the maximum and minimum points will be reached. Suppose that it passes through r times and takes the extreme value again at the wavelength λ''mar.

ここでλ″m〉λ” m+1 >・・・〉λ”marと
し、反射面における位相の変化がないとすると、λ”m
が極大値のときには(第5図参照)、δ = nλll
l11=(n+−)赤  λl′m十r(n、rは整数
)・・・(8) となり、よって(1) 、 (8)式より下記(9)式
が求められる。
Here, λ"m>λ"m+1>...>λ"mar, and assuming that there is no change in phase on the reflecting surface, λ"m
When is the maximum value (see Figure 5), δ = nλll
l11=(n+-)red λl'm+r (n, r are integers) (8) Therefore, the following equation (9) can be obtained from equations (1) and (8).

COSθ−b)・・・(9) 一方λ”mが極小値のとぎには、 λ”mar  (n、 rは整数) ・(10)となり
、よって(11、(101式より前記(9)式と全く同
じ式が求められる。
COSθ-b)...(9) On the other hand, when λ"m is the minimum value, λ"mar (n, r are integers) (10), so (11, (101), the above (9) An expression that is exactly the same as the expression is required.

尚反射面における位相の変化があると仮定しても、前記
(9)式が求められる。
Note that even if it is assumed that there is a change in phase on the reflecting surface, the above equation (9) can be obtained.

そして前記(9)式において、r=+1とおくと(7)
式が得られ、r=2とおくと(6)式が得られる。
In the above equation (9), if we set r=+1, we get (7)
Equation (6) is obtained by setting r=2.

上記(6)式、(7)式及び(9)式において、a、b
、θ、λm、λm+1.λ°m、λ’ m+1 。
In the above formulas (6), (7) and (9), a, b
, θ, λm, λm+1. λ°m, λ' m+1.

λ”m、λ”mar、rは既知であるので、距離Xは測
定可能である。また、距11txは、電磁波の波長レベ
ルといった高精度で測定される。
Since λ"m, λ"mar, and r are known, the distance X can be measured. Further, the distance 11tx is measured with high precision, such as at the wavelength level of electromagnetic waves.

[実施例] 以下、実施例によって本発明を更に詳細に説明する。尚
下記実施例では電磁波の代表例として光をとりあげたが
、その他の電磁波或は超音波波を用いた場合であっても
同様に本発明を実施できることは言う迄もない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Although light is used as a typical example of electromagnetic waves in the following embodiments, it goes without saying that the present invention can be carried out in the same manner even when other electromagnetic waves or ultrasonic waves are used.

実施例1 第1図は本発明方法を実施する為に構成される距離測定
装置の一例を示す概略説明図である。
Embodiment 1 FIG. 1 is a schematic explanatory diagram showing an example of a distance measuring device configured to implement the method of the present invention.

第1図において、5は複数の波長成分を含んだ白色光を
発生する光源である。この光源1から発生された白色光
は、その後分光器6に入り、分光器6によって単一波長
成分とされる。そして分光器6から出される光はその波
長が連続的に変化する様にされ、その波長の情報は中央
処理回路16に人力される。
In FIG. 1, 5 is a light source that generates white light containing a plurality of wavelength components. The white light generated from this light source 1 then enters a spectroscope 6 and is converted into a single wavelength component by the spectroscope 6. The wavelength of the light emitted from the spectrometer 6 is made to change continuously, and information on the wavelength is inputted to the central processing circuit 16.

分光器6から出された光はビームスブリッタフで2方向
の光に分割され、一方の光は光量検出器8に向い、他方
の光はもう1つのビームスプリッタ9に向う。
The light emitted from the spectrometer 6 is split into two directions of light by a beam splitter, one of which is directed toward a light amount detector 8 and the other light is directed toward another beam splitter 9 .

光量検出器8に達した光はその光量が検出され、その信
号は増幅器12で増幅され、更に増幅された信号SIは
割算回路14に送られる。
The amount of light reaching the light amount detector 8 is detected, the signal thereof is amplified by an amplifier 12, and the amplified signal SI is sent to a dividing circuit 14.

一方ビームスプリッタ9に達した光は該ビームスプリッ
タ9によって2方向に分割され、一方の光は固定反射鏡
10に向い、他方の光は距離が測定されるべぎ対象物1
5に向かう(図中測定される距離をXで示す)。そして
両者の光は夫々固定反射鏡10及び対象物15で反射さ
れてビームスプリッタ9に戻る。更に対象物15及び固
定反射鏡10で反射された両反射光は、ビームスプリッ
タ9上で重なり干渉を起こす。この様にして干渉した光
の強度は光量検出器11で検出され、その信号は増幅器
13で増幅される。増幅器13で増幅された信号S2は
、その後割算回路14に送られる。この割算回路では、
前記増幅器12から送られてくる信号S1と前記信号S
2とで割算処理(S2 /Sl )がなされる。この割
算処理は、分光器6からの出力が各波長によって異なる
のでそれを補正する為になされるものである。
On the other hand, the light reaching the beam splitter 9 is split into two directions by the beam splitter 9, one of which is directed toward a fixed reflector 10, and the other light is directed toward the object 1 whose distance is to be measured.
5 (the measured distance is indicated by X in the figure). Both lights are reflected by the fixed reflecting mirror 10 and the object 15, respectively, and return to the beam splitter 9. Further, both reflected lights reflected by the object 15 and the fixed reflecting mirror 10 overlap on the beam splitter 9 and cause interference. The intensity of the light that has interfered in this way is detected by a light amount detector 11, and its signal is amplified by an amplifier 13. The signal S2 amplified by the amplifier 13 is then sent to the divider circuit 14. In this division circuit,
The signal S1 sent from the amplifier 12 and the signal S
2 and a division process (S2/Sl) is performed. This division process is performed to correct the fact that the output from the spectrometer 6 differs depending on each wavelength.

割算回路14からの出力信号S3は中央処理回路16に
入力され、中央処理回路16では割算回路14からの出
力信号S3を分析し、干渉によって生じる強度の極大値
(又は極小値)を検出する。その際、中央処理回路16
には、前述した様に分光器6からの波長情報が入力され
ており、従って強度が極値をとるときの隣接する2つの
波長λm、λm+1が検出される。
The output signal S3 from the division circuit 14 is input to the central processing circuit 16, which analyzes the output signal S3 from the division circuit 14 and detects the maximum value (or minimum value) of the intensity caused by interference. do. At that time, the central processing circuit 16
As described above, the wavelength information from the spectrometer 6 is input to the wavelength information, and therefore two adjacent wavelengths λm and λm+1 at which the intensity takes an extreme value are detected.

いまここで固定反射鏡10からビームスプリッタ9まで
光が進む距離をdとすると、第1図の構成は前記第2図
に示した構成においてθ=0°。
Now, if the distance traveled by the light from the fixed reflecting mirror 10 to the beam splitter 9 is d, then θ=0° in the configuration shown in FIG. 1 and the configuration shown in FIG. 2.

b=o、a=2dとした場合であると判断できる。従っ
て第1図に示した構成においては、前記(6)式は、下
記(8)式の様に変形することかできる。
It can be determined that this is the case where b=o and a=2d. Therefore, in the configuration shown in FIG. 1, the above equation (6) can be modified as shown in the following equation (8).

そして中央処理回路16では、検出された波長λm、λ
m+1及び距離dを上記(8)式に代入して測定される
べき距離Xが求められる。
Then, in the central processing circuit 16, the detected wavelengths λm, λ
The distance X to be measured is determined by substituting m+1 and distance d into the above equation (8).

実施例2 第3図は本発明方法を実施する為に構成される距離測定
装置の他の実施例を示す概略説明図である。この実施例
における基本的構成は、第1図に示した構成と類似する
ので、対応する部分には同一の参照符号を付すことによ
って重複説明を避ける。
Embodiment 2 FIG. 3 is a schematic explanatory diagram showing another embodiment of a distance measuring device configured to carry out the method of the present invention. The basic configuration of this embodiment is similar to the configuration shown in FIG. 1, so corresponding parts are given the same reference numerals to avoid redundant explanation.

前記実施例1で述べた様に、光源1から照射される光は
複数の波長成分を含んだ白色光である。
As described in the first embodiment, the light emitted from the light source 1 is white light containing a plurality of wavelength components.

そしてこの実施例では、光源1から照射される光は単一
波長成分とされることなくビームスプリッタ9に向う。
In this embodiment, the light emitted from the light source 1 is directed toward the beam splitter 9 without being converted into a single wavelength component.

ビームスプリッタ9では白色光が2方向の光に分割され
、一方の光は固定反射鏡1゜に向い、他方の光は対象物
15に向う。更に、両者の光は夫々固定反射鏡10及び
対象物15で反射されてビームスプリッタ9に戻り、ビ
ームスプリッタ9上で重なって干渉を起こす。
The beam splitter 9 splits the white light into two directions, one of which is directed toward the fixed reflector 1° and the other toward the object 15. Further, both lights are reflected by the fixed reflecting mirror 10 and the object 15, respectively, and return to the beam splitter 9, and overlap on the beam splitter 9, causing interference.

この様にして干渉した光は分光分析計6aに送られる。The light thus interfered is sent to the spectrometer 6a.

この分光分析計6aは各波長ごとにその強度が測定でき
る構成とされ、該分光分析計68に送られた光は各波長
ごとの強度が第4図に示す様に連続的に求められる。
The spectrometer 6a is configured to be able to measure the intensity of each wavelength, and the intensity of each wavelength of the light sent to the spectrometer 68 is continuously determined as shown in FIG.

分光分析計6aからの強度信号s5は中央処理回路16
に人力され、該中央処理回路16では強度が極大値(又
は極小値)となる隣接する2つの波長λm、λm+1が
検出される。更に検出されたλm、λm+1を前記(8
)式に適用することによって、対象物15までの距11
[xが求められる。
The intensity signal s5 from the spectrometer 6a is transmitted to the central processing circuit 16.
The central processing circuit 16 detects two adjacent wavelengths λm and λm+1 whose intensity has a maximum value (or minimum value). Furthermore, the detected λm and λm+1 are
), the distance 11 to the object 15 can be calculated by applying the equation
[x is found.

[発明の効果] 以上述べた如く本発明によれば、本発明方法を実施する
ことによって、電磁波又は超音波の波長レベルといった
高い精度で対象物までの距離を測定することが可能とな
った。
[Effects of the Invention] As described above, according to the present invention, by implementing the method of the present invention, it has become possible to measure the distance to an object with high accuracy such as the wavelength level of electromagnetic waves or ultrasonic waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する為に構成される距離測定
装置の一例を示す概略説明図、第2図は本発明の基本的
原理を示す概略説明図、第3図は本発明方法を実施する
為に構成される距離測定装置の他の例を示す概略説明図
、第4図は分光分析計6aによって求められた波形を示
すグラフ、第5図は一般式の(9)式を求める為の波形
を示すグラフである。 3.15・・・対象物     5・・・光源6・・・
分光器      6a・・・分光分析計7.9・・・
ビームスプリッタ 8.11・・・光量検出器   lO・・・固定反射鏡
12.13・・・増幅器    16・・・中央処理回
路第1図 第4図 λ1λ2・・・ン、□λm−1−1 波長 第5図 波艮
FIG. 1 is a schematic explanatory diagram showing an example of a distance measuring device configured to implement the method of the present invention, FIG. 2 is a schematic explanatory diagram showing the basic principle of the present invention, and FIG. A schematic explanatory diagram showing another example of a distance measuring device configured for carrying out the measurement, Fig. 4 is a graph showing the waveform obtained by the spectrometer 6a, and Fig. 5 shows the general formula (9). It is a graph showing a waveform for. 3.15...Object 5...Light source 6...
Spectrometer 6a... Spectrometer 7.9...
Beam splitter 8.11... Light quantity detector lO... Fixed reflector 12.13... Amplifier 16... Central processing circuit Figure 1 Figure 4 λ1λ2... N, □λm-1-1 Wavelength Diagram 5 Wave Wave

Claims (2)

【特許請求の範囲】[Claims] (1)電磁波又は超音波を対象物に照射して対象物まで
の距離を測定する方法において、発信部から未知のとこ
ろにある対象物に単一波長の電磁波又は超音波を照射し
てその反射波を受信部に入射させると共に、上記発信部
から既知の距離のところにある受信部に前記と同一波長
の電磁波又は超音波を入射させ、上記両入射波の干渉に
よって生じる電磁波又は超音波の強度が極値をとる少な
くとも2つの波長を測定し、極値を示したときの波長、
上記未知距離及び既知距離の関係から上記未知距離を求
めることを特徴とする距離測定方法。
(1) In a method of measuring the distance to an object by irradiating the object with electromagnetic waves or ultrasonic waves, a single-wavelength electromagnetic wave or ultrasonic wave is irradiated from the transmitter to the object at an unknown location, and its reflection is reflected. The intensity of the electromagnetic wave or ultrasonic wave generated by the interference of both incident waves by making a wave enter the receiving part and making the same wavelength of electromagnetic wave or ultrasonic wave enter the receiving part at a known distance from the transmitting part. Measure at least two wavelengths at which the wavelength takes an extreme value, and the wavelength at which the
A distance measuring method characterized in that the unknown distance is determined from the relationship between the unknown distance and the known distance.
(2)電磁波又は超音波を対象物に照射して対象物まで
の距離を測定する方法において、発信部から未知の距離
のところにある対象物に複数の波長成分を含む電磁波又
は超音波を照射してその反射波を受信部に入射させると
共に、上記発信部から既知の距離のところにある受信部
に前記と同一の電磁波又は超音波を入射させ、上記両入
射波の干渉によって生じる電磁波又は超音波の強度が極
値をとる少なくとも2つの波長を上記複数波長の中から
検出し、極値を示したときの波長、上記未知距離及び既
知距離の関係から上記未知距離を求めることを特徴とす
る距離測定方法。
(2) In a method of measuring the distance to an object by irradiating the object with electromagnetic waves or ultrasonic waves, the object at an unknown distance from the transmitter is irradiated with electromagnetic waves or ultrasonic waves containing multiple wavelength components. The reflected wave is made incident on the receiving section, and the same electromagnetic wave or ultrasonic wave is made incident on the receiving section at a known distance from the transmitting section, and the electromagnetic wave or ultrasonic wave generated by the interference of both of the incident waves is At least two wavelengths at which the intensity of the sound wave takes an extreme value are detected from among the plurality of wavelengths, and the unknown distance is determined from the relationship between the wavelength at which the intensity of the sound wave takes an extreme value, the unknown distance, and the known distance. Distance measurement method.
JP27433586A 1986-11-18 1986-11-18 Distance measuring method Pending JPS63128218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27433586A JPS63128218A (en) 1986-11-18 1986-11-18 Distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27433586A JPS63128218A (en) 1986-11-18 1986-11-18 Distance measuring method

Publications (1)

Publication Number Publication Date
JPS63128218A true JPS63128218A (en) 1988-05-31

Family

ID=17540223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27433586A Pending JPS63128218A (en) 1986-11-18 1986-11-18 Distance measuring method

Country Status (1)

Country Link
JP (1) JPS63128218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008089173A1 (en) * 2007-01-16 2008-07-24 Innovative American Technology, Inc. Standoff radiation detection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099357A (en) * 1973-12-28 1975-08-07
JPS6140607B2 (en) * 1982-09-25 1986-09-10 Sony Corp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099357A (en) * 1973-12-28 1975-08-07
JPS6140607B2 (en) * 1982-09-25 1986-09-10 Sony Corp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008089173A1 (en) * 2007-01-16 2008-07-24 Innovative American Technology, Inc. Standoff radiation detection system

Similar Documents

Publication Publication Date Title
US9976843B2 (en) Multiscale distance measurement with frequency combs
CN110132138B (en) Double-sweep-frequency light source ranging system and method based on cascade interferometer
US3523735A (en) Interferometer system for distance measurement
US6297884B1 (en) Interferometric instrument provided with an arrangement for producing a frequency shift between two interfering beam components
JP2732849B2 (en) Interferometer
US4355899A (en) Interferometric distance measurement method
US4822164A (en) Optical inspection device and method
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
JPH06174844A (en) Laser distance measuring apparatus
US20090147265A1 (en) Detection system for detecting translations of a body
JPS63128218A (en) Distance measuring method
JPH06186337A (en) Laser distance measuring equipment
US6654124B2 (en) Signal modulation compensation for wavelength meter
RU2152588C1 (en) Method measuring optical thickness of plane-parallel clear objects
RU2788568C1 (en) Device of doppler velocity measurement based on interferometer with fiber input of radiation
JPS5866881A (en) Surveying equipment by light wave
JPH11237209A (en) High sensitivity space-positioning method
JPS63255685A (en) Length measuring apparatus by laser
SU938660A1 (en) Device for remote measuring of distances
RU2060475C1 (en) Method of measurement of harmonic oscillation amplitudes
SU1631459A1 (en) Device for antenna directivity pattern measurement
JPH02163684A (en) Range finding method
JP2024056589A (en) Optical distance meter
JPS63128210A (en) Measuring method for film thickness and refractive index
SU1067953A1 (en) Method of measuring laser gauss beam neck radius