JPS63248102A - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JPS63248102A
JPS63248102A JP62082398A JP8239887A JPS63248102A JP S63248102 A JPS63248102 A JP S63248102A JP 62082398 A JP62082398 A JP 62082398A JP 8239887 A JP8239887 A JP 8239887A JP S63248102 A JPS63248102 A JP S63248102A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
compound
permanent magnet
tetragonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62082398A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Yoshio Tawara
俵 好夫
Makoto Osugi
大杉 良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP62082398A priority Critical patent/JPS63248102A/en
Publication of JPS63248102A publication Critical patent/JPS63248102A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnet having a stabilized tetragonal compound, a high Curie point and high degree of magnetic characteristics by a method wherein the Ti and M of the prescribed quantity is added to an R-Fe compound. CONSTITUTION:A permanent magnet is obtained using a five-component alloy shown by a formula RxTiyMzFeaCob. The R in the formula indicates one or more kinds of the rare earth elements containing Y, M indicates Zr or Hf, and the range of their composition in weight percentage is x=12-30%, y=1-8%, z=0.1-8%, a=55-80%, and b=34% or below. This five-component compound has a tetragonal structure, its indexing is possible, and the temperature variation of magnetization is approximately of a single phase. The tetragonal compound can be stabilized by introduction of Ti and Zr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種電機・電子機器材料として有用な磁気特性
に優れた希土類永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rare earth permanent magnet with excellent magnetic properties useful as a material for various electrical and electronic devices.

(従来技術とその問題点) 従来良く知られ量産化されている希土類永久磁石には、
Sm−Co系磁石があり、これにはCuを含まない11
5磁石とCuを含む2相分離型2/17磁石がある。後
者の2/17磁石は最大エネルギー積、(BH)、、、
Xが30M−Goeに達し高特性磁石として、スピーカ
ー、モーター、計測器等に使用されている。Sm−Co
系磁石は高価なSm、Co金属を使用しているためコス
トの点からCOをFeで置換する割合をなるべく高める
ことが中心的な開発課題である。しかし現在量産化され
ている2717En石でもCOの20at%置換がせい
ぜいであり、115磁石にはFeが固溶しないため、量
産の主流は2/171a石に移りつつある。
(Prior art and its problems) Rare earth permanent magnets that are well-known and mass-produced include:
There are Sm-Co magnets, which do not contain Cu11
5 magnet and a two-phase separated type 2/17 magnet containing Cu. The latter 2/17 magnet has the maximum energy product, (BH),...
With X reaching 30M-Goe, it is used as a high-performance magnet in speakers, motors, measuring instruments, etc. Sm-Co
Since the system magnet uses expensive Sm and Co metals, the main development issue is to increase the ratio of replacing CO with Fe as much as possible from the viewpoint of cost. However, even with the 2717En stone currently being mass-produced, CO replacement is at most 20 at%, and since Fe is not dissolved in solid solution in the 115 magnet, the mainstream of mass production is shifting to the 2/171a stone.

最近開発されたNd−Fe−Bの三元系磁石はSm−C
o系磁石よりさらに高特性であり、しかも資源的に豊富
なNd、Feを主たる原料にしているので大変注目され
ている。しかしこのNd6n石は大変錆び易く何等かの
コーティングが必要となるが、未だに量産に適した方法
が見つかって居らず、この点がネックとなって広く用い
られるまでに至っていない。またNd−Fe−B系磁石
はキュリ一点(Tc)が310℃と低いため、残留磁化
の温度変化tJ(−0,12%/℃と大きく、モーター
や計測器のように温度に対する安定性が要求される分野
では使用困難であった。
The recently developed Nd-Fe-B ternary magnet is Sm-C
It is attracting a lot of attention because it has higher characteristics than O-based magnets and uses Nd and Fe, which are rich in resources, as the main raw materials. However, this Nd6n stone is very susceptible to rust and requires some kind of coating, but a method suitable for mass production has not yet been found, and this point has been a bottleneck that has prevented it from being widely used. In addition, Nd-Fe-B magnets have a low Curie point (Tc) of 310°C, so the temperature change in residual magnetization tJ (-0.12%/°C) is large, making them less stable against temperature like motors and measuring instruments. It was difficult to use in the field where it was required.

他方、R−Fe系の二元化合物としてRFe2゜RFe
5.  R2Fe1y化合物が良く知られているが、こ
れらはキュリ一点(Tc)、飽和磁化(4πMs)、6
22気異方性常数(Ku)の何れかが低いため磁石素材
としては適していない。
On the other hand, as a binary compound of R-Fe system, RFe2゜RFe
5. R2Fely compounds are well known, and these have a single Curie point (Tc), saturation magnetization (4πMs), and 6
It is not suitable as a magnet material because any one of the 22 gas anisotropy constants (Ku) is low.

Croatらはこの様な事情があるにも関わらすR−F
eの二元系を急冷薄帯法で急冷し、準安定相をクエンチ
して磁石化した(^111)l Phys、 Lett
Despite these circumstances, Croat et al.
The binary system of e was quenched by the quenched ribbon method, the metastable phase was quenched, and it became a magnet (^111)l Phys, Lett
.

37.1096.1981) 、また、 (:adie
u等はスパッター法によりSmFe3および(SmTi
)Fe、の薄膜が作成できることを示した(J、 Ap
pl、 Phys。
37.1096.1981), also (:adie
u etc. are SmFe3 and (SmTi) by sputtering method.
) showed that it is possible to create a thin film of Fe (J, Ap
pl, Phys.

Vol 、55.2811.1984)。Vol. 55.2811.1984).

しかし、これもスパッター法による準安定相で、バルク
には存在しないものと考えられていた。そして彼等はこ
れらの薄膜は六方晶であると報告している。この様な磁
石は等方性で特性も低く、準安定相を基本としているた
めその安定性にも疑問がもたれ、より高特性で錆び難く
、安価なFn石の開発が望まれていた。
However, this is also a metastable phase created by sputtering and was thought to not exist in the bulk. They report that these thin films are hexagonal. Such magnets are isotropic, have low properties, and are based on a metastable phase, which raises questions about their stability.Therefore, there has been a desire to develop Fn stones with higher properties, rust resistance, and low cost.

上述したようにR−Fe二元系ではキューり点なと磁石
素材としての必要条件を満たすバルクの化合物は知られ
ていなかった。ところがNd−Fe−B三元化合物のバ
ルクを主体とする磁石が佐用らによって開発されたため
、本発明者らはそれ以外のR−Fe−M(但しMは希土
類元素以外の第3元素)よりなる磁石化可能な三元また
は四元の化合物について種種探索した結果、今までに知
られていない結晶構造をもつ一連の化合物を見いだし、
このような化合物の1つを磁石として提案した(特願6
l−84723)。しかしこれはキューリ温度が最高で
約310℃であり、前記Nd系磁石同様磁化の温度変化
に問題があった。そこでこの点を改良するため鋭意検討
を重ね、Feの一部をCoで置換することによりキュー
リ点が大幅に向上し磁化の温度変化が改善されることを
見いだし本発明に到達1ノたのである。
As mentioned above, in the R-Fe binary system, no bulk compound having a cue point and satisfying the requirements as a magnet material has been known. However, since Sayo et al. developed a magnet based on the bulk of the Nd-Fe-B ternary compound, the present inventors developed a magnet based on the bulk of the Nd-Fe-B ternary compound. As a result of searching for various ternary or quaternary compounds that can be magnetized, we discovered a series of compounds with previously unknown crystal structures.
proposed one of these compounds as a magnet (patent application 6).
l-84723). However, this has a maximum Curie temperature of about 310° C., and like the Nd-based magnets described above, there is a problem with temperature changes in magnetization. Therefore, in order to improve this point, we conducted extensive studies and found that by replacing a portion of Fe with Co, the Curie point was significantly improved and the temperature change in magnetization was improved, and we were able to arrive at the present invention. .

(発明の構成) 本発明は前記高価なCO金金属使用を極力抑えSm−C
o系磁石と同等あるいはそれ以上の6n気特性をもつ、
特にキュリ一点の高い希土類磁石の提供を目的としてお
り、 式Ry T s y Mz F ea COb(式中R
はYを含む希土類元素、MはZrまたはHfであり、重
量百分率でXは12〜30%、yは1〜8%、Zは0.
1〜8%、aは55〜85%、bは34%以下である)
で示される希土類永久rI11石を要旨とするものであ
る。
(Structure of the Invention) The present invention minimizes the use of the expensive CO gold metal, and the Sm-C
It has 6N characteristics that are equal to or better than O-type magnets.
In particular, we aim to provide rare earth magnets with a unique level of Curie.
is a rare earth element containing Y, M is Zr or Hf, and in weight percentage, X is 12 to 30%, y is 1 to 8%, and Z is 0.
1-8%, a is 55-85%, b is 34% or less)
This article focuses on rare earth permanent rI11 stones shown in .

以下これについて詳しく説明すると、本発明の永久磁石
はR−T i −M−Fe−Coの三元系合金からなる
もので、前記のようにRはyを含む希土類元素の1種ま
たは2種以上、MはZrまたはHfあるいはZrとHf
との混合物でもよい。それらの組成範囲は重量百分率で
x=12〜30%、y=1〜8%、z=o、1〜8%、
a=55〜85%モしてbは34%以下である。
To explain this in detail below, the permanent magnet of the present invention is made of a ternary alloy of R-Ti-M-Fe-Co, and as mentioned above, R is one or two rare earth elements including y. Above, M is Zr or Hf or Zr and Hf
It may also be a mixture with Their composition range in weight percentage is x=12-30%, y=1-8%, z=o, 1-8%,
a=55 to 85%, and b is 34% or less.

上記合金組成を決定するに当り、本発明者らは例えばR
としてSmを選びS mT f O,9Z r o、 
+(Fe、−ウC0X)10の二元化合物を作成し、そ
のX線回折を行フたところ正方晶構造であることを確認
し指数すけ出来ることが明らかになった。
In determining the above alloy composition, the present inventors, for example, R
Select Sm as S mT f O,9Z r o,
A binary compound of + (Fe, -UCO

そして磁化の温度変化もほぼ単−相に近いこと、Ti、
Zrの導入により正方晶の化合物が安定化されることが
わかった。さらに研究を進めた結果このことはSm以外
全ての希土類元素およびYについても適用しうることを
見いだした。
Also, the temperature change in magnetization is almost single-phase.
It was found that the tetragonal compound was stabilized by the introduction of Zr. As a result of further research, it was found that this can be applied to all rare earth elements other than Sm and Y.

キュリ一点について熱磁気カーブを測定したところ第1
図に示すような結果を得た。これによって例えば10%
の置換で60℃以上の上昇を示し磁化の温度変化は顕著
に改善されることがわかった。
When the thermomagnetic curve was measured for one point of Currie, the first result was
The results shown in the figure were obtained. For example, 10%
It was found that the temperature change in magnetization was significantly improved, showing an increase of 60° C. or more with the substitution of .

前記Rとしては、La、Ce、Pr、Nd、Sm。The above R includes La, Ce, Pr, Nd, and Sm.

Eu、Gd、Tb、Dy、Ho、Er、Tm。Eu, Gd, Tb, Dy, Ho, Er, Tm.

Yb、Luの希土類元素及びYが挙げられ、これらの1
種または2種以上の混合物が使用される。
Rare earth elements such as Yb and Lu and Y are mentioned, and these 1
Species or mixtures of two or more species are used.

磁石としてより好ましいのは軽希土類元素である。この
理由として重希土類元素を使用した場合には飽和磁化が
低下するためである。
Light rare earth elements are more preferred as magnets. The reason for this is that when heavy rare earth elements are used, the saturation magnetization decreases.

Rが前記範囲以外のとぎは正方晶構造が安定せず、しか
も12%以下では保磁力(iHc)が、また30%以上
では飽和磁化(4πMs)がそれぞれ大きく低下するた
め前記範囲内であることが必要である。さらにTi、M
が前記範囲以外のときは正方晶構造が安定せず、特に8
%以上のときは正方晶の割合が少なくなるため前記範囲
が必要である。また好ましくはTiとMの和が2〜15
%の間であるのがよい。これは磁性を担っているFe原
子間の距離を適当な範囲に保つために必要である。
If R is outside the above range, the tetragonal structure will not be stable, and if it is less than 12%, the coercive force (iHc) will be greatly reduced, and if it is more than 30%, the saturation magnetization (4πMs) will be greatly reduced, so it must be within the above range. is necessary. Furthermore, Ti, M
is outside the above range, the tetragonal structure will not be stable, especially when 8
% or more, the proportion of tetragonal crystals decreases, so the above range is necessary. Preferably, the sum of Ti and M is 2 to 15.
It is better to be between %. This is necessary to maintain the distance between Fe atoms, which are responsible for magnetism, within an appropriate range.

Coの置換量についてはFeの量の40%以下が適当で
ある。これは、第1図に示すようにFeをCoで置換す
ることによりキュリ一点は大幅に上昇するが、磁気異方
性常数が低下するため、また高価なCOの爾用量をなる
べく抑えるためにもこれ以上置換し過ぎることは好まし
くない。
The appropriate amount of Co to be substituted is 40% or less of the amount of Fe. This is because, as shown in Figure 1, replacing Fe with Co greatly increases the Curie point, but the magnetic anisotropy constant decreases, and also because it is necessary to suppress the amount of expensive CO as much as possible. It is not preferable to substitute too much.

本発明に係わる希土類永久磁石は、前記の元素よりなる
組成物を粉末冶金法により、溶解、鋳造、粉砕、磁場中
成形、焼結熱処理することにより得ることが出来る。
The rare earth permanent magnet according to the present invention can be obtained by melting, casting, pulverizing, forming in a magnetic field, and heat-sintering a composition made of the above-mentioned elements using a powder metallurgy method.

本発明による希土類永久磁石は前述のようにTi、Mに
より正方晶の安定な結晶構造を持つ化合物相を主体とす
る磁石であるので、二元系の化合物に比べてキュリ一点
も高く、飽和磁化も同様に大幅な上昇を示し高い磁気特
性が得られる。または粉末焼結法により異方性磁石とす
ることが出来るので、Sm−Co系磁石と同等以上の磁
石が得られ、しかもよりすくないCO量の磁石であるた
め工業材料としては極めて有利である。
As mentioned above, the rare earth permanent magnet according to the present invention is a magnet mainly composed of a compound phase with a stable tetragonal crystal structure made of Ti and M, so it has a saturation magnetization that is one Curie point higher than that of binary compounds. Similarly, the magnetic properties show a significant increase and high magnetic properties can be obtained. Alternatively, since it can be made into an anisotropic magnet by a powder sintering method, a magnet that is equivalent to or better than Sm--Co magnets can be obtained, and since it is a magnet with a lower amount of CO, it is extremely advantageous as an industrial material.

Nd−Fe−B系の磁石では粉末冶金法により磁石を製
造する場合微粉末の急激な酸化により磁気特性の大幅な
劣化が起きる。さらに焼結体の表面も非常に錆び易く、
適切なコーティングをしない限り耐えない。然るに本発
明の粘土磁石はFeを主体とする磁石でありながら、高
い耐食性を有しており特にコーティングをしなくても使
用可能である。当然、樹脂塗装(スプレー、電着塗装)
、メッキ(電解、無電解)やPVD (蒸着、スパッタ
ー、イオンブレーティング)によりコーティングするこ
とにより、さらに耐食性を向上させることが出来る。
When manufacturing Nd-Fe-B magnets by powder metallurgy, rapid oxidation of fine powder causes significant deterioration of magnetic properties. Furthermore, the surface of the sintered body is also very susceptible to rust.
Will not withstand unless properly coated. However, although the clay magnet of the present invention is a magnet mainly composed of Fe, it has high corrosion resistance and can be used without any particular coating. Naturally, resin coating (spray, electrodeposition coating)
Corrosion resistance can be further improved by coating by plating (electrolytic, electroless) or PVD (vapor deposition, sputtering, ion blating).

また、急冷薄帯法によフても高い保磁力を有する薄帯が
得られるので、これを粉砕して等方性のプラスチックマ
グネットにしたり、異方性焼結体を粉砕し、異方性プラ
スチックマグネットとすることが出来る。
In addition, since the quenched ribbon method produces a ribbon with a high coercive force, it can be crushed to make an isotropic plastic magnet, or an anisotropic sintered body can be crushed to create an anisotropic It can be a plastic magnet.

(発明の効果) 本発明によればR−Fe系にTi−Mを所定量加えるこ
とにより、これまで知られていなかった正方晶化合物の
安定化を達成し、高価なCoを使用するSm−Co系磁
石に代るキューリ点の高い希土類永久磁石が得られる。
(Effects of the Invention) According to the present invention, by adding a predetermined amount of Ti-M to the R-Fe system, stabilization of tetragonal compounds, which was unknown until now, can be achieved, and Sm- A rare earth permanent magnet with a high Curie point can be obtained in place of a Co-based magnet.

(実施例1) 各々純度99.9%のSm、Ti、Zr、Fe。(Example 1) Sm, Ti, Zr, and Fe, each with a purity of 99.9%.

COメタルを第1表に示す割合で秤量後、高周波溶解炉
で溶解し鋼鋳造に溶湯を傾注してインゴットを作成した
。このインゴットをN2ガス中でシェドミルにより平均
粒径2〜10μmの大きさに粉砕した。得られた微粉を
粉末焼結法により、15kOeの磁場中で配向後、油圧
プレスにて1.5t/cm’の圧力でプレス成形した。
After weighing CO metal in the proportions shown in Table 1, it was melted in a high frequency melting furnace and the molten metal was poured into a steel casting to create an ingot. This ingot was ground to an average particle size of 2 to 10 μm using a shed mill in N2 gas. The obtained fine powder was oriented in a magnetic field of 15 kOe by a powder sintering method, and then press-molded using a hydraulic press at a pressure of 1.5 t/cm'.

この成形体(No、1〜4)をArガス中で、1000
〜1200℃で1時間焼結を行った後、400〜900
℃でさらに1時間処理した後急冷した。
The molded bodies (No. 1 to 4) were heated to 1000°C in Ar gas.
After sintering at ~1200°C for 1 hour, the
After further treatment at ℃ for 1 hour, it was rapidly cooled.

熱処理後の異方性焼結体の磁気特性を測定したところ、
第1表に示す結果が得られた。各々のキューリ一点も同
時に示すがSmTiFe、。のキューリ一点310℃と
比較すると大幅に上昇している。
When we measured the magnetic properties of the anisotropic sintered body after heat treatment, we found that
The results shown in Table 1 were obtained. One point of each cucumber is also shown at the same time, SmTiFe. This is a significant increase compared to 310 degrees Celsius for a single cucumber.

(実施例2) 各々純度99,9%のNd、Sm、Dy、YとTi。(Example 2) Nd, Sm, Dy, Y and Ti, each with a purity of 99.9%.

Zr、Hf、Fe、(No、5〜8)Coを第2表に示
す割合で秤量し、実施例1と同一条件で製造して異方性
焼結体(No、 5〜8)を作成した。各々の異方性焼
結体の磁気特性を測定したところ第2表に示す結果が得
られた。実用上十分な保磁力が得られることが分かる。
Zr, Hf, Fe, and (No. 5 to 8) Co were weighed in the proportions shown in Table 2 and produced under the same conditions as Example 1 to create anisotropic sintered bodies (No. 5 to 8). did. When the magnetic properties of each anisotropic sintered body were measured, the results shown in Table 2 were obtained. It can be seen that a practically sufficient coercive force can be obtained.

室温から100℃の間での可逆温度係数も示す。SmT
iFe係の−0,12%/Cに比べると大幅に改善され
ている。
The reversible temperature coefficient between room temperature and 100°C is also shown. SmT
This is a significant improvement compared to -0.12%/C for iFe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は Sm (Tia、o Zro、+ )(Fe、−8CO
x)10の磁石組成においてCOの置換量とキュリ一温
度の変化を示すグラフである。
Figure 1 shows Sm (Tia, o Zro, +) (Fe, -8CO
x) It is a graph showing the change in the amount of CO substitution and the Curie temperature in a magnet composition of 10.

Claims (1)

【特許請求の範囲】 1、式R_xTi_yM_zFe_aCo_b(式中R
はYを含む希土類元素、MはZrまたはHfであり、重
量百分率でxは12〜30%、yは1〜8%、zは0.
1〜8%、aは55〜85%、bは34%以下である)
で示される希土類永久磁石。 2、前記TiとMの和が重量百分率で2〜15%である
特許請求の範囲第1項記載の希土類永久磁石。
[Claims] 1. Formula R_xTi_yM_zFe_aCo_b (wherein R
is a rare earth element containing Y, M is Zr or Hf, x is 12 to 30%, y is 1 to 8%, and z is 0.
1-8%, a is 55-85%, b is 34% or less)
A rare earth permanent magnet shown in 2. The rare earth permanent magnet according to claim 1, wherein the sum of Ti and M is 2 to 15% by weight.
JP62082398A 1987-04-03 1987-04-03 Rare earth permanent magnet Pending JPS63248102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082398A JPS63248102A (en) 1987-04-03 1987-04-03 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082398A JPS63248102A (en) 1987-04-03 1987-04-03 Rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPS63248102A true JPS63248102A (en) 1988-10-14

Family

ID=13773485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082398A Pending JPS63248102A (en) 1987-04-03 1987-04-03 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPS63248102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482573A (en) * 1991-10-16 1996-01-09 Kabushiki Kaisha Toshiba Magnetic material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150153A (en) * 1980-04-18 1981-11-20 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS6110209A (en) * 1984-06-26 1986-01-17 Toshiba Corp Permanent magnet
JPS6151901A (en) * 1984-08-22 1986-03-14 Daido Steel Co Ltd Manufacture of permanent magnet
JPS6178102A (en) * 1984-09-25 1986-04-21 Daido Steel Co Ltd Permanent magnet material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150153A (en) * 1980-04-18 1981-11-20 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS6110209A (en) * 1984-06-26 1986-01-17 Toshiba Corp Permanent magnet
JPS6151901A (en) * 1984-08-22 1986-03-14 Daido Steel Co Ltd Manufacture of permanent magnet
JPS6178102A (en) * 1984-09-25 1986-04-21 Daido Steel Co Ltd Permanent magnet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482573A (en) * 1991-10-16 1996-01-09 Kabushiki Kaisha Toshiba Magnetic material

Similar Documents

Publication Publication Date Title
JP3057448B2 (en) Rare earth permanent magnet
US4663066A (en) Magnetic rare earth/iron/boron and rare earth/cobalt/boron hydrides, the process for their manufacture of the corresponding pulverulent dehydrogenated products
JP2970809B2 (en) Rare earth permanent magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH0232761B2 (en)
JPH0316761B2 (en)
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
US4099995A (en) Copper-hardened permanent-magnet alloy
US4973415A (en) Rapidly quenched ribbon magnet and plastic magnet containing powders of the rapidly quenched ribbon magnet
JPS63248102A (en) Rare earth permanent magnet
JPH0474426B2 (en)
JPS62241304A (en) Rare earth permanent magnet
EP0151861A2 (en) Thermally controlled sputtering of high anisotropy magnetic material
Jurczyk Nanocomposite Nd–Fe–B type magnets
JPS63248103A (en) Rare earth permanent magnet
JPS63273303A (en) Rare earth permanent magnet
JPH04322405A (en) Rare earth permanent magnet
Chang et al. The influence of sintering aids on the texture and remanence of Nd-Fe-B magnet alloys
JPS62241303A (en) Rare earth permanent magnet
JPS60187662A (en) Ferromagnetic alloy
JPS63273302A (en) Rare earth permanent magnet
JPH01168844A (en) Permanent magnet material
JPS62241302A (en) Rare earth permanent magnet
JPH06112019A (en) Nitride magnetic material